

ARKANSAS AGRICULTURAL EXPERIMENT STATION

Division of Agriculture April 1997 University of Arkansas Research Series 455

Arkansas Soil Fertility Studies — 1996 —

Wayne E. Sabbe, Editor Department of Agronomy University of Arkansas

Arkansas Agricultural Experiment Station Fayetteville, Arkansas 72701

INTRODUCTION

The Arkansas Soil Fertility Studies 1996 includes an index of articles in this and previous issues (1989-1996). The index is arranged by commodity. Within each commodity the indexing is sorted by nutrients. This addition will allow readers to review current and past issues for information on the soil fertility program in Arkansas.

The 1996 Soil Fertility Studies includes research reports on numerous Arkansas commodities and on several research areas including soil salinity. If the reader wishes more information on any included topic please contact the author(s). Also included is a summarization of soil test data from samples submitted for the 1996 growing season. This set of data includes data for counties, soil associations and selected cropping systems.

Funding for the associated soil fertility research programs came from several commodity check-off funds, the state, the federal government, the fertilizer industry and lime vendors. The fertilizer tonnage fee not only provided research funds but also provided funds for publication of this research series.

Extended thanks are given to state and county extension staffs, staffs at Extension and Research Centers and branch stations, farmers, and cooperators and fertilizer industry personnel who assisted with the planning and execution of the programs.

This publication is available online at http://www.uark.edu/depts/agripub/ Publications/researchseries/. Additional printed copies of this publication can be obtained free of charge from Agricultural Publications, Agricultural Building 110, University of Arkansas, Fayetteville, AR 72701.

> Wayne E. Sabbe Editor Department of Agronomy University of Arkansas

ACKNOWLEDGMENT

The Arkansas fertilizer tonnage fees funded the publication of this research series.

CONTRIBUTORS

V. Alleyne	Research Associate, Horticulture Department, Fayetteville
C.R. Anderson	Extension Specialist, Horticulture Department, Fayetteville
R.K. Bacon	Agronomist, Agronomy Department, Fayetteville
W.H. Baker	Research Assistant Agronomist, Soil Test Lab, Marianna
C.W. Bednarz	Former Graduate Assistant, Agronomy Department, Fayetteville
C.A. Beyrouty	Agronomist, Agronomy Department, Fayetteville
J.R. Clark	Resident Director, Fruit Substation, Clarksville
P.E. Cooper	Area Horticulture Specialist, SEREC, UAM
M.D. Correll	Research Specialist, Agronomy Department, Fayetteville
R.E. DeLong	Research Specialist, Agronomy Department, Fayetteville
P.B. Francis	Associate Professor, Forage Management, SEREC, UAM
D.M. Freeze	Agronomist, County Extension - Mississippi County, Blytheville
B.S. Frizzell	Research Specialist, SEREC, UAM
J.A. Hedge	Research Specialist, ASU, Jonesboro
J.T. Kelly	Research Associate, Agronomy Department, Fayetteville
R.A. Klerk	Area Agronomist, CES, Little Rock
J.S. McConnell	Associate Agronomist, SEREC, USDA-Booneville
J.H. Muir	Assistant Agronomist, ASU, Jonesboro
J. Naraguma	Graduate Student, Horticulture Department, Fayetteville
R.J. Norman	Agronomist, RREC, Stuttgart
S. Ntamatungiro	Agricultural Technician, RREC, Stuttgart
D.M. Oosterhuis	Agronomist, Agronomy Department, Fayetteville
H.J. Pulley	Research Specialist, Agronomy Department, Fayetteville
W.E. Sabbe	Agronomist, Agronomy Department, Fayetteville
N.A. Slaton	Area Rice Specialist, RREC, Stuttgart
C.S. Snyder	Former Extension Specialist, currently PPI, Conway
L.G. Stauber	County Extension Agent-Agriculture, Crittenden County, Marion
A. Steger	Research Specialist, Agronomy Department, Fayetteville
P.W. Teague	President, Delta Fresh, Inc., Jonesboro
T.G. Teague	Associate Professor, College of Agriculture, ASU
B.R. Wells	Agronomist, Agronomy Department, Fayetteville, Deceased
C.E. Wilson, Jr.	Assistant Professor, SEREC, Monticello

ASU = Arkansas State University; CES = Cooperative Extension Service; PPI = Phosphate Potash Institute; RREC = Rice Research and Extension Center; SEREC = Southeast Research and Extension Center; UAM = University of Arkansas, Monticello; USDA = U.S. Department of Agriculture.

CONTENTS

Soil Test Data: Summary for the Growing Season, 1996 R.E. DeLong, S.D. Carroll, W.E. Sabbe and W.H. Baker	1
Soil Test Characteristics of Major Land Areas in Arkansas, 1996 Stanley L. Chapman, Mike Daniels, Y. S. McCool, W. H. Baker and W. E. Sabbe	12
Slow-Release Soil and Foliar Fertilizer on Cotton D.M. Oosterhuis and A. Steger	15
Physiological Research on Plant Potassium Nutrition at the University of Arkansas	18
Foliar Nitrogen Fertilization of Cotton in Southeast Arkansas	22
Timing of Early Season Nitrogen Fertilization of Cotton	27
Irrigation Methods and Nitrogen Fertilization Rates in Cotton Production J.S. McConnell, W.H. Baker and B.S. Frizzell	30
Cotton Gin Trash as Soil Amendment for Small-Scale Vegetable Production Tina Gray Teague and Paul W. Teague	36
Rice Nutrient Composition Response to P and K Fertilization	40
Influence of Phosphorus Fertilizer Source and Rate on Rice C.E. Wilson, Jr., S. Ntamatungiro, N.A. Slaton, R.J. Norman, B.R. Wells and D. Frizzell	44
Influence of Phosphorus Rate, Potassium Source and Rate on Rice Production Sixte Ntamatungiro, N. A. Slaton, C. E. Wilson, Jr., R. J. Norman and B. R. Wells	49
Rice Response to Phosphorus and Potassium Fertilization at Different Soil Test Levels C.E. Wilson, Jr., N.A. Slaton, W.E. Sabbe, S. Ntamatungiro, R.J. Norman, B.R. Wells and D. Frizzell	54
Nitrogen Fertilization of Vine-Ripened Tomatoes Following a Winter Annual Legume Cover Crop P. B. Francis, P. E. Cooper and C. R. Anderson	57
Response of 'Arapaho' Thornless Blackberry to Nitrogen Fertilization: Third Year Results and Final Report Joseph Naraguma and John R. Clark	61

Blueberry Response to Nitrogen Rate and Method of Application: Third-year Results John R. Clark and Joseph Naraguma	64
Effect of Nitrogen Rate And Method of Application on Highbush Blueberry Fruit Quality	68
Wheat Yield Response from Spring Nitrogen Sources, Application Methods and Rates L. G. Stauber, D. M. Freeze and R. A. Klerk	71
Limestone Requirements for Soybean	76
Wheat Response to Nitrogen and Phosphorus Fertilization B.R. Wells, M.D. Correll, R.K. Bacon and J.T. Kelly	79
Influence of Poultry Litter and Phosphorus on Soybean Grown on Saline Soils_ J.H. Muir and J.A. Hedge	82
Effect of Salt Type on Soybean Growth H. J. Pulley and C.A. Beyrouty	84
Grain Yield of Maturity Group IV and V Dryland and Irrigated Soybean as Affected by Fertilizer Rates and Row Width W.E. Sabbe and R.E. DeLong	88
Influence of Phosphorus Plus Potash Fertilizer and Irrigation on Grain Yields of Soybean Cultivars W.E. Sabbe and R.E. DeLong	91
Grain Yield of Double Crop Wheat and Soybean as Affected by Fertilizer, Lime and Irrigation W.E. Sabbe and R.E. DeLong	95
Evaluation of Soybean to Soil Test Levels and Associated Fertilization Rates in Arkansas W.E. Sabbe, R.E. DeLong, N.A. Slaton, C.E. Wilson, R.J. Norman and B.R. Wells	98
Index (1989 – 1996)	_ 102

Editing and cover design by Elaine M. Williams

Agricultural Experiment Station, University of Arkansas Division of Agriculture, Fayetteville. Milo J. Shult, Vice President for Agriculture and Director; Charles J. Scifres, Associate Vice President for Agriculture–Research. PS 1M 497.

The Arkansas Agricultural Experiment Station follows a nondiscriminatory policy in programs and employment. ISSN:0099-5010 CODEN: AKAMA6

Soil Test Data: Summary for the Growing Season — 1996 —

R.E. DeLong, S.D. Carroll, W.E. Sabbe and W.H. Baker

Background Information

Soil test data from samples submitted by Arkansas farmers and growers to the University of Arkansas Soil Test Laboratory from 1 September 1995 to 30 August 1996 were categorized according to county, soil association number (SAN) and selected cropping system. This sampling period roughly corresponds to the 1996 crop growing season; therefore, those samples should represent the soil fertility of that cropping season. The SANs are from the General Soil Map, State of Arkansas (December 1982). The statistical interpretation of the soil test data include categorical ranges for pH, soil test P, K, NO₃-N and soluble salts. Soluble salts and NO₃-N can be indexes for possible soil contents that may lead to adverse soil-growing conditions or leaching potentials. Soil pH plus soil test (Mehlich III) values indicate soil fertility level.

Results

Crop Acreage and Soil Sampling Intensity

In the interval from 1 September 1995 to 30 August 1996, soil samples representing a total of 1,489,082 acres were submitted through the University of Arkansas Soil Testing Program (Tables 1-3). These 58,982 samples resulted in fertilizer and lime recommendations in all counties with each sample representing an average of 25 acres. The county average ranged from 3 to 50 acres/ sample. The lowest county sample number was 46, and the highest county sample number was 2891.

The average by SAN indicates the predominance of row crops and pasture. The higher values originate either from the Delta SAN where cotton, rice, wheat and soybean prevail or from the pasture SAN where cool- and warm-season hay and pasture production occurs. The crops involved indicate that, in addition to row crops and pasture, turf and garden enterprises contributed largely to the samples submitted to the program.

Soil Test Data

Values in Tables 4 to 6 pertain to the fertility status of the soils as categorized by county, SAN or the suggested 1996 crop category. Soil test values relate to the fertility of a soil but not necessarily to the productivity of the soil. Therefore, it may not be realistic to compare soil test values among SAN without knowledge of location and cropping system. Likewise, county values need knowledge of SAN and the profile of cropping systems. Soil test data for cropping systems can be compared; however, the specific cropping systems dictated past fertilizer practices and, hence, current soil test values. For example, cotton has a history of intensive fertilization; whereas, nonirrigated soybean has not been subjected to intensive fertilization. Similarly, rice can be produced on soils low in P and K, and those soil test values for the commodity reflect that fact. The acidity of Arkansas soils is demonstrated by the 20% sampled acreage that has a pH less than 5.5. From a beneficial standpoint, the accumulation of soluble salts and leachable nitrogen (NO₃- N) is low with approximately 69% for each in the lowest category.

Table 6 contains the median (Md) for each of the cropping system categories. The median (the soil test value that has an equal number of entities above and below) should be a better interpreter of a soil's fertility status than the percentage profile of the samples. Among row crops, the lowest P and K median values appear for rice and irrigated soybeans. As expected, the highest P and K median values are for cotton.

Practical Application

The data can be viewed with the perceptive of establishing a statewide, county-wide or commodity educational program on soil fertility and fertilization practices. The data are rather general, and more specific categories (e.g., soybean in Arkansas county for SAN 44) should be generated for those purposes. Comparisons and contrasts among counties, SAN or cropping systems would give the specific data needed for these programs.

Acknowledgment

Financial support from the Arkansas fertilizer tonnage fees is appreciated.

	Acres	No. of	Acres /		Acres	No. of	Acres /
County	Sampled	Samples	Sample	County	Sampled	Samples	Sample
Arkansas (DE)	40412	977	41	Lee	34006	952	36
Arkansas (ST)	96445	2343	41	Lincoln	7886	269	29
Ashley	27949	1086	26	Little River	4203	158	27
Baxter	7202	521	14	Logan (BO)	3705	201	18
Benton	29940	2083	14	Logan (PA)	5435	276	20
Boone	22196	891	25	Lonoke	98068	2628	37
Bradley	1438	209	7	Madison	9613	486	20
Calhoun	577	58	10	Marion	4069	224	18
Carroll	17680	843	21	Miller	7460	316	24
Chicot	10024	242	41	Mississippi (BL)	36786	946	39
Clark	4964	401	12	Mississippi (OS) 12858	358	36
Clay (CO)	23391	865	27	Monroe	23122	725	32
Clay (PI)	20148	637	32	Montgomery	3616	267	14
Cleburne	4431	444	10	Nevada	4133	221	19
Cleveland	988	75	13	Newton	4434	268	17
Columbia	1982	263	8	Ouachita	1028	138	8
Conway	11393	466	25	Perry	2412	138	18
Craighead	89223	2681	33	Phillips	23180	875	27
Crawford	14427	532	27	Pike	3741	245	15
Crittenden	34008	1380	25	Poinsett	58008	1450	40
Cross	75236	2658	28	Polk	3769	248	15
Dallas	297	58	5	Pope	16338	710	23
Desha (DU)	9059	327	28	Prairie (DA)	14743	363	41
Desha (MC)	60141	1534	39	Prairie (DB)	25596	571	45
Drew	5588	224	25	Pulaski	6343	1758	4
Faulkner	10516	1621	7	Randolph	21766	721	30
Franklin (CH)	881	46	19	Saline	1431	297	5
Franklin (OZ)	3022	161	19	Scott	1859	128	15
Fulton	8795	447	20	Searcy	6864	218	22
Garland	4125	1188	4	Sebastian (FS)	1755	519	3
Grant	928	144	6	Sebastian (GR)	3835	287	13
Greene	46087	1858	25	Sevier	4965	205	24
Hempstead	6719	313	22	Sharp	6771	374	18
Hot Spring	1892	170	11	St. Francis	22069	596	37
Howard	6752	337	20	Stone	3396	290	12
Independence	13849	504	28	Union	1897	175	11
Izard	11931	573	21	Van Buren	4366	324	14
Jackson	32755	770	43	Washington	26341	1823	15
Jefferson	38800	1408	28	White	46135	2891	16
Johnson	7606	383	20	Woodruff	38522	779	50
Lafayette	15524	428	36	Yell (DN)	7535	377	20
Lawrence	51675	1820	28	Yell (DR)	4027	118	34

Table 1. Sample number and acreage by county in Soil Test Program from September 1995 through August 1996.

Table 2. Sample number and	acreage	oy SAN ir	Soil Te	st Program from September 1995 throu	adh Augu	st 1996.	
Soil				Soil			
Association	Acres	No. of	Acres/	Association	Acres	No. of	Acres/
Number/Soil Association	Sampled	Samples	Sample	Number/Soil Association	Sampled	Samples	Sample
1-Clarksville-Nixa-Noark	31811	1435	22	26-Amagon-Dundee	52127	1403	37
2-Gepp-Doniphan-Gassville-Agnos	24517	1421	17	27-Sharkey-Steele	19604	509	39
3-Arkana-Moko	22585	1229	18	28-Commerce-Sharkey-			
4-Captina-Nixa-Tonti	40372	2782	15	Crevasse-Robinsonville	20990	725	29
5-Captina-Doniphan-Gepp	814	45	18	29-Perry-Portland	37826	1168	32
6-Eden-Newnata-Moko	3238	123	26	30-Crevasse-Bruno-Oklared	1349	51	27
7-Estate-Portia-Moko	5671	219	26	31-Roxana-Dardanelle-Bruno-Roellen	13251	456	29
8-Brockwell-Boden-Portia	9168	459	20	32-Rilla-Hebert	148789	4121	36
9-Linker-Mountainburg-Sidon	14234	650	22	33-Billyhaw-Perry	13242	224	59
10-Enders-Nella-Mountainburg-Steprock	38865	2558	15	34-Severn-Oklared	4642	86	54
11-Falkner-Wrightsville	954	52	18	35-Adaton	535	17	32
12-Leadvale-Taft	33783	3150	1	36-Wrightsville-Louin-Acadia	1841	54	34
13-Enders-Mountainburg-Nella-Steprock	8375	508	17	37-Muskogee-Wrightsville-McKamie	466	16	29
14-Spadra-Guthrie-Pickwick	4892	181	27	38-Amy-Smithton-Pheba	3009	211	14
15-Linker-Mountainburg	47619	3710	13	39-Darco-Briley-Smithdale	576	17	34
16-Carnasaw-Pirum-Clebit	12023	2065	9	40-Pheba-Amy-Savannah	4559	469	10
17-Kenn-Ceda-Avilla	1880	110	17	41-Smithdale-Sacul-Savannah-Saffell	12275	1164	1
18-Carnasaw-Sherwood-Bismarck	9107	1414	9	42-Sacul-Smithdale-Sawyer	18560	1463	13
19-Carnasaw-Bismarck	212	18	12	43-Guyton-Ouachita-Sardis	9290	361	26
20-Leadvale-Taft	2137	107	20	44-Calloway-Henry-Grenada-Calhoun	272976	8617	32
21-Spadra-Pickwick	2412	119	20	45-Crowley-Stuttgart	164487	3826	43
22-Foley-Jackport-Crowley	143247	4506	32	46-Loring	3180	101	32
23-Kobel	29582	669	42	47-Loring-Memphis	29796	1543	19
24-Sharkey-Alligator-Tunica	56593	1643	35	48-Brandon	850	65	13
25-Dundee-Bosket-Dubbs	103995	2844	37	49-Oktibbeha-Sumter	6776	268	25

	Acres	Number of	Acres/
Crop	Sampled	Samples	Sample
Soybean - nonirrigated	125374	3350	37
Soybean - irrigated	433903	10959	40
Cotton	261631	7032	37
Rice	141626	3925	36
Wheat	30833	742	42
Double-crop wheat-soybean - nonirrigated	22220	538	41
Double-crop wheat-soybean - irrigated	17912	491	37
Warm season grass - establish	6716	362	19
Warm season grass - maintain	97774	4189	23
Cool season grass - establish	1546	95	16
Cool season grass - maintain	80186	3427	23
Grain sorghum	17811	498	36
Corn	19176	534	36
All garden	7653	3919	2
Turf and ground cover	9603	6771	1
Fruit and nut	2887	642	5
Vegetable	140	32	4
Other	212091	11476	19

Table 3. Sample number and acreage by crop in Soil Test Program from September 1995 through August 1996.

Table 4. Soil tes	t data	by cou	inty fre	om sar	nples	submit	ted from	1 Sept	tembe	r 1995	throug	Ih Aug	ust 19	96.				
		Ηd			•	P (Ib/A)				K (lb/	4)		Z	Jar (Ib/	A)	EC (/soum	(m
County	<5.5	5.5-6.5	>6.5	<26	26-44	45-1001	01-300 >	>300	<176 1	76-220	221-350	>350	<26	26-100	>100	<100 1	01-500	>500
							ercenta	ge of	Sampl	ed Acr	eage –							
Arkansas (DE)	1	42	47	30	41	24	4	~	42	26	26	9	81	16	ю	44	55	~
Arkansas (ST)	15	52	33	47	28	19	5	~	50	22	21	7	85	14	-	56	43	~
Ashley	23	55	22	10	13	38	37	2	18	1	35	36	83	15	2	65	35	0
Baxter	4	35	61	∞	13	25	34	20	20	10	31	39	68	25	7	40	58	2
Benton	20	60	20	2	S	16	41	36	19	10	26	45	55	36	6	33	64	ო
Boone	13	65	22	∞	11	33	37	7	28	1	25	36	99	29	ß	48	51	-
Bradley	23	47	30	12	6	19	37	23	38	12	31	19	74	23	ო	64	36	0
Calhoun	35	62	2	S	12	24	47	12	50	12	24	14	76	19	ъ	74	26	0
Carroll	10	60	30	12	∞	25	38	17	26	1	27	36	61	34	ß	44	55	-
Chicot	~	53	40	13	29	37	18	ო	12	9	19	63	68	29	ო	36	63	-
Clark	35	49	16	20	13	19	34	14	49	14	22	15	84	13	ო	70	27	ო
Clay (CO)	7	69	20	32	30	32	9	0	55	21	20	4	93	7	0	78	22	0
Clay (PI)	19	71	10	12	23	49	15	-	26	29	36	o	06	8	2	82	18	0
Cleburne	27	60	13	15	19	26	22	18	35	13	28	24	71	25	4	59	40	-
Cleveland	36	51	13	19	7	17	33	24	39	16	24	21	83	12	2	71	28	-
Columbia	43	46	11	7	б	22	38	24	38	18	26	18	82	16	2	65	33	2
Conway	35	53	12	17	19	30	18	16	34	13	24	29	81	16	ო	72	28	0
Craighead	12	59	29	17	21	38	22	2	25	16	31	28	87	12	~	67	33	0
Crawford	10	56	34	13	16	34	29	ω	29	17	35	19	72	24	4	68	31	-
Crittenden	13	63	34	14	8	52	25	-	10	4	26	60	92	8	0	80	20	0
Cross	S	44	51	38	37	24	-	0	41	25	22	12	88	1	-	44	56	0
Dallas	31	59	10	21	ი	31	24	15	50	12	31	7	06	10	0	83	17	0
Desha (DU)	10	43	47	2	22	48	26	2	21	17	27	35	75	23	2	43	56	-
Desha (MC)	10	63	27	4	7	46	42	-	∞	10	36	46	81	18	-	54	46	0
Drew	39	42	19	33	15	24	21	2	49	17	22	12	80	17	ო	69	30	-
																	Conti	nued

-	
Ř	ζ.
<u> </u>	ć
5	
- <u>≻</u>	
Ē	
ō	5
C.	\$

Table 4. Continued																		
Faulkner	39	55	9	15	23	33	22	7	32	22	33	13	78	19	ო	60	40	0
Franklin (CH)	26	72	2	33	26	17	22	7	61	26	ი	4	96	4	0	85	15	0
Franklin (OZ)	37	55	8	30	19	19	17	15	47	1	20	22	81	16	ო	65	34	-
Fulton	19	66	15	18	17	35	27	ო	33	15	27	25	79	19	2	67	32	-
Garland	33	54	13	5	7	25	40	23	25	14	31	30	48	31	21	29	65	9
Grant	28	67	പ	17	15	22	36	10	52	13	24	1	89	8	ო	81	19	0
Greene	17	67	16	26	30	29	15	0	37	21	30	12	93	9	-	82	18	0
Hempstead	25	41	34	ი	12	22	34	23	38	12	16	34	77	19	4	52	46	2
Hot Spring	31	61	8	12	21	27	25	15	45	11	24	20	73	22	5	66	34	0
Howard	34	54	12	0	8	13	30	40	27	14	27	32	69	27	4	45	52	ო
Independence	21	59	20	16	18	30	26	10	39	16	27	18	74	23	ო	61	39	0
Izard	14	99	20	18	20	31	25	9	45	15	23	17	85	12	ო	68	31	-
Jackson	14	70	16	18	28	36	16	2	34	21	33	12	82	16	2	75	25	0
Jefferson	20	58	22	7	10	46	32	5	21	16	36	27	78	19	ო	66	33	-
Johnson	24	61	15	14	15	21	28	22	37	1	25	27	74	23	ო	70	29	-
Lafayette	16	46	38	5	ი	38	37	1	23	12	26	39	67	31	2	50	49	~
Lawrence	10	70	20	31	31	27	10	-	34	21	32	13	88	7	~	65	34	~
Lee	14	72	14	ო	13	64	18	7	14	13	41	32	83	16	-	80	20	0
Lincoln	29	52	19	10	10	35	33	12	26	14	32	28	72	23	5	60	39	-
Little River	19	58	23	17	1	32	34	9	32	10	25	33	65	30	വ	49	51	0
Logan (BO)	21	68	7	24	18	25	23	10	39	13	29	19	75	21	4	54	44	2
Logan (PA)	29	54	17	16	20	24	27	13	42	12	22	24	76	21	ო	61	37	0
Lonoke	15	62	23	18	21	42	16	ო	22	18	35	25	83	16	-	65	34	-
Madison	21	68	7	ω	ი	25	33	25	25	1	27	37	68	26	9	52	45	ო
Marion	8	63	29	2	13	29	41	12	25	ი	34	32	72	25	ო	51	48	-
Miller	24	50	26	10	12	27	30	21	38	14	24	24	82	16	2	63	37	0
Mississippi (BL)	ω	71	21	0	ო	56	39	2	9	10	53	31	94	S	-	89	1	0
Mississippi (OS)	ω	74	18	ო	5	64	27	-	9	9	28	60	91	7	2	89	10	-
Monroe	14	59	27	15	23	42	19	-	19	21	36	24	80	18	2	66	34	0
Montgomery	34	59	7	14	12	18	27	29	40	7	23	30	69	27	4	63	37	0

	~	0	0	4	0	0	0	-	-	0	0	2	0	4	-	-	2	-	2	2	0	-	ო	0	ო	~	0	0	-	-
	29	44	33	34	29	27	40	30	35	36	28	47	20	31	45	40	55	35	43	45	24	47	36	32	53	45	33	26	46	37
	70	56	65	62	71	73	60	69	64	64	72	51	80	65	54	59	43	64	55	53	76	52	61	68	44	54	67	74	53	62
	2	4	N	4	~	ო	0	5	2	2	2	9	-	ო	-	ო	9	-	S	5	-	9	5	9	5	5	0	ო	7	5
	13	27	12	22	15	16	17	19	22	11	13	24	ი	1	22	24	37	23	33	29	14	31	19	20	37	23	16	15	22	19
	85	69	86	74	84	81	83	76	76	87	85	70	06	86	77	73	57	76	62	99	85	63	76	74	58	72	84	82	71	76
	19	31	14	25	28	17	15	20	26	9	7	22	1	19	13	29	28	25	36	26	14	33	25	20	35	18	9	20	26	23
	27	30	21	25	41	18	19	23	28	25	21	30	28	24	26	28	37	21	23	23	43	28	25	26	28	32	30	23	32	28
	20	12	16	ი	13	12	19	18	12	14	24	18	22	13	23	1	14	15	10	14	21	13	12	15	12	17	23	14	7	15
	34	27	49	41	18	53	47	39	34	55	48	30	39	44	38	32	21	39	31	37	22	26	38	39	25	33	41	43	35	34
	30	7	20	15	ო	30	0	22	13	2	-	28	2	18	ო	ω	14	ø	34	1	ო	23	24	14	28	5	-	15	ი	11
	33	38	36	23	22	30	ω	34	26	4	S	39	7	29	27	40	37	24	28	20	ი	37	41	25	38	29	1	30	33	27
	14	35	20	13	54	16	32	19	29	1	24	17	31	20	25	30	30	22	19	28	56	26	18	38	21	28	36	16	32	29
	15	10	7	15	17	10	28	15	17	36	42	ø	27	13	20	12	10	17	∞	13	20	12	9	14	ი	22	35	15	7	17
	8	10	17	34	4	14	32	10	15	47	28	ω	33	20	25	10	6	29	1	28	12	2	1	ი	4	16	17	24	15	16
	ი	15	12	7	29	6	52	5	16	39	28	17	15	13	5	16	20	22	6	29	23	20	17	1	23	19	20	ო	10	19
	53	69	54	51	59	47	44	59	53	48	61	46	71	52	57	55	52	53	54	51	59	58	59	63	60	61	71	57	65	58
эd.	38	16	34	38	12	44	4	36	31	13	7	37	14	35	38	29	28	25	37	20	18	22	24	26	17	20	ი	40	25	23
Table 4. Continue	Nevada	Newton	Ouachita	Perry	Phillips	Pike	Poinsett	Polk	Pope	Prairie (DA)	Prairie (DB)	Pulaski	Randolph	Saline	Scott	Searcy	Sebastian (FS)	Sebastian (GR)	Sevier	Sharp	St. Francis	Stone	Union	Van Buren	Washington	White	Woodruff	Yell (DN)	Yell (DR)	Average

Table 5. Soil to	est da	ta by	SAN fre	om san	nples	subm	itted f	rom S	eptem	ber 19	995 th	rough	Aug	ust 1	996.			
Soil Association Number		Hď				P (Ib/A)				а) У	(A)		g	/ql) N-	(۲	EC (u	nhos/c	(m
and Soil Association	<5.5	5.5-6.5	>6.5	<26	26-44	45-1001	01-300	>300	<176	176-220	221-35() >350	<26 2	6-100>	100 <	100 10	1-500>	500
						- Perce	entage	of Sa	mpled	Acrea	ge –							
1-Clarksville-Nixa-Noark	16	99	18	ω	12	30	36	14	30	12	26	32	67	28	2	61	20	-
2-Gepp-Doniphan-																		
Gassville-Agnos	13	50	37	18	17	29	24	12	26	14	30	80	75	5	4	4	1 5	-
3-Arkana-Moko	£	62	27	10	14	32	35	ი	33	13	26	28	69	26	5	22	47	-
4-Captina-Nixa-Tonti	20	54	26	ო	2	19	39	32	21	1	27	40	56	36		98	51	ო
5-Captina-Doniphan-Gepp	27	67	9	36	22	11	29	2	49	1	24	16	91	ი	0	2	29	0
6-Eden-Newnata-Moko	28	60	12	9	1	33	42	8	28	14	31	27	74	24	2	20	39	0
7-Estate-Portia-Moko	15	59	26	7	7	28	37	17	27	10	32	31	69	27	4	K	45	2
8-Brockwell-Boden-Portia	25	61	14	37	20	22	17	4	51	13	21	15	78	19	с С	23	27	0
9-Linker-Mountainburg-																		
Sidon	19	60	21	21	10	23	31	15	35	£	25	29	72	25	ະ ຕ	5	42	.
10-Enders-Nella-																		
Mountainburg-Steprock	20	61	19	8	7	23	34	24	25	13	28	34	64	32	4	22	47	
11-Falkner-Wrightsville	25	64	7	38	15	21	17	ი	62	19	14	വ	06	10	0	62	2	0
12-Leadvale-Taft	32	56	12	16	19	29	26	10	33	17	31	19	73	24	ະ ຕ	90	1 3	-
13-Enders-Mountainburg-																		
Nella-Steprock	33	60	7	23	23	30	16	ω	43	18	21	18	78	21	~	02	29	-
14-Spadra-Guthrie-Pickwick	33	61	9	18	15	28	24	15	40	16	25	19	83	13	4	23	27	0
15-Linker-Mountainburg	25	58	17	13	15	27	33	12	34	14	29	23	73	24	ະ ຕ	5	42	
16-Carnasaw-Pirum-Clebit	37	48	15	10	ი	18	36	27	33	16	27	24	72	23	2 2	ŝ	45	2
17-Kenn-Ceda-Avilla	31	61	8	1	16	1	39	23	34	21	21	24	72	23	2	2	36	0
18-Carnasaw-Sherwood-																		
Bismarck	37	53	10	9	2	23	39	25	30	14	30	26	54	28 1	 	œ	28	4
19-Carnasaw-Bismarck	17	83	0	17	22	1	28	22	33	17	33	17	72	28	0	2	39	0
20-Leadvale-Taft	28	50	22	20	16	31	23	10	33	ი	22	36	88	7	~	2	22	-
21-Spadra-Pickwick	37	49	14	27	16	24	20	13	45	∞	24	23	76	20	4	80	29	ო
22-Foley-Jackport-Crowley	5	20	19	28	33	30	ω	-	39	22	29	10	89	10	~	2	30	0

Continued

Table 5. Continued.																		
23-Kobel	18	64	18	23	33	30	14	0	31	21	37	1	86	13 1	76	24	0	
24-Sharkey-Alligator-Tunica	£	60	29	6	19	55	17	0	9	9	20	68	88	12 0	68	32	0	
25-Dundee-Bosket-Dubbs	10	70	20	6	13	45	32	-	17	14	40	29	87	12	80	20	0	
26-Amagon-Dundee	£	71	18	10	œ	45	35	2	17	15	47	21	92	7	85	14	-	
27-Sharkey-Steele	9	59	35	ო	16	64	16	-	9	5	24	65	87	12	72	28	0	
28-Commerce-Sharkey-																		
Crevasse-Robinsonville	4	56	40	0	7	50	40	-	-	4	26	69	26	20	64	36	0	
29-Perry-Portland	13	55	32	1	19	43	24	ო	13	ŧ	30	46	78	20	51	48	-	
30-Crevasse-Bruno-Oklared	10	73	17	2	∞	51	39	0	20	ø	41	31	75	25 C	65	35	0	
31-Roxana-Dardanelle-Bruno-																		
Roellen	13	49	28	1	13	40	28	œ	25	17	34	24	78	19	7	29	0	
32-Rilla-Hebert	17	61	22	S	ი	50	35	-	14	14	41	31	84	15 1	67	33	0	
33-Billyhaw-Perry	10	30	60	ო	6	52	34	2	14	ი	20	57	65	34	49	50	-	
34-Severn-Oklared	œ	36	56	12	13	33	40	2	20	12	40	28	64	35 1	49	51	0	
35-Adaton	65	9	29	35	24	12	12	17	59	24	12	ß	94	0 9	35	59	9	
36-Wrightsville-Louin-Acadia	13	46	41	15	19	43	15	8	32	15	17	36	89	11 0	69	31	0	
37-Muskogee-Wrightsville-																		
McKamie	0	81	19	13	19	25	38	വ	19	13	50	18	69	31	63	31	9	
38-Amy-Smithton-Pheba	33	57	10	14	18	19	30	19	42	15	23	20	69	23	56	43	~	
39-Darco-Briley-Smithdale	53	35	12	12	18	12	24	34	47	18	12	23	20	40	59	4	0	
40-Pheba-Amy-Savannah	36	51	13	21	16	19	29	15	46	15	23	16	80	17 3	67	31	0	
41-Smithdale-Sacul-																		
Savannah-Saffell	34	51	15	14	ω	19	34	25	39	14	25	22	12	19 4	. 61	37	2	
42-Sacul-Smithdale-Sawyer	30	56	14	12	1	21	34	22	41	15	25	19	80	16 4	. 68	31	-	
43-Guyton-Ouachita-Sardis	33	54	13	16	17	21	22	23	37	13	22	28	74	22	. 60	37	ო	
44-Calloway-Henry-Grenada-																		
Calhoun	1	53	36	28	31	32	7	2	42	23	26	ი	84	14	09	39	~	
45-Crowley-Stuttgart	14	51	35	42	31	21	ъ	-	45	24	23	œ	83	15 2	54	44	2	
46-Loring	31	51	18	27	26	26	12	б	50	17	17	16	28	18 4	. 64	36	0	
47-Loring-Memphis	27	54	19	23	21	37	16	ო	27	18	31	24	85	13	99	33	-	
48-Brandon	15	68	17	48	22	17	1	2	32	7	34	23	91	0 0	82	15	ო	
49-Oktibbeha-Sumter	16	37	47	14	18	22	30	16	22	ω	22	48	75	20	33	63	4	
Average	22	56	22	17	17	29	27	10	32	14	27	27	1	20	62	37	-	

Table (Soi.	I test	t dati	a by e	crop	from	sam	oles s	ubm	litted	from	Sept	emb	er 199	5 th	uguo.	Augi	ust 1	996.			
		Нd					P (lb	(A				K (Ib/	(A)		2	N0	(Ib/A)		Ш	c (um	hos/c	(m
	<5.5	5.5	>6.5	Mdz	<26	26	45	101 ×	.300	M	176 1	76 2	21>3	50 Mc	12	6 26	~10	0 Md	100	0 100	>50	D Md
Crop		-6.5				-44	-100	300				220-3	50			-10(~			-500		
									Perce	entage	e of S	ampl	ed A(creage								
Soybean/nonirrigated	16	65	19	6.0	18	26	45	1	0	50	, 50	61	2	21 22	88	11	-	7	80	20	0	71
Soybean/irrigated	œ	53	39	6.4	30	36	31	ო	0	35	ф С	22	č.	12 18	8	1	2	12	67	33	0	86
Cotton	7	69	20	6.1	~	4	53	42	0	94	، ک	12 4	ç	35 30	60	12	~	5	79	21	0	70
Rice	ი	58	33	6.3	46	29	24	-	0	28	1	20	4	15 192	õ	3 12	0	10	37	63	0	114
Wheat	18	61	21	6.1	16	26	41	17	0	53	, 80	8	` g	18 22	200	32	2	17	56	44	0	93
Double-crop wheat-																						
soybean/nonirrigated	18	99	16	5.9	ß	7	65	19	0	89	, 16	8	4	32 27	2	21	с	13	78	22	0	68
Double-crop wheat-																						
soybean/irrigated	7	55	34	6.3	∞	28	51	12	-	52	ž	17		25 22	8	\$ 14	0	13	74	26	0	80
Warm-season grass																						
establish	29	64	~	5.7	20	20	26	20	14	· 09	, 42	16	` ຕ	19 20(2	7 22	-	12	99	33	~	81
Warm-season grass																						
maintain	27	62	7	5.8	13	13	24	30	20 1	5	42	13	9	27 23	12	t 23	ო	13	61	38	-	85
Cool-season grass																						
establish	39	53	∞	5.6	32	20	36	2	S	4	96	20	5	17 22	% %	5 15	0	б	73	27	0	75
Cool-season grass																						
maintain	21	67	12	5.9	10	12	26	36	16 1	80	, 29	12	ي ن	33 25	õ	3 28	4	16	54	45	-	94
Grain sorghum	18	68	14	5.9	17	27	39	17	0	50	32	200	õ	17 21	8	3 15	2	7	75	25	0	75
Corn	13	61	26	6.1	9	25	49	20	0	61	20	20	0	22 22	86	5 14	0	12	72	28	0	80
All garden	1 4	44	42	6.4	ო	S	14	34	44 2	20	4	10	9	50 35	ы –	35	12	24	37	59	4	123
Turf/ground cover	28	53	19	5.9	9	7	28	45	10 1	4	, 20	17 3	9	21 24(2) 24	9	14	46	53	~	104
Fruit and nut	33	52	15	5.7	S	13	30	37	15 1	02	, 20	15	2	27 25	č ~	1 24	2	13	54	44	2	92
Vegetable	16	41	43	6.4	0	13	22	38	27 1	46	ດ	200	5	38 27(28	3 13	6	18	56	34	10	89
Other	28	57	15	5.8	21	18	26	24	7	61	, ,	4	4	22 20	1	21	4	5	6	38	-	84
Average	20	58	22		14	19	35	23	6		58	17	0	25	2	3 19	З		63	36	-	
^z Md=median. The numt	oer is	actua	al val	ue, n	ot the	perc	entaç	e.														

Arkansas Soil Fertility Studies 1996

Soil Test Characteristics of Major Land Areas in Arkansas — 1996 —

Stanley L. Chapman, Mike Daniels, Y. S. McCool, W. H. Baker and W. E. Sabbe

Introduction

The University of Arkansas Soil Testing Laboratory tests about 55,000 to 75,000 routine soil samples each year for agricultural clientele. This service is paid for by a fee on commercial fertilizers and liming materials. Nearly 58,000 soil samples representing 1.5 million acres were routinely tested by the University of Arkansas Soil Testing Lab in FY 96. The results of these tests were used to make fertilizer and lime recommendations for agricultural producers, homeowners and other Extension Service clientele. A summary of all samples tested showed definite trends in soil test values from the nine major land areas of the state (Table 1).

Methods and Materials

Soil samples collected by farmers, landholders and consultants are submitted to the University Lab by way of the county Extension offices. At the lab, samples are processed and tested according to standard procedures for agricultural soils. Nutrients are extracted by Mehlich III and determined by ICAP instrumentation. Nitrates, pH and soluble salts are measured by selective electrodes. Results and recommendations are printed out and returned to the appropriate county Extension office for review by the agent before being mailed to the person who submitted the sample.

Results and Discussion

Soil pH and Primary Plant Nutrients

The most acid soils occurred in the Ouachita Mountains (50% below pH 5.6). The lowest phosphorus (P) readings came from Loessial Plains (silt loam rice soils). Nearly a fourth (21%) of these soils contained less than 21 lb P per acre. Two-thirds (68%) tested below 46 lb per acre. High P readings (above 300 lb/acre) occurred in 15-18% of the sample acreage from the Ozark Highlands, Boston Mountains, Arkansas River Valley and the Coastal Plains. This reflects the application of poultry manure on pastures.

Potassium (K) was very low (below 100 lb/acre) on 13-15% of the soils of the Ouachita Mountains and the Coastal Plains. Nearly half the tested acreage (41-45%) of the Loessial Plains and Loessial Hills tested below 175 lb K per acre.

Secondary Elements and Nitrate - N

Calcium was low or very low (below 1000 lb/acre) in 28-29% of the tested acreage from the Ouachita Mountains and Coastal Plains. Lime needs are not being met on most of these low-calcium soils. In contrast, two-thirds of the tested acreage from the Blackland Prairies was high or very high in calcium (more than 4500 lb/acre). This reflects the derivation of these mostly clay soils from calcitic chalk.

Very low magnesium (below 76 lb/acre) occurred on 14% of the Coastal Plains acreage. High magnesium (above 650 lb/acre) occurred on 30% of the Loessial Hills and 38% of the Bottomland and Terrace soils. Sulfur was low or very low (less than 21 lb/acre) on 24% of the Bottomland and Terrace soils.

Nitrate - N was lowest (less than 6 lb/acre) in soils of the Arkansas Valley (26%) and the Ouachita Mountains (32%). Nitrate - N was highest (above 50 lb/acre) in soils of the Ozark Highlands (I 1%), Boston Mountains (10%) and Blackland Prairies (10%).

Micronutrients

Copper was low or very low (below 3.1 lb/acre) in the loess derived soils of eastern Arkansas (76-84% of the Loessial Plains and Hills). Copper was high (above 12 lb/acre) in 11 to 12% of the tested acreage from the Boston Mountains and the Ouachita Mountains. This may reflect either natural occurrence in the Ouachitas or a buildup from poultry manure applications in both areas.

Iron was low or very low (below 51 lb/acre) in 13% of the tested acreage from the Blackland Prairies. Very high iron levels (above 400 lb/acre) occurred in 29% of the Loessial Plains acreage. These high readings probably reflect the residual impacts of irrigation and anaerobic soil conditions on iron availability.

Low and very low manganese readings (below 50 lb/acre) occurred in half of the Blackland Prairie soil acreage tested. High manganese readings (above 400 lb/acre) occurred in 11-13% of the tested acreage from the Ozark Highlands, Boston Mountains and Arkansas Valley uplands. This is indicative of the need for lime on highly acid soils.

Low or very low zinc readings (below 3.1 lb/acre) occurred on 17% of the Loessial Plains soils (where rice is commonly grown). High zinc readings (above 18 lb/acre) occurred on 22-27% of the tested acreage from the Ozarks Highlands, Boston Mountains, Ouachita Mountains and Blackland Prairies.

These trends agree well with previous annual summaries and observations (DeLong et al., 1996; Snyder et al., 1995). They reflect both natural and manmade occurrences.

Literature Cited

- DeLong, R.E., S.D. Carroll, W.E. Sabbe and W.H. Baker. 1996. Soil test data: 1. Summary for the growing season - 1995. In: W. E. Sabbe (ed.). Arkansas Soil Fertility Studies 1995. Ark. Agri. Exp. Sta. Res. Ser. 450:81-93.
- 2. Snyder, C. S., S. L. Chapman, Y. S. McCool, W. H. Baker and W. E. Sabbe. 1995. University of Arkansas - Soil testing summary for fiscal year 1993-94 and recent fertilizer consumption trends. In: W.E. Sabbe (ed.). Arkansas Soil Fertility Studies 1994. Ark. Agri. Exp. Sta. Res. Ser. 443:155-162.

Table 1. Predon	ninant high and low soll test values for major land areas.
Land Area*	Predominant Soil Test Characteristics and Percent of Acreage
Ozark Highlands	High P (16%), N0 ₃ -N (11%), manganese (13%) and zinc (27%)
Boston Mountains	High P (I 5%), N0 $_{3}$ -N (10%), copper (11%), manganese (11%), and zinc (25%)
Arkansas Valley Uplands	High manganese (11%)
Ouachita Mountains	Acid soils (50% below pH 5.6), high P (18%), very low K (13%), low calcium (28%), very low N0 ₃ -N (32%), high copper (12%), and high zinc (22%)
Bottomlands and Terraces	High magnesium (38%), and low sulfur (24%)
Coastal Plains	High P (16%), very low K (15%), low calcium (29%) and very low magnesium (14%)
Loessial Plains	Very low P (21 %), low K (45%), low copper (84%), high iron (29%) and low zinc (17%)
LoessialHills	Low K (41%), high magnesium (30%), and low copper (76%)
Blackland Prairies	High pH (13%), high calcium (67%), high sulfur (63%), high N0 ₃ -N (10%), low iron (13%), low manganese (40%), and high zinc (24%)
*According to Conor	a Sail Man State of Arkansan (December 1082)

According to General Soil Map State of Arkansas (December 1982).

Slow-Release Soil and Foliar Fertilizer on Cotton

D.M. Oosterhuis and A. Steger

Research Problem

urrent fertilizer practices involve applying fertilizer to the soil at or prior to planting with additional applications during the growing season. A programmed release fertilizer could increase efficiency by releasing nutrients according to crop requirements while at the same time reducing traffic across a field. The objectives of the current research are to evaluate a new programmed release nitrogen and potassium fertilizer for use in cotton production. These fertilizer products release their nutrients as temperatures increase during the season at the same time as crop requirements increase. The product has the potential advantages of (a) less ground water contamination, (b) one time fertilization, (c) custom-designed fertilizers for release according to crop requirements for high efficiency, and (d) an efficient return per dollar spent on fertilizer.

Background Information

Traditionally, fertilizer is applied to soil at planting and sidedressed late in the season, necessitating additional costs to a grower with wheel traffic causing compaction in the field. Due to potential problems with salinity and seedling growth, the entire amount of fertilizer cannot be placed at planting. A programmed soil-release fertilizer would allow for a one-time fertilizer application and an efficient return per dollar spent.

Research Description

Two studies were conducted at the Southeast Branch Station in Rohwer. Preplant soil K levels were 192 lb acre⁻¹ and 163 lb acre⁻¹ at the 0- to 6-in. and 6- to 12-in. depths, respectively. On 6 May 1996, the cotton cultivar Suregrow 125 was planted into a moderately well-drained Hebert silt loam soil (finesilty, mixed, mesic Typic Fragiudult). Plots consisted of four rows spaced 38 in. apart and 40 ft in length. Insect and weed control were according to standard cotton recommendations. The trial was furrow irrigated as needed. Fertilizer was applied to the treatments listed below:

Slow Release N Fertilizer

Fertilizer for K and P was applied uniformly according to soil test results. Treatments consisted of (a) a control with conventional tillage and full N treatment (110 lb N/acre), (b) Meister mixture of T15 (full N treatment, (c) Meister mixture of T15 (80% ot total N) and (d) Meister mixture of T15 (60% of total N).

Slow Release K Fertilizer

Fertilizer for N and P was applied uniformly according to soil test results. Treatments consisted of (a) a control with conventional tillage (full K treatment of 60 lb K/acre), (b) Meister mixture of T20 (full K treatment, (c) Meister mixture of T20 (80% ot total K) and (d) Meister mixture of T20 (60% of total K).

The in-furrow planting fertilizer application of Meister was made according to treatment using special planter boxes constructed by Dr. Howard (University of Tennessee). Petiole analysis was conducted weekly from pinhead square to four weeks after first flower using five petioles/plot pooled across replications. Soil maximum and minimum temperatures were recorded daily. The experiment was mechanically harvested at 60% open boll.

Results

Slow Release N Fertilizer

The control treatment had a consistently lower concentration of petiole NO_3 -N when compared with all other treatments (Table 1). At the end of the sampling period, the Meister treatment receiving 80% of total N and had the highest concentration of petiole NO_3 -N.

Lint yield among treatments is shown in Table 1. The Meister treatments with reduced total N (80 and 60% of total N) yielded similar to the control.

Slow Release K Fertilizer

The Meister treatment receiving 80% of total K at planting had the highest concentration of petiole K at the end of the sampling period (Table 2). The control treatment had the lowest concentration when compared with all other treatments.

Lint yield results (Table 2) are difficult to explain. The control and the Meister treatment receiving 60% total K at planting produced significantly higher (P = 0.05) yields than all other treatments.

Practical Applications

This study provides data showing that a programmed, release, soil-applied fertilizer can potenially provide a one-time fertilizer application at planting with no detrimental effect to seedling growth and yield. Reduced traffic can alleviate soil compaction and man hours in the field.

Acknowledgment

The authors gratefully acknowledge the support of Helena Chemicals.

		Petic	ble NO ₃
Treatment	Lint Yield	June 13	July 31
	(lb/acre)	(ppm)	(ppm)
Full N (110 lb N/acre)	1630 a	24,700	659
Meister mixture T15 Full N	1562 a	30,300	6,000
Meister mixture T15 80% Full N	1693 a	32,000	6,400
Meister mixture T15 60% Full N	1675 a	34,200	4,350
¹ Numbers followed by same letter	r within a column	are not significa	antly different

Table 1. Lint yield and petiole NO₃ concentration with Meister Programmed Release N Fertilizer.

¹ Numbers followed by same letter within a column are not significantly different (P = 0.05).

Table 2. Lint yield and petiole K concentration with Meister Programmed Release K Fertilizer.

		Pet	iole K
Treatment	Lint Yield	June 13	August 7
	(lb/acre)	(ppm)	(ppm)
Full K (60 lb N/acre)	1648 a¹	6.92	3.09
Meister mixture T20 Full K	1489 b	7.24	4.05
Meister mixture T20 80% Full K	1531 ab	7.39	3.69
Meister mixture T20 60% Full K	1636 a	7.44	3.54

¹ Numbers followed by same letter within a column are not significantly different (P = 0.05).

Physiological Research on Plant Potassium Nutrition at the University of Arkansas

D.M. Oosterhuis, A. Steger and C.A. Bednarz

Research Problem

Potassium (K) deficiencies in Arkansas field-grown cotton (*Gossypium hirsutum* L.) often occur in the mid to late season when root growth is reduced and developing bolls become strong sinks for available K. Present tissue sampling techniques can give unreliable results in determining if there is sufficient K available in the plant. Soil K availability and boll load can also affect petiole K status. The objectives of the current research is to observe the effect of soil K fertilization versus foliar fertilization, the timing of foliar fertilization, the effect of soil K status and boll load on petiole K status and yield, and physiological changes during the onset of K deficiency.

Background Information

In recent years, the occurrence of K deficiencies across the Cotton Belt has increased, and signs of K deficiencies are appearing on young leaves at the top of plants with a heavy fruit load. Previously, deficiency symptoms have been observed on mature leaves due to the mobility of K within the plant. In situations in which a heavy fruit load exists, decreased root growth and a high demand for K may cause K to be depleted from plant tissue at a faster rate than uptake occurs. Accurate detection of a pending K deficiency at an earlier stage of growth may serve to improve fertilizer efficiency, lint yield and lint quality.

Research Description

Growth room and field studies were used. The growth room at the Altheimer laboratory in Fayetteville was programmed for 12-hour days and 30/25°C day/ night temperatures with a relative humidity of about 60%. A field site at the

University of Arkansas Main Experiment Station, Fayetteville, with replicated low and high K plots has been established over the past three years. Preplant soil K levels were 155 kg ha⁻¹ and 107 kg ha⁻¹ at the 0- to 6-in. and 6- to 12-in. depths, respectively, in the high soil K plots and 131 kg ha⁻¹ and 104 kg ha⁻¹ at the 0- to 6-in. and 6- to 12-in. depths, respectively, in the low soil K plots. Potassium chloride was broadcast in the high soil K plots in the Soil K/ Boll Load Size Study three weeks after planting to raise soil K levels. At mid-season, levels were 334 and 148 kg ha⁻¹ at the 0- to 6-in. and 6- to 12-in. depths, respectively. On 10 May 1996, the cotton cultivar DPL 20 was planted into a moderately well-drained Captina silt loam soil (fine-silty, mixed, mesic Typic Fragiudult).

Physiological Changes During the Onset of K Deficiency

Growth room studies in which K was withheld from the plants at two weeks after planting and changes in dry matter of plant components, photosynthesis, carbohydrates, chlorophyll and ATP were monitored during the onset of K deficiency were measured at weekly intervals for four weeks.

Soil vs. Foliar-Applied K Study

Soil-applied K applied at first flower (FF) + one week at 33.6 kg K ha⁻¹. Foliar-applied K applied at FF + one week at 11.2 kg K ha⁻¹.

Soil K Status and Boll Load Size on Petiole K Status

Low and high soil K status (main plot).

Low and high boll load (split plot). Low boll load was achieved by weekly hand removal of two bolls smaller than a quarter in size per plant. High boll load was as developed on the plant.

Timing Foliar-Applied Potassium

Control with no foliar-applied K.

Early treatment with 15 kg ha⁻¹ K_2SO_4 foliar-applied at FF+1wk, FF+2wk, and FF+3wk.

Mid-season treatment with 15 kg ha⁻¹ K_2SO_4 foliar-applied at FF+3wk, FF+4wk, and FF+5wk.

Late treatment with 15 kg ha⁻¹ K_2 SO₄ foliar-applied at FF+5wk, FF+6wk, and FF+7wk.

Petioles were sampled weekly from node 4 in the Soil vs. Foliar Study and from nodes 4 and 8 in the Soil K/Boll Load Study beginning at FF. Two-meter lengths of row from each plot within each study were handpicked to determine yield and boll weight.

Results

Physiological Changes During the Onset of K Deficiency

Dry matter and K concentration were significantly decreased seven days after K was withheld from the pants. This was followed by significant changes in leaf photosynthesis, chlorophyll and soluble carbohydrates. The decreases in photosynthesis and the buildup of sugars in the leaf resulted in higher levels of ATP.

Soil vs. Foliar-Applied K Study

Petiole K concentration (%) was consistently higher in the foliar treatment throughout the sampling period. Lint yield (kg ha⁻¹) was numerically higher in the foliar treatment when compared with the soil-applied treatment. Boll weight (g) and the number of open bolls at harvest was also higher in the foliar-applied treatment.

Soil K Status and Boll Load Size on Petiole K Status

High petiole K levels were observed in the high soil K/high boll load plots at both nodes 4 and 8 (Figure 1). Lint yield, boll weight and open boll number was also greatest in these plots. Lint yield was significantly higher than the high soil K/low boll load and the low soil K/low boll load plots (P = 0.05).

Timing Foliar-Applied Potassium

No significant yield differences were observed among the treatments, although the late-season foliar application had a numerically higher yield than all other treatments.

Practical Applications

Mid- and late-season potassium deficiencies continue to be a problem for many growers across the Cotton Belt. Sufficient soil K levels and timely fertilizer applications can alleviate symptoms; however, knowledge of petiole K status and boll load are necessary. Physiological responses to K deficiency help to predict optimum sampling methods to predict a pending K deficiency. Petiole sampling from node 8 (low in the canopy) rather than from node 4, may signal an impending K deficiency when there is high demand due to developing bolls.

Acknowledgment

The authors gratefully acknowledge the support of the Phosphate and Potash Institute, the Great Salt Lake Mineral Corporation, the Fluid Fertilizer Foundation and the Arkansas Cotton State Support Committee.

Fayetteville, Arkansas, 1996

Foliar Nitrogen Fertilization of Cotton in Southeast Arkansas

J.S. McConnell, W.H. Baker, B.S. Frizzell and C.S. Snyder

Research Problem

arly season, soil-applied N fertilizer may not meet full season N needs of a developing cotton (*Gossypium hirsutum* L.) crop. Early work indicated that supplemental N, either soil or foliar applied, may help meet crop N needs and increase yields (Maples and Baker, 1993). The objective of these studies is to determine when an increase in yield may be realized from foliar N applications to cotton.

Background Information

Foliar fertilization of cotton with 23% N (urea) solutions with the Cotton Nutrient Monitoring Program (CNMP) is an accepted practice among Arkansas producers to meet late-season N requirements (Snyder, 1991). Recent research indicates that the response of cotton to foliar N may not be as dramatic as observed in earlier work (Parker et al., 1993).

Research Description

A long-term study of soil-applied N fertilization and irrigation of cotton is being utilized to determine the impact of foliar N fertilization. Soil-applied N rates range from 0- to 150-lb N/acre in 30-lb N/acre increments. Three foliar N treatments (23% N (urea) solution) were applied at rates of 10 lb N/acre/treatment in 10 gal water/acre. First applications of the foliar treatments were made when the cotton reached first flower. Second and third applications were made two and four weeks after the initial application, respectively.

Results

Irrigated cotton responded to foliar fertilization treatments with increased yield when soil N was restricted to preplant and first square application totaling 120 lb N/acre or less in 1993 (Table 1). Although the foliar N X soil N interaction was not significant for yield in 1994 or 1995, the foliar N treatments significantly increased yields (Tables 2 and 3). Trends in the 1994 and 1995 results were similar to those observed in 1993.

Dryland cotton responded to foliar fertilization treatments with increased yield when soil N rates were low (0 and 30 lb N/acre) in 1993 and 1995 (Tables 1 and 3). Soil-applied N rates of 90, 120 and 150 lb N/acre did not significantly increase cotton yields compared to 60 lb N/acre. Dryland cotton did not significantly respond to either foliar N treatments or the foliar N X soil N interaction in 1994 (Table 2).

Primary differences in petiole $NO_3^{-}-N$ concentrations were due to the soilapplied N fertilizer (Table 3). Foliar treatments tended to raise petiole $NO_3^{-}-N$ levels in cotton fertilized with 150 and 90 lb N/acre in 1994 and after period 3 in 1993. Cotton that received no soil-applied N had greater petiole $NO_3^{-}-N$ levels without foliar N. The reason for the low values of petiole $NO_3^{-}-N$ levels in cotton that received no soil N but did receive foliar N is unknown.

Practical Applications

Preliminary results indicate that foliar N applications may increase cotton lint yield when soil-applied N is low. Petiole NO₃-N concentrations were primarily dependent on soil-applied N fertilizer. Because these results are preliminary, testing should be continued before final conclusions are drawn.

Literature Cited

- Maples, R.L. and W.H. Baker. 1993. Foliar and soil applications of nitrogen for cotton during the growing season: Yield response. Univ. of Ark. Agric. Exp. Sta. Bull. 938.
- Parker, P.W., W.H. Baker, J.S. McConnell and J.J. Varvil. Cotton response to foliar nitrogen applications. Proc. Beltwide Cotton Conf. p. 1364-1365.
- 3. Snyder, C.S. 1991. Summary report of the 1991 Arkansas nutrient monitoring participant survey. Univ. of Ark. Coop. Ext. Serv. Pub.

Acknowledgment

Support for this research was provided by Cotton, Inc.

	methou			wacie (i u	ij aliu v ib	Wacie (UI	111 1 1 3 3	J.
S	Soil N-Rat	е		Irrigated			Dryland	
PP^1	FS ¹	FF ¹	Fol	Untrt	Mean	Fol	Untrt	Mean
	— lb N/ac	re ——			——— Ib lin	t/acre ——		
75	75	0	1321	1326	1324	1006	1095	1051
50	50	50	1249	1345	1292	1032	1143	1088
30	60	60	1316	1391	1358	1066	1191	1122
60	60	0	1419	1347	1383	957	1073	1022
40	40	40	1324	1339	1331	1088	1271	1179
45	45	0	1410	1247	1320	990	1138	1065
30	30	30	1379	1377	1378	1012	1104	1058
30	30	0	1335	1198	1267	930	1032	987
15	15	0	1117	1027	1067	1007	949	978
0	0	0	912	784	855	835	693	764
² LSD	(0.05)		2	16		2	04	
³ LSD	(0.05)		3	51		3	34	

Table 1. Lint yield response of cotton grown with 10 soil-applied nitrogen (N) fertilization under two irrigation methods with foliar 30 lb N/acre (Fol) and 0 lb N/acre (Untrt) in 1993.

¹ Preplant (PP), First Square (FS) and First Flower (FF).

² LSD (0.05) for comparing two soil-applied fertilization means within the same foliar fertilization (either Foliar or Untreated) in the same irrigation.

³ LSD_(0.05) for comparing two soil-applied fertilization means in different foliar fertilization in the same irrigation.

Table 2. Lint yield response of cotton grown with 10 soil-applied nitrogen (N) fertilization rates and splits under two irrigation methods with foliar 30 lb N/acre (Fol) and 0 lb N/acre (Untrt) in 1994.

S	Soil N-Rate			Irrigated			Dryland	
PP^1	FS ¹	$\mathbf{F}\mathbf{F}^{1}$	Fol ²	Untrt ²	Mean	Fol ²	Untrt ²	Mean
	lb N/acre -				Ib lin	/acre ——		
75	75	0	1765	1643	1704	1423	1513	1468
50	50	50	1598	1632	1616	1640	1501	1481
30	60	60	1684	1698	1691	1519	1559	1539
60	60	0	1666	1549	1608	1424	1381	1403
40	40	40	1633	1618	1626	1417	1328	1372
45	45	0	1630	1602	1616	1310	1330	1320
30	30	30	1618	1492	1555	1349	1359	1354
30	30	0	1575	1482	1529	1344	1226	1275
15	15	0	1413	1215	1314	1219	1085	1152
0	0	0	1085	873	979	908	833	870
LSD,	0.05)				95			128
Meai	n		1567	1481		1337	1312	
³ LSD	(0.05)		3	51		I	าร	

¹ Preplant (PP), First Square (FS) and First Flower (FF).

² No significant soil N X foliar N interactions were observed.

³ LSD_(0.05) for comparing foliar-applied fertilization treatment means.

	iganon m		itil ionai i	00 18 14 au		- • 16 14/401	<u>• (• (•)) </u>	110001
	Soil N-Rate	е		Irrigated			Dryland	
PP^1	FS ¹	FF ¹	Fol ²	Untrt ²	Mean	Fol	Untrt	Mean
	 Ib N/acre 				—— lb lint/a	acre ——		
75	75	0	1425	1393	1409	862	954	908
50	50	50	1322	1373	1348	918	1039	979
30	60	60	1434	1368	1401	859	971	915
60	60	0	1420	1376	1398	835	879	857
40	40	40	1425	1360	1393	889	1032	969
45	45	0	1230	1236	1233	895	945	920
30	30	30	1329	1280	1305	890	947	919
30	30	0	1208	1097	1153	887	852	870
15	15	0	1114	980	1047	823	781	802
0	0	0	852	704	778	695	523	609
³ LSI	D (0.05)				127			
4LSI	D (0.05)					2	40	
⁵LSI	D _(0.05)					1	93	
Mea	an		1276	1217		856	892	
⁶ LSI	D _(0.05)		2	8				

Table 3. Lint yield response of cotton grown with 10 soil-applied nitrogen (N) fertilization rates and splits under two irrigation methods with foliar 30 lb N/acre (Fol) and 0 lb N/acre (Untrt) in 1995.

¹ Preplant (PP), First Square (FS) and First Flower (FF).

² No significant soil N X foliar N interactions were observed.

³ LSD for comparing soil N treatment means in the irrigated test.

⁴ LSD for comparing foliar N means in the same soil N treatment in the dryland test.

⁵ LSD for comparing foliar N means in different soil N treatment in the dryland test.

⁶ LSD for comparing foliar fertilization means in the irrigated test.

	N	/ith an a	addition	al foliar :	30 lb N/a	acre (Fol	N) in 19	93 and 1	1994.	
So	il N-Ra	ate				Sa	ample Pe	eriod		
PP^1	FS ¹	FF ¹	Fol N	1	2	3	4	5	6	7
	lb N/a	cre —	-			—— ppm	NO ₃ ⁻ -N			
1993							-			
50	50	50	Yes	18765	6771	10100	7074	12242	6771	949
50	50	50	No	19339	5898	10378	4175	10663	5898	1039
45	45	0	Yes	14652	5281	6789	3009	2211	5281	581
45	45	0	No	11747	5480	7210	1190	516	5480	578
0	0	0	Yes	3440	968	1440	410	348	968	287
0	0	0	No	8491	2014	1546	2055	4455	2014	287
1994										
50	50	50	Yes	10166	10715	11072	13901	8104	2912	393
50	50	50	No	7378	8231	7978	13201	8116	3201	300
45	45	0	Yes	4639	6193	3643	1460	227	101	268
45	45	0	No	3768	5266	2564	478	63	106	204
0	0	0	Yes	148	50	236	108	58	123	249
0	0	0	No	335	59	285	154	58	106	291
1995										
50	50	50	Yes	11190	13720	7453	11374	4338	2399	674
50	50	50	No	15071	13024	5657	7639	4220	552	161
45	45	0	Yes	11201	7848	1380	522	321	122	66
45	45	0	No	_	8109	810	500	565	16	20
0	0	0	Yes	1321	1159	447	20	591	64	20
0	0	0	No	879	3364	14	20	96	9	14

Table 4. Selected petiole NO₃⁻-N responses of irrigated cotton grown with three soil-applied nitrogen (N) fertilization rates with an additional foliar 30 lb N/acre (Fol N) in 1993 and 1994.

¹Preplant (PP), First Square (FS) and First Flower (FF).

Timing of Early Season Nitrogen Fertilization of Cotton

J.S. McConnell and W.H. Baker

Research Problem

The recommended timing of early-season N fertilizer to meet the needs of a developing cotton (*Gossypium hirsutum* L.) crop has not been well established (Bonner, 1995). Recommended N rates vary with soil test results, field history and the development of the crop. The objective of these studies is to determine when is the optimum time for early-season N applications to cotton.

Background Information

Arkansas cotton producers have traditionally met early-season N requirements of the crop with a preplant N application. The first soil application of nitrogen fertilizer to cotton is sometimes delayed until stand establishment due to inclement weather or seedling disease pressure (Minter Applebury, personal communication). It is speculated that delaying the first N application might result in early-season N deficiency and possible yield loss.

Research Description

A study of early-season, soil-applied N fertilization and irrigation of cotton is being utilized to determine the impact of delaying N fertilization. Five soilapplied N splits of 100 lb N/acre and a 0 lb N/acre control are being tested. The experiment is duplicated under both furrowirrigated and dryland conditions. First N applications are made approximately two to four weeks preplant. Second applications were made after the crop emerged (two to four true leaves). The third application was made when the crop reached first square.

Results

Yields were slightly higher under irrigated conditions than under dryland, but the typical large increases in yield from the use of irrigation were not observed (data not shown).

Response to the N treatments was similar in the irrigated and dryland blocks (Table 1). The unfertilized control was the lowest yielding treatment. The 100 lb N/acre preplant treatment was the next lowest yielding and not significantly different from the unfertilized control. The other four treatments were not significantly different in yield. A trend of lower yield was observed with the treatment that included a 50-lb N/acre application compared to the treatments that had later applications of N fertilizer. This trend is consistent with lack of yield increase from the 100-lb N/acre preplant treatment. A possible explanation for the ineffectiveness of the preplant treatments is the spring weather conditions experienced in 1995. Wet weather probably increased the likelihood of denitrification and leaching of nitrate. These two processes, denitrification and leaching, remove N from the soil and reduce plant uptake and may have caused the preplant treatments to be less effective than N fertilizer applied late in the growing season.

Practical Applications

Preliminary results indicate that early-season N applications shortly after emergence and at first square were more effective in meeting the N nutritional needs of cotton than preplant applications. Because these are first-year results and preliminary, testing should be continued before final conclusions are drawn.

Literature Cited

 Bonner, C.M. 1995. 1995 Cotton production recommendations. Univ. Of Ark. Coop. Ext. Serv. AG422-4-95.

Acknowledgment

Support for this research was provided by the Arkansas Fertilizer Tonnage Fee.

S	oil N-Ra	ate		
PP^1	AE ¹	FS ¹	Irrigated	Dryland
	lb N/ac	re ——	lb lir	nt/acre ———
0	50	50	1068	909
50	0	50	990	877
0	0	100	1086	915
0	100	0	1020	869
100	0	0	714	718
0	0	0	707	681
LSD	(0.05)		158	145

 Table 1. Lint yield response of cotton grown with six early-season, soil-applied nitrogen (N) treatments under furrow irrigation and dryland conditions in 1995.

 Call N Date

¹ Preplant (PP), after emergence (AE), first square (FS).

Irrigation Methods and Nitrogen Fertilization Rates in Cotton Production

J.S. McConnell, W.H. Baker and B.S. Frizzell

Research Problem

anagement of nitrogen (N) and irrigation are two important aspects of cotton (*Gossypium hirsutum*, L.) production. The interactions of N fertilizer and irrigation are not well documented under the humid production conditions of southeastern Arkansas (McConnell et al., 1988).

The objective of these studies was to evaluate the development and yield of intensively managed cotton soil treated with soil-applied N fertilizer under several irrigation methods.

Background Information

Over- and under-fertilization may result in delayed maturity and reduced yield, respectively (Maples and Keogh, 1971). Adequate soil moisture is also necessary for cotton to achieve optimum yields. If the soil becomes either too wet or too dry, cotton plants will undergo stress and begin to shed fruit (Guinn et al., 1981).

Research Description

This study was conducted at the Southeast Branch Experiment Station on an Hebert silt loam soil. The experimental design was a split block with irrigation methods as the main blocks. N rates were tested within each irrigation method. Five irrigation methods were used from 1988 to 1993 (Table 1), but only three methods were used in 1994. Six different N rates (0, 30, 60, 90, 120 and 150 lb urea-N/acre) were tested with different application timings used for the higher (90 to 150 lb N/acre) N rates.
Results

Irrigation generally increased cotton yields except during one or more of the following conditions: an unusually wet growing season (1989–data not shown), when the crop was planted too late (1991), or when verticillium wilt was prevalent (1990-1992 and 1994) (Table 2). The method of irrigation to maximize lint yield varied year-to-year and, therefore, appeared to be less important than irrigation usage.

Generally, lint yield was found to increase with increasing N fertilization (Table 3). The N treatments that usually resulted in the greatest lint yields were applications of 90- to 150-lb N/acre depending upon the irrigation treatment. Exceptions were found for the 150-lb N/acre treatment (75 lb N/acre PP and 75 lb N/acre FS), which was found to decrease lint yield in some irrigation blocks, and the High Frequency Center Pivot block in 1990-1992 and 1994. The yields of the High Frequency block during those years were significantly influenced by verticillium wilt. The disease was more virulent in plots receiving higher N rates, thereby reducing yields with increasing N.

Practical Applications

Irrigated cotton was generally found to be higher yielding than cotton grown under dryland conditions unless verticillium wilt affected the crop. Fertilizer nitrogen requirements of cotton for maximum yield tended to be greater under irrigated production conditions than under dryland production conditions. Fertilizer nitrogen requirements of cotton for maximum yield tended to be greater for furrow-irrigated cotton than for center-pivot-irrigated cotton.

Literature Cited

- 1. Guinn, G., J.R. Mauney and K.E. Fry. 1981. Irrigation scheduling effects on growth, bloom rates, boll abscission and yield of cotton. Agron. J. 73:529-534.
- Maples, R. and J. G. Keogh. 1971. Cotton fertilization studies on loessial plains soils of eastern Arkansas. Univ. of Ark. Agric. Exp. Sta. Bull. 825.
- McConnell, J. S., B. S. Frizzell, R. L. Maples and G. A. Mitchell. 1988. Relationships of irrigation methods and nitrogen fertilization rates in cotton production. Univ. of Ark. Agric. Exp. Sta. Rep. Ser. 310.

Acknowledgment

Support for this research was provided by the Arkansas Fertilizer Tonnage Fee.

	application rates	or meetingat		
Irrigation		Tensiometer	Tensiomete	r Water
Methods	Duration	Threshold	Depth	Applied
		- cbar -	- in	- in
High Frequency	Planting to P.B. ¹	35	6	0.75
Center Pivot	P.B. to Aug. 15	35	6	1.00
Moderate Frequency	Planting to			
Center Pivot	Aug. 15	55	6	1.00
Low Frequency	First Irrigation	55	12	1.00
Center Pivot	Until Aug. 15	55	6	1.50
Furrow Flow	Until Aug. 15	55	12 I	Not Precise
Dryland	Not Irrigated	_	—	_
¹ P.B. = Peak Bloom				

Table 1. Duration, tensiometer thresholds and depths and water application rates for five irrigation methods.

Table 2. Lint yield response of cotton to five irrigation methods in 1988, 1990, 1991, 1992, 1993, 1994 and 1995.

000, 1000	, 1001, 1	00 2 , 1000	, 100+ un	a 1000.		
1988	1990	1991	1992	1993	1994	1995
			— lb/acre			
			10/4010			
1567	1118	1051	1181	1103	1317	1113
1410	1461		1632	1342		
1620	1442	1334	1460	1112		
1370	1511	1231	1367	1241	1478	1217
1271	915	1308	1246	1067	1353	892
159	67	77	66	66	83	59
	1988 1567 1410 1620 1370 1271 159	1988 1990 1567 1118 1410 1461 1620 1442 1370 1511 1271 915 159 67	1988 1990 1991 1567 1118 1051 1410 1461 — 1620 1442 1334 1370 1511 1231 1271 915 1308 159 67 77	1988 1990 1991 1992	1988 1990 1991 1992 1993 Image: Index of the state of the st	1988 1990 1991 1992 1993 1994

Table 3. Lint yield response of cotton to 10 nitrogen (N) fertilization rates and splits under five irrigation methods in 1988, 1989, 1990, 1991, 1992, 1993, 1994 and 1995.

	N R	ate	_				
PP^1	FS ¹	FF ¹	LF ²	MF^2	HF ²	Fl ²	DL ²
—— Ib N/acre ——				Ib lint/acre			
1988	3						
75	75	0	1906 a	1730	1524 ab	1571 ab	1378 a-c
50	50	50	1730 ab	1395	1631 ab	1627 a	1409 ab
30	60	60	1588 bc	1549	1682 a	1508 ab	1319 a-c
60	60	0	1776 ab	1439	1567 ab	1417 bc	1273 bc
40	40	40	1763 ab	1360	1683 a	1467 bc	1449 a
45	45	0	1738 ab	1153	1600 ab	1479 ab	1293 a-c
30	30	30	1756 ab	1470	1693 a	1549 ab	1400 ab
30	30	0	1632 ac	1358	1533 ab	1288 c	1215 cd
15	15	0	1328 cd	1409	1464 bc	976 d	1048 d
0	0	0	1069 d	1235	1295 c	739 e	838 e
LSD	(0.05)		314	ns	188	190	175
	()						Continued

. . .

Table	3.	Continued
-------	----	-----------

	N Ra	ate					
PP^1	FS ¹	FF ¹	LF ²	MF ²	HF ²	Fl ²	DL ²
	lb N/a	cre —			-lb lint/acre-		
4000							
75	75	0	1115 ab	<u>903 a-c</u>	950 ab	1080 2-0	1204 ab
50	50	50	1067 ab	903 a-c 038 ab	909 ab 902 ab	1060 a-c	1294 au 1321 a
30	60 60	50 60	1007 ab	860 a-c	992 ab 942 ab	1154 a	1321 a 1170 cd
60	60	00	1182 2	1069 a-c	976 ab	1111 ah	1227 a-c
40	40	40	1102 a 1177 a	1005 a 1045 ab	1071 a	998 cd	1250 a-c
45	45	0	1175 a	979 ab	855 b	1143 ab	1214 a-c
30	30	30	1170 a	842 b-d	1045 a	1173 a	1187 bc
30	30	0	993 bc	1045 ab	919 ab	1035 b-d	1058 d
15	15	0	917 c	700 cd	843 b	929 d	861 e
0	0	0	747 d	616 d	625 c	629 e	497 f
LSD	(0.05)	Ū	148	228	154	108	115
1990	(0.03)						
75	75	0	1474 a	1479	1018 d	1601 a	1002 a
50	50	50	1464 a	1539	1022 cd	1517 ab	1033 a
30	60	60	1542 a	1344	1011 d	1563 a	955 ab
60	60	0	1396 a	1522	1091 b-d	1531 ab	825 b
40	40	40	1525 a	1468	1191 a-c	1663 a	1000 a
45	45	0	1491 a	1582	1112 a-d	1596 a	957 ab
30	30	30	1421 a	1487	1155 a-d	1663 a	995 ab
30	30	0	1515 a	1392	1234 ab	1636 a	911 ab
15	15	0	1440 a	1571	1265 a	1374 b	867 b
0	0	0	1169 b	1238	1106 a-d	995 c	663 c
LSD	(0.05)		184	ns	172	185	133
1991							
75	75	0	1409 ab	_	939 de	1215 cd	1366 ab
50	50	50	1386 b		1028 b-d	1236 b-d	1444 a
30	60	60	1345 b	—	906 e	1266 b-d	1414 ab
60	60	0	1365 b	—	1031 b-d	1282 a-c	1326 bc
40	40	40	1424 ab	—	1055 bc	1272 a-d	1425 a
45	45	0	1406 ab	—	1129 ab	1302 ab	1398 ab
30	30	30	1490 a	—	1088 bc	1352 a	1373 ab
30	30	0	1426 ab	—	1230 a	1304 ab	1254 c
15	15	0	1192 c	—	1128 ab	1191 d	1245 c
0	0	0	976 d	—	986 c-e	892 e	839 d
LSD	(0.05)		108	—	106	84	99

Continued

Ιαυι			4.				
						F 12	
PP:	<u> </u>	ГГ					DL
	· lb N/a	icre —	· · · · · · · · · · · · · · · · · · ·		-lb lint/acre-		
1992	2						
75	75	0	1533 a	1553 bc	1126	1274 bc	1372 ab
50	50	50	1547 a	1543 bc	1113	1384 ab	1338 b
30	60	60	1494 a	1518 c	1103	1317 ab	1386 ab
60	60	0	1470 ab	1556 bc	1227	1179 cd	1403 ab
40	40	40	1511 a	1666 ab	1209	1421 a	1490 a
45	45	0	1544 a	1739 a	1219	1335 ab	1439 ab
30	30	30	1526 a	1643 a-c	1172	1347 ab	1494 a
30	30	0	1493 a	1566 bc	1256	1303 b	1440 ab
15	15	0	1400 b	1707 a	1221	1123 b	1347 b
0	0	0	1079 c	1748 a	1157	803 e	966 c
LSD	(0.05)		87	132	NS	112	114
1993	3						
75	75	0	1179 a	1262 cd	1152 a-c	1324 a-c	1095 bc
50	50	50	1164 a	1267 cd	1181 a-c	1345 ab	1144 a-c
30	60	60	1156 a	1269 cd	1097 c	1391 a	1191 ab
60	60	0	1171 a	1394 a-c	1156 a-c	1347 ab	1073 b-d
40	40	40	1177 a	1465 ab	1126 bc	1339 ab	1271 a
45	45	0	1150 a	1525 a	1245 a	1248 bc	1139 a-c
30	30	30	1146 a	1429 ab	1212 ab	1377 ab	1104 bc
30	30	0	1092 a	1346 bc	1121 bc	1198 c	1032 cd
15	15	0	1032 b	1255 cd	992 d	1027 d	949 d
0	0	0	863 c	1185 d	833 e	784 e	966 c
LSD	(0.05)		98	143	103	136	114
1994	4						
75	75	0			1264 c	1600 a-c	1328 a-c
50	50	50			1256 c	1643 ab	1513 ab
30	60	60			1283 c	1633 ab	1501 ab
60	60	0			1312 bc	1602 a-c	1643 a
40	40	40			1467 a	1695 a	1559 a
45	45	0			1441 ab	1492 c	1359 a-c
30	30	30			1384 a-c	1549 bc	1381 a-c
30	30	0			1515 a	1482 c	1226 b-d
15	15	0			1313 bc	1215 d	1085 cd
0	0	0			1073 e	873 e	931 d
LSD	(0.05)				132	137	322
							Continued

Table 3. Continued.

Tubi		Jinnaca					
	N Ra	ate					
PP^1	FS ¹	FF ¹	LF ²	MF^2	HF ²	FI ²	DL ²
—— Ib N/acre ——				Ib lint/acre-			
1995	5						
75	75	0			1127 a	1393 a	954 a-c
50	50	50			1166 a	1373 ab	1039 a
30	60	60			1193 a	1369 ab	971 ab
60	60	0			1162 a	1376 ab	879 b-d
40	40	40			1213 a	1360 ab	1032 a
45	45	0			1107 a	1236 bc	946 a-c
30	30	30			1149 a	1280 ab	947 a-c
30	30	0			1198 a	1098 cd	852 cd
15	15	0			964 b	980 d	781 d
0	0	0			838 c	704 e	532 e
LSD	(0.05)				106	146	114

Table 3. Continued.

¹ Preplant (PP), first square (FS) and first flower (FF).

² Low frequency (LF), moderate frequency (MF), high frequency (HF), furrow irrigated (FI), dryland (DL).

Table 4. Percent first narvest response of cotton to five									
irrigation methe	ods in 1	988, 1990), 1991 , 1	1992, 199	3, 1994 a	and 1995	-		
Method	1988	1990	1991	1992	1993	1994	1995		
				— % ——					
High Frequency Center Pivot	95.7	90.6	85.4	90.3	88.6	95.0	91.6		
Moderate Frequency Center Pivot	90.4	88.8		87.1	86.8				
Low Frequency Center Pivot	92.7	90.1	86.1	88.9	84.5				
Furrow Flow Dryland	91.2 93.5	93.7 94.2	90.0 93.6	90.9 94.6	91.2 94.4	95.6 94.5	94.3 94.2		
LSD (0.05)	1.8	2.1	1.4	2.0	1.9	0.9	0.8		

Table 4 Percent first baryast response of astten to five

Cotton Gin Trash as Soil Amendment for Small-Scale Vegetable Production

Tina Gray Teague and Paul W. Teague

Research Problem

There are numerous ways to recycle and reuse agricultural wastes. This is particularly important in Arkansas where agricultural waste products are abundant. In the cotton industry alone, Arkansas gins must dispose of 100 to 150 lb of gin trash per bale for each of the state's 700,000 to 1.5 million bales of cotton ginned annually. Research was conducted in 1994 in collaboration with the Arkansas Land and Farm Development Corporation (ALFDC) in Fargo, Ark., to evaluate how small-scale vegetable farmers might put this gin waste to work as soil amendments to improve productivity and profits on their farms.

Background

Addition of soil amendments such as poultry litter can result in improved yields of greens and spinach on damaged soils (Teague, 1994a; Teague, 1994b); however, the delivered cost of this material may range from \$20 to \$45 per ton with application rates of 1 to 2 tons generally recommended. This cost is prohibitive for most limited-resource, smallscale farmers. Costs for transportation and application of gin trash are appropriately low for limited-resource farmers. A small-scale producer, hauling his or her own gin trash from a local gin should be able to deliver and spread the material for a little as \$5 to \$10/ton. In many cases, gins will deliver raw gin trash to a farm site for no charge.

Materials and Methods

Because raw gin trash contains both weed seeds and plant diseasecausing microorganisms, composted gin trash was used in the evaluation. Field composting raw gin trash was done on the Ben Anthony, Jr. Farm in Lee County. Pickup truck loads of raw gin trash were obtained in fall 1993 from Mann's Gin in Marianna. The material was unloaded at the farm site and left in a pasture over the winter and spring in approximately 8 ft diameter X 6 ft high piles. The gin trash was sufficiently decayed by mid-summer that the material could be used in fall vegetable production. Contamination of the compost by weed seeds, which had blown onto the piles, was minimized by removing the outside 4 in. of the pile before transporting to the ALFDC site.

The experiment was conducted at the ALFDC Demonstration Farm in Monroe County. The field had been precision leveled three years prior to the study, and lime had been applied (2 tons/acre) to the Dubbs/Dundee silt loam the previous fall. Soil pH ranged from 5.9 to 6.3. Composted gin trash was applied at rates of 0, 1 and 2 tons/acre. The plots were four rows wide with 3.3ft row spacing and were 30 ft long with 5-ft alleys separating plots. The experiment was arranged in a randomized complete block with four replications. Broadcast applications were made by hand on 1 September 1994. In addition, all plots received applications of NPK (60-60-60 lb/acre (N-P₂O₅-K₂O) in the form of 13-13-13). Plots were disked, and beds were formed with a disk bedder. 'Royal Crest' turnip was direct seeded in single row culture on 20 September. Irrigation was provided as needed by flooding furrows. Plots were hand harvested on 21 December in a 5-ft section in either row 2 or 3. Once-over, whole plant harvest method was employed. Analyses of compost samples and of turnip leaf samples from five plants per treatment plot taken at harvest time were performed at the UA Soil Test Lab at Marianna. Data were subjected to Anova with means separated by LSD.

Results

Mean yield of turnip greens was increased 1.76 tons/acre by addition of 2 tons composted gin trash/acre (Table 1). This is equivalent to 176 boxes (20 lb/ box) of fresh market greens. Based on a \$5 FOB/box price, a gross profit increase of \$860/acre was produced by using the 2 ton/acre rate of composted gin trash. Turnip root yield was not significantly affected by addition of gin trash. No differences between treatments were noted in results in plant tissue analyses (Table 2). Results from lab analyses of compost are shown in Table 3.

Practical Implications

Composted gin trash appears to be affordable and practical for use by smallscale vegetable farmers as a soil amendment for remediation of soils disturbed by precision leveling. Adoption of sustainable soil management practices would be expected to increase profitability of these small-scale farms to the benefit of the farmers and the region. Problems with gin waste disposal also could be lessened if the practice became widespread.

Literature Cited

- 1. Teague, T. G. 1994a. Poultry litter compost effects on fall spinach production. Arkansas Soil Fertility Studies, University of Arkansas Research Series, Fayetteville, AR, 436:5-7.
- Teague, T. G. 1994b. Field trials with composted poultry litter with collards and 2. spinach. HortScience 29 (5) 523.

Acknowledgments

Special thanks to Mr. Calvin King and his staff at the Arkansas Land and Farm Development Corporation for support of research activities with agricultural waste products. Mr. Ben Anthony, Jr. and Monroe County Extension Agent Keith Perkins are acknowledged for their participation in the study. This research was funded in part by a grant from the Sustainable Agriculture Research and Education Program (Project C2-71).

of composted gin trash used in field trials.								
Turnip Yield ¹								
Roots	Greens							
tons	tons/acre							
1.10a	0.45 a							
2.41a	1.50ab							
2.77a	2.21b							
	posted gin trash used in f Turnip Roots ——— tons 1.10a 2.41a 2.77a	posted gin trash used in field trials. Turnip Yield ¹ Roots Greens tons/acre 1.10a 0.45 a 2.41a 1.50ab 2.77a 2.21b						

Table 1. Results from laboratory analyses

Means with same letter are not significantly different (Pr > F (Anova) _{0.05}; LSD _{0.05}).

Composted								
Gin Trash	AI	Ag	As	В	Ba	Be	Ca	Cd
-lb/acre-	·				ppm——			
0	33.88	0.08	4.26	17.56	0.80	0.06	284.92	0.14
2000	55.08	0.01	3.75	17.66	0.90	0.00	228.44	0.06
4000	33.67	0.01	3.88	17.62	0.69	0.00	247.77	0.06
	ns¹	ns	ns	ns	ns	ns	ns	ns
Composted	I							
Gin Trash	Cr	Cu	Fe	К	Mg	Mn	Мо	Na
0	0.21	0.08	21.02	214.76	31.62	2.86	0.86	31.71
2000	0.26	0.08	37.12	252.24	30.42	4.16	0.72	25.66
4000	0.23	0.06	22.82	269.31	30.82	2.68	0.79	40.99
	ns	ns	ns	ns	ns	ns	ns	ns
Composted	I							
Gin Trash	Ni	Р	Pb	S	Sb	Se	V	Zn
0	0.09	36.44	0.25	47.65	2.44	5.76	0.14	0.93
2000	0.04	36.81	0.26	40.64	2.02	4.92	0.12	0.79
4000	0.02	41.18	0.18	45.73	2.15	5.03	0.07	0.89
	ns	ns	ns	ns	ns	ns	ns	ns

Table 2. Results from tissue analysis for fall turnip greens grown using composted gin trash in Monroe County, Arkansas, 1994.

¹ ns = nonsignificant (PR > F (Anova _{0.05})).

Table 3. Elemental composition of compost used in 1994

field trials with turnips.						
Parameter	Concentration					
	— ppm —					
К	73					
Ca	256					
Na	2.7					
Mg	50.5					
Fe	11					
Mn	1.2					
Cu	0.1					
Zn	0.5					
В	0.6					
S	39.1					
P	62.6					

Rice Nutrient Composition Response to P and K Fertilization

N. A. Slaton, S. Ntamatungiro, C. E. Wilson, Jr., R. J. Norman and B. R. Wells

Research Problem and Background Information

A nalysis of sick rice plants is often performed by agriculture Extension agents, specialists and consultants as a means of diagnosing the nutritional cause of poor growth. Results of tissue analysis are usually expressed in concentrations of parts per million (ppm) or percentages (%). However, plants submitted for analysis after appearance of deficiency symptoms often indicate that several or no nutrients are present in deficient levels. The objective of this study was to determine if soil properties, plant part and time of sampling influenced interpretation of tissue analysis results and to build a database for predicting crop growth/yield response based on tissue analysis.

Research Description

Plots were established in grower fields at two locations in northeastern Arkansas in spring of 1996. Soil exchangeable potassium (K) and available phosphorous (P) were similar for each site, but the locations differed in soil pH (Table 1). The Poinsett County location was seeded in 'Bengal' and the Cross County site was seeded in 'Kaybonnet'. Six fertilizer treatments consisting of two P rates (triple super phosphate) (0 and 40 lb P_2O_5/A) and three rates of K (muriate of potash) (0, 60, and 120 lb K_20/A) were applied to the soil surface prior to rice emergence. Plant tissue samples, both whole plant and Y-leaf (most recent fully emerged leaf) were taken at the midtillering (MT) and internode elongation (IE) growth stages.

Results

Whole Plant Analysis, Dry Matter Production and Total Uptake

Application of P significantly increased dry matter production, total P up-

take, and total K uptake at the MT and IE growth stages at the Cross County location (Tables 2 & 3). At MT, greater total P uptake occurred despite a significant reduction in percent P in tissue with added P fertilizer. This suggests that P was deficient at this site. Phosphorus fertilizer increased dry matter production, diluting tissue P concentration. At IE, plants fertilized with P contained a higher percent P than untreated checks (Table 3). Application of P resulted in a significant grain yield increase at Cross County (Table 4). Application of K fertilizer had no significant effect on plant growth at Cross County but significantly effected percent K and total K uptake at Poinsett County (Table 5). Based on the critical nutrient concentration for K of 1.4%, Poinsett County suffered from K deficiency. Potassium application resulted in a significant grain yield increase but did not affect dry matter at MT or IE (Table 6).

Whole Plant vs. Y-Leaf Analysis Nutrient Analysis

The statistical significance of tissue analysis was greatly influenced by plant part sampled. For example, significant P [K rate interaction for percent K occurred at Poinsett County for both growth stages only when Y-leaf samples were taken (Table 7)]. Whole plant analysis indicated a significant interaction only at IE (data not shown). Concentration of some nutrients varied drastically depending on plant part sampled. Nutrient concentrations also differed drastically among the two locations (data not shown). Further statistical analyses are being conducted on these data to determine relationships among plant part sampled.

Practical Applications

Soil test analysis indicated that soil K values were low (< 175 lb K acre⁻¹) only at the Poinsett County site where K fertilization resulted in improved yields. Both locations had low soil test P, but only the high pH site, Cross County, responded to P application. Research efforts with P and K must continue to explore the relationships between soil test P and pH. Evidence suggests soil test P is not a good indication of crop response to P fertilization. Tissue analysis may help predict crop response to P and K fertilization.

Acknowledgments

Support for this research was provided by the Potash and Phosphate Institute and Arkansas Tonnage fees. Special thanks to the following county Extension agents and rice growers for their assistance: (Agents) David Annis, Van McNeely, Rick Thompson, and Rick Wimberly and (growers) Darryl Schlencker (Cross County) and Billy Joe Wright (Poinsett County).

	lable	e 1. Soil t	test re	sults us	ing Mehli	ch III ext	ractant.		
Location	pН	EC ¹	Р	K	Ca	Mg	Na	Mn	Zn
		µS cm⁻¹				- Ib acre-1			
Cross	7.9	375	16	266	3978	654	118	300	12
Poinsett	5.3	146	15	96	1906	312	68	84	20
	datarm	inod unin	0 0 1.1		tor ovtroot				-

pH and EC determined using a 1:1 soil-water extract.

Table 2. Effects of phosphorus fertilization on dry matter, % tissue P, total P uptake, and total K uptake at midtillering growth stage in Cross County.

Phosphorus	Parameter Measured					
Rate	Dry Matter	% P	Total P Uptake	Total K Uptake		
P ₂ O ₅ /acre	lb/acre	% Tissue P	lb P/acre	lb K/acre		
0	430.5	0.155	0.65	7.5		
40	1002.8	0.125	1.24	19.0		
LSD (0.05)	172.7	0.016	0.217	3.7		
Pr > F	0.0001	0.0012	0.0001	0.0001		

Table 3. Effects of phosphorus fertilization on dry matter, % tissue P, total P uptake, and total K uptake at internode elongation growth stage in Cross County

at internede clongation growth stage in cross county.						
	Parame	eter Measured				
Dry Matter	Dry Matter % P Total P Uptake Total K Uptake					
lb/acre	% Tissue P	lb P/acre	lb K/acre			
1763	0.123	2.7	39.8			
3193	0.180	5.8	70.4			
456.6	0.0141	0.788	10.8			
0.0001	0.0001	0.0001	0.0001			
	Dry Matter Ib/acre 1763 3193 456.6 0.0001	Parame Dry Matter % P lb/acre % Tissue P 1763 0.123 3193 0.180 456.6 0.0141 0.0001 0.0001	Parameter Measured Dry Matter % P Total P Uptake lb/acre % Tissue P lb P/acre 1763 0.123 2.7 3193 0.180 5.8 456.6 0.0141 0.788 0.0001 0.0001 0.0001			

Table 4. Influence of phosphorus rate on grain yield in Cross and Poinsett counties.

	Gra	in Yield	
P Rate	Cross Co.	Poinsett Co.	
lb P ₂ O ₅ /acre	lb	o/acre	
0	3575	6613	
40	5300	6522	
LSD _(0.05)	713	ns¹	

ns = not significant

ARKANSAS SOIL FERTILITY STUDIES 1996

	Growth Stage				
	K con	centration	KU	ptake	
K Rate	Midtillering	Internode Elongation	Midtillering	Internode Elongation	
lb K ₂ O/acr	e	- %	lt	p/acre ———	
0	1.40	0.96	29.3	27.6	
60	2.21	1.64	55.3	61.5	
120	2.76	1.95	72.5	64.5	
LSD _(0.05)	0.367	0.218	20.1	23.8	
Pr > F	0.0013	0.0001	0.0001	0.0081	

Table 5. Effect of potassium fertilization on total potassium uptake and concentration in Poinsett County.

Table 6. Influence of potassium rate on grain yield in Cross and Poinsett counties.

	Grai	n Yield
K Rate	Cross Co.	Poinsett Co.
lb K ₂ O/acre	lb/	acre ———
0	4586	5868
60	4404	6760
120	4321	7075
LSD _(0.05)	ns¹	1111

¹ ns = not significant

Table 7. Phosphorus (potassium rate interaction					
on pota	ssium concentratio	n of Y-leaf t	issue in Po	insett County	/.
Growth Stage	P Rate	Potassium Rate			
	lb P ₂ O ₅ /acre		lb K ₂ O/acr	e	
		0	60	120	
		% K in	rice Y-Leaf	tissue	
Midtillering	0	1.24	2.26	2.51	
C C	40	1.33	2.04	2.81	
LSD _(0,10)			0.262		
Pr > F			0.089		
Internode	0	1.06	1.71	1.80	
Elongation	40	1.25	1.41	1.98	
LSD(0.05)			0.308		
Pr > F			0.010		

Table 7 Phoenhorus (notaesium rate interaction

Influence of Phosphorus Fertilizer Source and Rate on Rice

C.E. Wilson, Jr., S. Ntamatungiro, N.A. Slaton, R.J. Norman, B.R. Wells and D. Frizzell

Research Problem

R ice (*Oryza sativa*, L.) in eastern Arkansas is often limited by low levels of available phosphorus (P). The University of Arkansas recommends $40 \text{ lb P}_2\text{O}_5 \text{ acre}^{-1}$ when the soil test level (Mehlich III) is less than 25 lb P acre⁻¹. The objective of this study was to compare the effectiveness of three P fertilizer sources at different rates with and without the application of Zn.

Background Information

The most commonly utilized P source for rice production in Arkansas has been triple superphosphate [9 Ca(PO₄)₂ + 2CaF]. Because P availability is influenced by soil pH, P availability has been reduced substantially as soil pH levels have increased due to utilizing irrigation water containing high concentrations of bicarbonates. Triple superphosphate (TSP) tends to have little effect on soil pH when applied. Other fertilizers, however, such as diammonium phosphate (DAP; (NH₄)₂HPO₄) and monoammonium phosphate (MAP; NH₄H₂PO₄) tend to be slightly acidic upon reaction with soil constituents. The evaluation of various P sources was warranted because much of the P deficiencies observed in Arkansas rice fields tends to be on soils with high soil pH,

Research Description

Studies were implemented in production fields located in Craighead County seeded with 'Bengal' rice and in Cross County seeded in 'Alan' rice. Soil test characteristics indicated that the soil pH in Craighead County was high (8.0), but in Cross County the pH was relatively low (6.1) (Table 1). Three P sources

(TSP, DAP and MAP) were applied at rates of 0, 40 and 80 lb P_2O_5 acre⁻¹ to the soil surface following planting but prior to emergence. An additional factor in the experiment consisted of Zinc EDTA applied at a rate of 1 lb Zn acre⁻¹ at the three- to four-leaf growth stage. The plots were 8 ft wide by 16 ft in length. Urea was applied with the TSP and MAP treatments to equal the total N added with the DAP. The experiment was arranged in a randomized complete block factorial with four replications. Dry matter accumulation was determined at midtillering (MT), internode elongation (IE), and three weeks after heading. Grain yields were determined at harvest.

Results

Significantly more total dry matter accumulation (TDM) was measured at MT when DAP or MAP was applied than when TSP was applied at Craighead County (Table 2). However, P source did not affect TDM at the other growth stages at Craighead County or at any growth stage at Cross County. Increasing the P rate significantly increased TDM at both locations at the MT growth stage (Table 3). Although not statistically significant, a similar increasing trend was observed at all growth stages except at IE in Cross County. Application of Zn did not significantly affect TDM (Table 4).

A significant interaction of P rate and Zn application was observed at Craighead County for TDM at IE (Table 5). A P rate of 80 lb P_2O_5 acre⁻¹ without Zn increased TDM at Craighead County compared to the control. However, when Zn was also applied, a P rate of only 40 lb P_2O_5 acre⁻¹ was necessary to increase TDM relative to the control.

Grain yields were not influenced by P source at either location during 1996 (Table 6). The P rate main effects also did not significantly influence yields (Table 7). However, the Zn application significantly increased yields at Craighead County but decreased yields in Cross County (Table 8). The three-way interaction of P source, P rate and Zn rate was significant at Craighead County (Table 9). Zinc significantly increased yields without P fertilizer. However the highest yields were obtained with Zn plus 40 lb P_2O_5 acre⁻¹ of TSP. The least effective P source tended to be MAP.

Practical Applications

Based on results from the first year, P applications are beneficial for optimum rice production. However, there seems to be little difference among P sources in their effectiveness.

Acknowledgments

Support for this research was provided by the Potash and Phosphate Institute and Arkansas Fertilizer Tonnage Fees. Appreciation is extended to county Extension agents (Brannon Thiesse, David Annis and Rick Wimberly) and rice producers (John Greer and Keith Thomas) for their assistance in conducting this project.

	Soil Test Values			
Soil Test Parameter [†]	Craighead Co.	Cross Co.		
pН	8.0	6.1		
EC (mhos cm ⁻¹)	574.5	136.2		
P - Olsen (mg kg ⁻¹)	15.5	9.6		
P - Mehlich III (mg kg ⁻¹)	15.7	10.8		
Ca (mg kg ⁻¹)	1671	830.3		
Mg (mg kg ⁻¹)	199.0	197.8		
Na (mg kg ⁻¹)	42.5	34.6		
K (mg kg ⁻¹)	41.5	116.3		
Fe (mg kg ⁻¹)	363.9	243.2		
Cu (mg kg ⁻¹)	2.3	2.1		
Zn (ma ka ⁻¹)	3.2	6.9		

Table 1. Selected soil chemical characterisitics from test sites at Craighead and Cross counties during 1996.

[†] Ca, Mg, Na, K, Fe, Mn, Cu, Zn determined by Mehlich III; P determined by Mehlich III and Olsen; pH and EC determined on 1:1 water:soil suspension.

	and thre	e weeks af	ter heading	(HDG) durir	ng 1996.	
			Total Dry	Matter		
	C	raighead C	0.		Cross Co.	
P Source	MT	IE	HDG	MT	IE	HDG
			——— g m	-2		
TOD	05	040	0007		040	
ISP	65	618	2307	94	819	2892
DAP	81	649	2327	100	745	3060
MAP	75	595	2254	85	745	2999
LSD _(0.05)	10	ns¹	ns	ns	ns	ns
4	1.41					

Table 2. Influence of P source on total dry matter accumulation at mid-tillering (MT), 1.3-cm internode elongation (IE) and three weeks after beading (HDG) during 1996

 1 ns = nonsignificant.

		0 ()/				
	and three weeks after heading (HDG) during 1996.					
			Total Dry	Matter		
	C	raighead C	0.		Cross Co.	
P Rate	MT	IE	HDG	MT	IE	HDG
lb P ₂ O ₅ A ⁻¹			g	m ⁻² ———		
0	47	576	2172	69	926	2754
40	73	596	2270	86	738	2963
80	81	659	2368	108	766	3066
LSD _(0.05)	11	ns¹	ns	23	ns	ns

Table 3. Influence of P rate on total dry matter accumulation at mid-tillering (MT), 1.3-cm internode elongation (IE) and three weeks after heading (HDG) during 1996.

¹ ns = nonsignificant.

Table 4. Inlfuence of Zn EDTA on total dry matter accumulation at mid-tillering (MT), 1.3-cm internode elongation (IE) and three weeks after heading (HDG) during 1996.

			Total D	Ory Matter		
	C	raighead Co	0.		Cross Co.	
Zn Rate	MT	IE	HDG	MT	IE	HDG
lb Zn A ⁻¹			g	m ⁻² ———		
0	71	590	2216	99	822	3146
1	75	650	2380	87	731	2793
LSD _(0.05)	ns¹	ns	ns	ns	ns	ns

¹ ns = nonsignificant.

Table 5. Influence of P rate and Zn application on total dry matter accumulation at 1.3-cm internode elongation during 1996 in Craighead County.

	Iotal Dry Matter Accumulation			
P Rate	without Zn	with Zn		
lb P ₂ O ₅ A ⁻¹	g	J m ⁻² ———		
0	527	625		
40	520	673		
80	681	637		
LSD _(0.05)	1	02		

Table 6. Influence of phosphorus source on rice grain yields during 1996.

		Grain Yields	
P Source	Craighead Co.		Cross Co.
		—— lb/acre ——	
Triple Superphosphate	7364		6037
Diammonium phosphate	7245		6005
Monoammonium phosphate	7040		6063
LSD (0.05)	432		418
C.V. (0.00)	10.3%		11.9%

	Grain Y	′ields
P Rate	Craighead Co.	Cross Co.
lb P ₂ O ₅ /acre	lb/acr	e
0	7066	6027
40	7414	6174
80	7169	5909
LSD (0.05)	432	418

Table 7. Influence of Phosphorus rate on rice grain yields during 1996.

Table 8. Infl	uence of Zn application on rice gra	ain yields during 1996.
	Grain Y	íelds
Zn Rate	Craighead Co.	Cross Co.
lh Zn/acro	lb/acr	0

lb Zn/acre	lb/ac	re
0	6941	6285
1	7492	5791
LSD (0.05)	353	341

Table 9. Influence of P source, P rate, and Zn applications on rice grain yields at Craighead County during 1996. Grain Yields Grain Yields TSP DAP MAP w/o Zn w

	18	SP	D	AP	M	AP
P Rate	w/o Zn	w/ Zn	w/o Zn	w/ Zn	w/o Zn	w/ Zn
lb P ₂ O ₅ /acre			lb/acre	ə ————		
0	6564	7569	6564	7569	6564	7569
40	7132	8344	7367	7717	7410	6512
80	7701	6875	6563	7688	6603	7584
LSD (0.05)			10)59		

Influence of Phosphorus Rate, Potassium Source and Rate on Rice Production

Sixte Ntamatungiro, N. A. Slaton, C. E. Wilson, Jr., R. J. Norman and B. R. Wells

Research Problem and Background Information

In the formula of the probability of the probabili

This study evaluated the effect of P rate, K source and K rate on dry matter accumulation at three growth stages and on grain yield of rice grown on a high and low pH soil.

Research Description

Two locations were used for the study: one in Cross County (high pH) seeded in 'Kaybonnet' on April 9, and another in Poinsett County (low pH) seeded in 'Bengal' on April 27 (Table 1). Phosphorus and K fertilizers were surface-applied after planting but before emergence in plots measuring 8 ft in width and 16 ft in length. Phosphorus was applied as triple super phosphate [9 $Ca(PO_4)_2 + 2CaF$] (0-46-0) at 0 and 40 lb P_2O_5 /acre. Potassium sources were KCl (0-0-60), K_2SO_4 (0-0-50) and KNO₃(13-0-44). Each K source was applied at 0, 60 and 120 lb K_2O /acre. Urea (46-0-0) was applied to plots to equal the total nitrogen (N) applied to KNO₃ treatments. The experiment design was a randomized complete block factorial with four replications. Dry matter production was determined from aboveground plant material taken from 3-ft rows at midtillering (MT), internode elongation (IE) and three weeks after heading.

Results

The data were analyzed by location because of differences in soil properties and rice varieties grown. In Cross County there was a significant P response on dry matter accumulation throughout the growing season (Table 2). The application of both P and K significantly increased dry matter accumulation at MT (Table 3). However, at the 0-40-0 P rate, the high rate of KCl reduced dry matter accumulation at MT. Application of 40 lb P_2O_5 /acre significantly increased dry matter accumulation at IE and heading plus three weeks (Table 4), and the application increased grain yields by 1693 lb/acre (Table 5). In Cross County, the application of KNO₃ significantly increased grain yield by 449 lb/acre (Table 6). In Poinsett County, significant treatment effects on dry matter accumulation occurred only at the heading plus three weeks growth stage (Table 2). Dry matter, at MT and IE, tended to increase with increasing K rate (Table 7). Application of 60 lb K₂O/acre significantly increased grain yields by 757 lb/acre (Table 7).

Practical Application

Rice grown on soils with high pH responded to P application, which is consistent with previous findings. Low pH soils, that also test low in available P and K, do not respond to P fertilization but do respond to K fertilization. Application of P with K seems to counter the negative effect of K on rice grown on alkaline soils.

Acknowledgments

Support for this research was provided by the Potash and Phosphate Institute and Arkansas Tonnage fees. Special thanks to the following county Extension agents and rice growers for their assistance: (Agents) David Annis, Van McNeely, Rick Thompson, and Rick Wimberly and (growers) Darryl Schlencker (Cross County) and Billy Joe Wright (Poinsett County).

	Tat	ble 1. Soil á	analysis re	sults of	f topsoil (0 t	o 4 in	-deep) san	nples from	rice fields	before	≎ planting.		
								Mehlich III,	mg kg ⁻¹				
:		, С С	Olsen P,	(0	0	:				 r	0
Location	Hd	uS cm ⁻	mg kg	∟	×	S	Ca	Mg	Na	e	Mn	4	cu
Cross	7.9	374	23	ω	133	ω	1989	327	20	181	150	ω	2.5
Poinsett	5.3	146	6	7	49	14	953	156	34	372	43	13	1.1
¹ pH and EC	measure	ment using	1:1 soil-wa	iter ratic	0								
		Table 2. Ot	bserved pro	obabilit	ties for the r	nain ef	fects of p	hosphorus	rate, pota	ssium	source		
	and pot	tassium rat	te and their	r intera	ction on dry	r matte	r producti	ion at three	growth st	tages a	nd grain yi∈	eld.	
				Cross	County				đ	oinsett (County		
Factor		MT¹	IE ²	Т	eading + 3 w	vks³	Yield	MT ¹	IE ²	Head	ding + 3 wks	6	Yield
P Rate (Pr)		0.0001	1 0.000	Σ	0.0001		0.001	0.7777	0.1964		0.8022	0	.0756
K Source		0.1048	3 0.696	0	0.8350		0.0711	0.6717	0.7667		0.2953	0	.8713
(Ks)													
K Rate (Kr)		0.0701	1 0.356		0.7550		0.6376	0.0809	0.7532		0.0105	0	.0003
Pr x Ks		0.5313	3 0.179	Q	0.0569		0.5484	0.7649	0.2097		0.6427	0	.7764
Pr x Kr		0.9289	9 0.265.	2	0.4781		0.1687	0.8067	0.8171		0.3072	0	.1664
Ks x Kr		0.2316	5 0.936 ¹	Ģ	0.1096		0.5684	0.6125	0.2535		0.7971	0	.7764
Pr x Ks x Kr		0.0102	4 0.893	2	0.9086		0.7638	0.9688	0.4439		0.6754	0	.8979

¹ MT: Midtillering. ² IE: Internode elongation. ³ Heading plus three weeks.

Arkansas Soil Fertility Studies 1996

		Dry	Matter
K Source	K Rate	P Rate, II	o P2O5 A-1
		0	40
	lb K ₂ O A ⁻¹	Ib Dry	/ Matter A ⁻¹
Check	0	440.1	1029.1
KCI	60	413.8	1239.1
	120	430.2	740.0
K ₂ SO ₄	60	684.1	1031.1
2 4	120	491.1	986.6
KNO ₃	60	661.3	1044.6
5	120	519.9	1155.7
LSD _(0.05)		1	86.5

Table 3.	Influence of pho	osphorus rate, potassi	um source and potassium ra	te
on dry ma	atter production	by rice at midtillering	growth stage in Cross Cour	nty.

Table 4. Influence of phosphorus rate on dry matter production by rice at I.E. and heading plus three weeks in Cross County¹.

	Dry	Dry Matter			
P Rate	Internode Elongation	Heading + 3 weeks			
	lb P ₂ O ₅ A ⁻¹	Ib Dry Matter A ⁻¹			
0	1854	10581			
40	2903	14336			
LSD _(0.05)	412	1207			

¹ No significant differences existed between K sources and K rates, and thus the data were averaged over K sources and K rates.

Table 5.	Influence of phosphorus rate on	rice grain yields.
	Grai	n Yield
P Rate	Cross County	Poinsett County
	lb P ₂ O ₅ A ⁻¹	Ib Grain A ⁻¹
0	3723	6710
40	5416	6310
LSD _(0.05)	350	443

Table 6. Influence of potassium source on rice g	Irain	yields.
--	-------	---------

	Grain Yield			
K Source	Cross County	Poinsett County		
	Ib Gra	in Acre ⁻¹ —		
KCI	4437	6568		
K ₂ SO ₄	4411	6431		
KŇO ₃	4860	6532		
LSD _(0.05)	428	ns†		

[†] ns = nonsignificant.

		Dry Matter		Grain
K Rate	Midtillering	Internode Elongation	Heading + 3 Weeks	i Yield
lb K ₂ O A ⁻¹		—— Ib Dry Matter A ⁻¹ —		Ib Grain A ⁻¹
0	2104	3271	14104	5868
60	2382	3423	16883	6625
120	2562	3628	16979	7037
LSD _(0.05)	ns†	ns	2142	542

Table 7. Influence of potassium rate on dry matter production by rice at two growth stages and grain yield in Poinsett County.

[†] ns = nonsignificant.

Rice Response to Phosphorus and Potassium Fertilization at Different Soil Test Levels

C.E. Wilson, Jr., N.A. Slaton, W.E. Sabbe, S. Ntamatungiro, R.J. Norman, B.R. Wells and D. Frizzell

Research Problem

ptimum phosphorus (P) and potassium (K) fertilization is necessary for maximum rice (*Oryza sativa*, L.) production. University of Arkansas recommendations for P are 40 lb P_2O_5 acre⁻¹ if the soil test level (Mehlich III) is less than 25 lb P acre⁻¹. Potassium is recommended at a rate of 60 lb K_2O acre⁻¹ if the soil test level is between 125 and 175 lb K acre⁻¹ and 80 lb K_2O acre⁻¹ if the soil test level is less than 125 lb K acre⁻¹. The current study was initiated to evaluate the response of rice to P and K fertilization on an array of soil test levels of these elements.

Background Information

Phosphorus fertilization has only recently been recommended for rice. Typically, P availability increases under flooded soil conditions; however, the mechanisms involved in increasing P availability are pH dependent. As the soil pH increases above 7.0, P availability decreases and is less affected by flooding. Potassium has been recommended on rice for several years. However, on soils that have a history of salinity, many producers have been reluctant to apply K to these soils in fear of aggravating the problem. Potassium fertilization was rarely recommended on these saline soils because the levels of K were typically not deficient. As new varieties are developed, the yield potential continually increases. This increased yield potential is accompanied by an increase in the amount of P and K removed from the soil in the grain. Consequently, it has become increasingly important to evaluate the current recommendations for P and K.

Research Description

A study was initiated at the Pine Tree Branch Experiment Station near Colt, Ark., during the spring of 1996. Soil samples were collected from the area in grids to delineate areas within the field with different levels of P and K (Table 1). Each area was categorized as low or high P, and low, medium or high K depending on the utilized critical values for P and K fertilizer for a total of six soil test P and K level combinations. Phosphorus and K fertilizer was applied at either 0, 1/2, 1 or 2 times the recommended rate for each soil test level. 'LaGrue' rice was planted in plots 8 ft by 20 ft and harvested for total dry matter at three weeks after heading and grain yields at maturity. The experiment was arranged in a completely randomized factorial with five replications.

Results

Total dry matter was not influenced by the initial soil test level (Table 2). Grain yields were significantly influenced by the initial soil test levels. Except for the low P and low K combination, the grain yields increased significantly with increasing initial soil test levels. Overall, total dry matter and grain yields were not influenced by fertilizer applications (Table 3). The high yields associated with the low soil test levels may be partially explained by the interaction between the initial soil test level and the fertilizer rate (Table 4). Although the interaction was not significant, a trend for greater response to fertilizer at the low soil test levels was observed. At the low P and low K, the grain yields increased from 6948 to 7599 lb acre⁻¹. A similar trend was observed with the high P and low K combination. However, at higher rates of initial soil test P and K levels, the response to fertilizer was much less observable.

Practical Considerations

Because this is the first year of the study, no definite conclusions should be made. However, the trends observed tend to support the current P and K fertilizer recommendations for rice.

Acknowledgments

Thanks is extended to the Potash and Phosphate Institute and producers contributing to the Arkansas Fertilizer Tonnage Fees for partial support of this research.

	(Attenuge of Th								
	Soil Test Levels								
		F	Range						
Soil Test Parameter	Mean	Low	High						
pН	6.0	5.2	6.4						
P	25	15	40						
К	183	132	269						
Ca	2254	1756	2871						
Mg	474	404	547						

Table 1. General soil chemical characteristics of test area.(Average of 12 samples).

Table 2. Influence of initial P and K soil test values on rice dry matter accumulation and grain yields during 1996.

	<i></i>	U
Initial Soil Test Level	Total Dry Matter	Grain Yield
	— g/m ² —	— lb/acre —
Low P (<25 lb/acre); Low K (<135 lb/acre)	2206	7314
Low P; Medium K (135 - 175 lb/acre)	2258	6579
Low P; High K (> 175 lb/acre)	2041	6887
High P (> 25 lb/acre); Low K	2328	6973
High P; Medium K	2188	7240
High P; High K	2079	7467
LSD(0.05)	n.s.	416
<u>C.V. (%)</u>	18.8	9.4

Table 3. Influence of P and K fertilizer rates on rice grain yields during 1996.

Fertilizer Rate [†]	Total Dry Matter	Grain Yield
	— g/m ² —	— Ib/acre —
0	2239	7060
1/2 X	2201	7083
1 X	2172	7145
2 X	2120	7018
LSD (0.05)	n.s.	n.s.

[†] X = recommended fertilizer rate for particular soil test values.

and fertilizer rate on rice grain yields during 1996.								
		Grain Yields*						
	High P			Low P				
Fertilizer Rate [†]	Low K	Med K	High K	Low K	Med K	High K		
		lb /acre						
0	6948	6748	6970	6799	7440	7457		
1/2 X	7541	6444	6817	6613	7448	7633		
1 X	7168	6748	7021	7348	7237	7349		
2 X	7599	6375	6739	7133	6836	7427		

Table 4. Influence of Initial soil test values and fertilizer rate on rice grain yields during 1996.

[†] X = recommended fertilizer rate for particular soil test values.

* Soil Test Level X Fertilizer Rate Interaction not significant at the 0.05 level of probability (P = 0.6995).

Nitrogen Fertilization of Vine-Ripened Tomatoes Following a Winter Annual Legume Cover Crop

P. B. Francis, P. E. Cooper and C. R. Anderson

Research Problem

The establishment of winter annual legume cover crops on vine-ripened tomato fields is practiced by many commercial growers. Winter annual legume cover crops can reduce soil erosion and add nitrogen and organic matter to the soil. The N contribution of the preceding legume could supply most, if not all, the needs for the tomato crop provided that the supply of mineralized N corresponds to optimum plant demand for fruit development. If not, then supplemental N may be needed. The objective of this study was to investigate rate and timing effects of supplemental N on the yield and gross revenue of vine-ripened tomatoes following an incorporated winter annual legume cover crop of Austrian winter peas.

Background Information

Winter annual legume cover crops have the benefits of reducing soil erosion, improving soil tilth, adding nitrogen to the soil and improving soil organic matter content (Evans and Sturkie, 1974; Hargrove, 1976; and Power et al., 1983). Following incorporation, the availability of legume-fixed N to the subsequent crop is related to the mineralization rates of the residue, which can be variable (Frankenberger and Abdelmagid, 1985). Supplemental N may increase fruit yield and revenue if timed appropriately. Current cultivation methods allow for precision injection of N through the micro-irrigation lines, but data are lacking to determine whether or not additional N would benefit yields and gross revenue. One objective of this study is to develop recommendations for N fertilization following legume cover crops with regard to both yield and revenue.

Research Description

This study was conducted in the 1995 and 1996 growing seasons at the Roger Pace farm near Monticello, Arkansas, on a Sacul loam soil. Austrian winter peas were incorporated in March approximately three weeks prior to tomato bed formation followed by transplant of 'Mt. Spring' cultivar in early April. Treatments consisted of total N rates of 0, 60, 120, 180 and 220 lb N/ mulched acre, with or without injections of 30 lb N/mulched acre at early flowering and again at mid-fruiting. The experimental design was a split-plot with injection and total N as the main and split-plot treatments respectively using four replications. Subplots consisted of eight plants spaced 21 in. apart, the inside four plants harvested three days a week and graded to U.S. No. 1 XL (XL), U.S. No. 1 L (L), U.S. No. 2 (N2) and Unclassified (UN). The average local auction prices for each grade on the day of harvest was used to determine gross revenue/acre based on 20 lb boxes and 4000 plants/acre.

Results

Biomass estimates, obtained from population counts and whole plant/root sampling, revealed approximately two times more N subject to mineralization prior to the 1995 season compared to the 1996 cover crop due to a dry fall and early spring in 1995/96 (Table 1). Overall, yields and revenue were much higher in the 1995 season (Tables 2 - 4). In addition to the decreased cover crop biomass in 1996, a severe outbreak of thrip-transmitted spotted wilt virus drastically lowered fruit grade. The virus appeared to be uniform across N treatments and fruit symptoms appeared on seemingly healthy plants, which was unusual. Low early season market prices in 1996 also reduced income compared to the 1995 season. In both years, there were no significant advantages of additional N from either all preplant or preplant + split-injected N. In 1996, a significant injection X N interaction was noticed at the 0.05 level of significance (splitplot analysis of variance, not shown) for U.S. No. 1 XL+L fruit, with most of the increase coming from late season L-sized from the high-N treatments (Table 3). However, when gross revenue was factored in, the increases did not contribute significantly (Table 4).

Practical Applications

Two years of research show that a legume cover crop of Austrian winter peas can supply sufficient N for vine-ripened tomatoes on a loamy soil. Supplemental N up to 180 lb/mulched acre, applied pretransplant, seemed to increase yields the last two weeks of harvest, but the impact on gross revenue was minimal.

Acknowledgments

This research was supported by the Arkansas Fertilizer Tonnage Fee. The cooperation of Mr. Roger Pace is appreciated.

Literature Cited

- 1. Evans, E.M. and D.G. Sturkie. 1974. Winter legumes can help supply nitrogen needs. Highlights of Agricultural Research. Auburn Univ. Agic. Expt. Stn. 21:3.
- Frankenberger, W.T., Jr. and H.M. Abdelmagid. 1985. Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 87: 257-271.
- 3. Hargrove, W.L. 1986. Winter legume as a nitrogen source for no-till grain sorghum. Agron. J. 78: 70-74.
- 4. Power, J.F., R.F. Follett and G.E. Carlson. 1983. Legumes in conservation tillage systems: A research perspective. J. Soil Water Consv. 38: 217-218.

Table 1. Preseason site characteristics.									
Depth	Year	Р	К	Ca	Mg	Ca:Mg			
– in.–				— Ib/acre —					
0 - 6	1995	343	421	2734	167	16:1			
	1996	366	376	3175	128	25:1			
6 - 12	1995	56	299	2267	268	9:1			
	1996	150	215	2780	256	11:1			
Winter C	over Crop: A	ustrian winter	pea						
1995 bio	mass: 5263 l	b/acre, 3.32%	ώN						
1996 bio	mass: 2179	b/acre. 4.24%	ίN						

		Harvest period, month/day					
Preplant	Injection	6/11-6/17	6/11-6/24	6/11-7/1	6/11-7/8	6/11-7/15	
——Ib	N/			- boxes/acre			
mulche	ed/acre						
0	0	150	418	1118	1619	2310	
60	0	185	462	1351	1795	2358	
120	0	145	427	1408	1954	2446	
180	0	163	422	1285	1716	2319	
220	0	150	321	1192	1663	2332	
0	60	158	392	1360	1764	2323	
60	60	185	414	1408	1984	2407	
120	60	145	392	1232	1729	2627	
160	60	97	290	1206	1624	2482	
		ns†	ns	ns	ns	ns	

Table 2. Cumulative yields of U.S. No. 1 XL+L in 1995.

[†] ns = nonsignificant.

		Harvest period, month/day						
Preplant	Injected	6/17-6/24	6/17-7/1	6/17-7/8	6/17-7/15	6/17-7/22		
—— Ib I	V/ ——			– boxes/acre –				
mulche	d acre							
0	0	75	163	286	392	418		
60	0	44	132	440	480	576		
120	0	84	361	365	541	638		
180	0	44	150	378	515	634		
220	0	35	88	273	405	537		
0	60	13	136	352	436	484		
60	60	18	246	532	678	761		
120	60	48	233	400	691	752		
160	60	75	233	515	726	801		
		ns†	179	ns	ns	ns		

Table 3. Cumulative yields of U.S. No. 1 XL+L in 1996.

[†] ns = nonsignificant.

Table 4. Gross revenue based on average daily prices at local auction markets.

		Sea	ason
Preplant	Injected	1995	1996
—— I	b N/	——— dollar 1	0 ³ /acre ——
mulcl	hed acre		
0	0	32.2	19.7
60	0	34.4	22.9
120	0	34.2	20.3
180	0	32.4	21.2
220	0	32.3	21.2
0	60	32.4	19.3
60	60	33.2	21.2
120	60	35.1	21.2
160	60	33.5	21.5
		ns†	ns

[†] ns = nonsignificant.

Response of 'Arapaho' Thornless Blackberry to Nitrogen Fertilization: Third Year Results and Final Report

Joseph Naraguma and John R. Clark

Research Problem

pplications of nitrogen (N) to blackberry plantings are a common practice in Arkansas. Growers make either one application in the early spring or utilize a split application with the early spring application followed by a second application following harvest. Blackberries have a perennial root system, but the canes are biennial. First-year canes are known as primocanes, and second-year canes are called floricanes. The floricanes bear the crop and die following fruiting. The primocanes grow vegetatively the first year and develop the fruiting area for next year's crop. A major question in fertilization of blackberries is the proper rate and timing of N applications for maximum fruit yield coupled with the full development of primocanes for next year's crop. The continuing objective of our study was to determine the effect of N rate and time of application on 'Arapaho' thornless blackberry.

Background Information

Research in the area of blackberry fertilization is limited, and almost no research has been done on this topic in Arkansas. Current fertilizer recommendations have been based largely on recommendations from other states. This study was begun to address the need for information on fertility of a new blackberry from the University of Arkansas breeding program. The study was begun in 1994, and this report provides the third-year results and final report.

Research Description

This study was conducted at the University of Arkansas Fruit Substation,

Clarksville. Treatments were begun in 1994, and these same treatments were continued for 1996. The treatments were as follows: 1) control - no N applied, 2) 50 lb/acre N applied in a single application in early spring, 3) 100 lb/acre N applied in a single spring application and 4) 100 lb/acre N applied in a split application with one-half applied in the spring and one-half applied immediately after harvest. Ammonium nitrate was the N source. Fruit was harvested from the plots in June, and total yield and average berry weight determined. Also, foliar samples were collected in August and elemental analysis was conducted. Primocanes in each plot were counted at the end of the growing season. The experimental design was a randomized complete block containing three replications.

Results

The effect of N rate and time of application on yield, berry weight and cane number was evaluated. Compared to 1995, the plants in 1996 had much lower yields. A freeze on 8 March 1996 (low temperature of 10°F) near the bud break period probably caused the yield reduction. As in 1995, there were no statistically significant differences in yield among the N rates (Table 1). Berry weight was not reduced by the freeze, and, as in previous years, was similar among all treatments. Primocane number from each treatment was not statistically different, although the lowest cane number was produced by the control treatment.

The effect of N treatments on foliar elemental levels was studied. Only foliar levels of calcium (Ca) and manganese (Mn) were affected by N rate or time of application for 1996 (Table 2). Calcium was highest when no N was applied, and Mn level was greatest at the higher N rates. The foliar N levels were influenced by N rate in 1994 and 1995; the control had the lowest N rate in each of those years. In 1996, however, there were no significant differences in the foliar N levels although the trend in the data was for higher foliar N with higher N rate.

Practical Application

Results are inconclusive in determining the optimum N rate and time of application. Foliar N was usually increased by higher N rates, and various other elements were affected in some years of the study. However, yield was not significantly influenced in any year by increasing N rate or by split application. Berry weight was affected in one of the three years, but the effect was minimal. Although further data analysis is needed to fully evaluate differences among years, preliminary conclusions do not indicate a benefit from the split application nor the increased N rate. Further research, possibly testing higher N rates than those evaluated in this study, might determine if a greater response on 'Arapaho' can be achieved.

of 'Arapaho'	of 'Arapaho' thornless blackberry as influenced by N fertilization.						
Treatments	Yield ^z	Berry wt. (g)	Cane no. ^y				
Control	1999	4.2	20				
50 lb Spring	3436	4.5	29				
100 lb Spring	2544	4.1	22				
100 lb Split	1998	4.1	22				
Significance ^x	ns	ns	ns				

Table 1. Yield, berry weight and primocane number . . .

^z Yield in grams/10' plot.

^y Total primocanes for a 10' plot produced in 1996.

 \times Significance by F test; ns = nonsignificant, 0.05 level.

primod	ane leav	ves as in	fluence	d by N fe	ertilizat	ion. Au	aust 1	, 996.	
Treatments	N	P	K	Ca	Mg	S	Fe	Mn	Zn
						rt.—			
Control	2.06	0.12	1.16	0.75a ^z	0.31	0.13	46	284b	27
50 lb Spring	2.21	0.12	1.10	0.61b	0.26	0.14	42	388b	22
100 lb Spring	2.35	0.11	1.06	0.59b	0.26	0.14	38	516a	22
100 lb Split	2.38	0.13	1.15	0.57b	0.27	0.14	39	491ab	24
Significance ^y	ns	ns	ns	0.007	ns	ns	ns	0.04	ns

Table 2. Elemental composition of 'Arapaho' blackberry

^z Mean separation within columns by Student Newman Keuls test.

^v Significance by F test; ns = nonsignificant, 0.05 level.

Blueberry Response to Nitrogen Rate and Method of Application: Third-year Results

John R. Clark and Joseph Naraguma

Research Problem

H ighbush blueberries are most often fertilized with dry N fertilizers applied to the surface of a blueberry row. Split application of these dry materials has been recommended, usually with the total N applied in three applications. The application of fertilizer by injection in the drip irrigation system (fertigation) is used in some blueberry plantings. Numerous fertilizer applications are made with this approach, usually 10-14 per season, but with smaller amounts of fertilizer applied each time as compared to the dry application method. The continuing objective of this study was to compare N rates and methods of application (fertigation and surface-applied) on highbush blueberries in Arkansas.

Background Information

No research studies have been conducted in Arkansas that compare the response of blueberry to fertilizer application methods. Also, information is not available that compares the response of blueberries to fertilizer rates using these methods. Rates of fertilizer on blueberry plantings in the United States usually range from 60-120 lb N/acre, with a foliar content of 1.6% considered the minimum for optimum plant performance. Higher N rates are often suggested where organic mulches such as sawdust are applied to the plants.

Research Description

A planting of sawdust-mulched 'Bluecrop' highbush blueberries was established in March, 1994, at the University Farm, Fayetteville, on a Captina silt loam soil, and N fertility treatments were imposed on these plants in their initial year in the field. Treatments in 1996 included a range of N rates from 0 to 240 lb N/acre, either surface-applied or by fertigation. Ammonium sulfate was the N material used in 1996. The dry, surface-applications were begun in mid April and again at six and twelve weeks later. Fertigation was begun at the time of the first dry application, and the total N was applied in 12 applications at approximately 10- to 14-day intervals with the application period extending into early August. Six replications of two-plant plots of each treatment combination were utilized, arranged in a randomized complete block design. Fruit yields and berry weights were measured in June, and foliar samples were collected in early August and analyzed for elemental content. Data were analyzed by SAS.

Results

Method of application of ammonium sulfate did not affect any variables measured including yield, berry weight or foliar elemental levels (Tables 1 and 2). There were significant interactions of method and N rate for magnesium (Mg) and zinc (Zn), but the differences among the interaction means were small and not important for practical use or interpretation.

The effect of N rate on yield, berry weight and foliar levels was also evaluated. There were significant F-test rate effects only for foliar N, sulfur (S), iron (Fe), Mn and Zn (Tables 1 and 2). In the regression analysis for significant trends in the data, linear increases for both surface-applied and fertigation for foliar N, S, Fe and Mn and yield with increased rate of ammonium sulfate were found (Tables 1 and 2). Significant trends were found for phosphorus (P), Ca and Zn, but the actual differences in foliar values were small and of little practical value for interpretation.

Practical Application

Results indicate that the method of application made no difference in any of the variables measured, reflecting no impact on plant performance from how the fertilizer was applied. Increasing ammonium sulfate rate resulted in increased yields; the highest yields were with the 240 lb/acre N rate. For foliar values, the major findings were the increased N, S, Fe and Mn with increasing N rate. Using a minimum adequate foliar N level of 1.60%, the control and 60 lb/acre N were deficient, while the other levels were sufficient and ranged up to 2.34%. Levels of S and Fe were increased from the increased application of ammonium sulfate, but the highest values of these elements were only slightly greater than the lower N-rate levels. Of note is the much higher Mn levels at the highest N rate, and a concern exists that the higher rates may contribute to

possible Mn toxicity. Although no toxicity symptoms were seen, close examination in subsequent years is needed to determine if excess Mn is a problem in high N-rate plants.

	or variance r-test significance for method of application									
and N rate treatments to	o highbu	sh blu	eberries,	, third-ye	ar resul	ts (1996	5).			
Application Method	N rate ^z	Ν	Р	K	Ca	Mg	S			
				—% dry	wt.——					
Control	0	1.25	.07	.45	.56	.16	.09			
Surface	60	1.55	.07	.45	.59	.18	.12			
Surface	120	1.86	.07	.52	.58	.15	.13			
Surface	180	1.79	.07	.56	.60	.14	.13			
Surface	240	2.22	.07	.53	.65	.15	.15			
Fertigation	60	1.54	.06	.52	.57	.15	.11			
Fertigation	120	1.83	.06	.45	.63	.17	.13			
Fertigation	180	2.18	.06	.46	.70	.16	.14			
Fertigation	240	2.34	.06	.44	.83	.20	.15			
F-test significance level (P:	> F)									
Source of variation										
Method		.14	.11	.11	.11	.18	.70			
Rate		.01	.19	.89	.11	.45	.01			
Method x Rate		.25	.25	.12	.48	.04	.67			
Rate linear (surface) ^y		.01	.52	.13	.41	.25	.01			
Rate quadratic (surface)		.78	.56	.74	.80	.96	.22			
Rate linear (fertigation)		.01	.01	.32	.01	.07	.01			
Rate quadratic (fertigation)		.68	.77	.65	.37	.31	.35			

Table 1. Foliar macroelement content and analysis of variance F-test significance for method of application and N rate treatments to highbush blueberries, third-year results (1996)

^z Rate in total N in lb/acre.

^y Linear and quadratic responses include the data from the control (0 N rate) in the analysis.
Application Method	N rate ^z	Yield	Berry wt.	Fe	Mn	Zn	Cu
		(g/plant)	(g)		—ppm o	dry wt.—	
Control	0	7	1.4	54	142	9.2	2.8
Surface	60	132	1.9	52	278	7.5	3.0
Surface	120	110	1.8	62	513	7.9	3.3
Surface	180	194	1.7	53	624	7.0	2.8
Surface	240	227	1.9	65	781	9.0	3.2
Fertigation	60	73	2.0	56	263	8.2	3.5
Fertigation	120	186	1.9	60	455	9.1	3.9
Fertigation	180	169	1.8	60	743	7.4	3.5
Fertigation	240	294	1.8	66	793	7.8	3.3
F-test significance I	evel (<i>P</i> > F)						
Source of variation							
Method		.76	.89	.23	.82	.36	.60
Rate		.16	.49	.01	.01	.01	.60
Method x Rate		.69	.93	.50	.80	.02	.82
Rate linear (surface) ^y		.03	.20	.04	.01	.52	.64
Rate quadratic (surfa	ce)	.76	.30	.47	.82	.01	.77
Rate linear (fertigatio	.01	.37	.01	.01	.01	.43	
Rate quadratic (fertig	ation)	.96	.09	.66	.89	.86	.06

Table 2. Yield, berry weight and foliar microelement content and analysis of variance F-test significance for method of application and N rate treatments to highbush blueberries, third-year results (1996).

^z Rate of actual N in lb/acre.

^y Linear and quadratic responses include the data from the control (0 N rate) in the analysis.

Effect of Nitrogen Rate And Method of Application on Highbush Blueberry Fruit Quality

Victorine Alleyne and John R. Clark

Research Problem

ommercial highbush blueberry production is an important and growing industry in North America. In only 10 years (1982-1992), production acreage has more than doubled (Moore, 1994). This results in a large volume of berries on the fresh market. Growers need to produce highquality fruit capable of shipment to distant markets, and N fertilization is an important management practice within that goal, but some growers believe that high rates of N produce soft blueberries with poor keeping quality, as with strawberries. The objective of this study was to determine the effect of N rate and method of application on highbush blueberry fruit quality in Arkansas.

Background Information

Previous work conducted elsewhere has indicated that N fertilization increased highbush blueberry firmness (DeFrancesco et al., 1986). But N also tended to decrease acidity, which may enhance spoilage (Ballinger et al., 1963; Ballinger et al., 1969; DeFrancesco et al., 1986). Thus, the fruit quality response in Arkansas needs to be addressed.

Research Description

'Bluecrop' highbush blueberry plants established in 1994 at the Main Experiment Station, Fayetteville, Arkansas, on a Captina silt loam were used in this 1996 study. The N rates were 120 and 240 lb/acre and the application methods were dry, surface-applied and fertigation. The five treatments were as follows: 1) control; 2) dry, surface application-120 lb/acre N; 3) fertigation-120 lb/acre N; 4) dry, surface application-240 lb/acre N; and 5) fertigation-240 N.

The dry, surface treatments were made in three applications, at budbreak and again at six and 12 weeks later. The fertigation treatments were achieved in 12 applications. Ammonium sulfate was the N source. Three replications of twoplant plots of each treatment in a randomized complete block design were utilized. Fruit from two harvests in 1996 were evaluated. The fruit quality characteristics measured were as follows: fruit N (%), pH, firmness (Newtons), fructose (%), glucose (%), soluble solids (%), titratable acidity (%), sugar/acid ratio and anthocyanin content (mg/l).

Results

Neither N rate nor method of application affected blueberry fruit N significantly, but there was a definite trend toward increasing fruit N as N application rate increased (Table 1).

Method of application of N fertilizer had no effect on fruit N, pH, firmness, fructose and glucose (Table 1), or sucrose, soluble solids, titratable acidity, sugar/acid ratio and anthocyanin content (data not shown).

N rate affected firmness, and fructose and glucose concentration, but there was a significant method by rate interaction (Table 1). The firmest berries were produced by surface application at 120 lb/acre, and the softest berries were from the surface application of 240-lb/acre at the first harvest. At the second harvest, all N treatments produced firmer berries than the control, but there was no difference in firmness among treatments. A similar trend, toward increasing firmness with N, was observed by DeFrancesco et al. (1986). Glucose and fructose were highest in berries from the 120-lb/acre surface application treatment and generally higher at the lower N rates.

Practical Applications

Preliminary results indicate that the response of highbush blueberry fruit to N rate of application was influenced by the method of application. A trend toward increased firmness with increasing N was evident. Most other quality characteristics were not affected. Moderately increasing N levels may be beneficial for improving fruit quality by increasing firmness without adversely affecting other quality characteristics. However, because these results are preliminary, further evaluation should be conducted before final conclusions are drawn.

Literature Cited

- Ballinger, W.E., L.J. Kushman and I.F. Brooks. 1963. Influence of cropload and nitrogen applications upon yield and fruit quality of Wolcott blueberries. Proc. Amer. Soc. Hort. 82:264-267.
- Ballinger, W.E. and L.J. Kushman. 1969. Relationship of nutrition and fruit quality of Wolcott blueberries grown in sand culture. J. Amer. Soc. Hort. Sci. 94:329-335.
- 3. DeFrancesco, J.T., L.W. Martin and T.W. Righetti. 1986. Effects of nitrogen and storage time on the quality of highbush blueberry fruit. HortScience 21:138. (Abstr).
- 4. Moore, J.N. 1994. The blueberry industry of North America. HortTechnol. 4:96-102.

	Fruit quality measurements ^z				
N treatments	Fruit N ^y	pН	Firmness (N) ^x	Fructose ^y	Glucose ^y
			First harvest		
Control	0.77 a	2.9 b	2.3 b	25.3 b	24.3 c
Surface-120 lb/acre	0.90 a	3.2 b	2.8 a	29.0 a	28.1 a
Fertigation-120 lb/acre	0.89 a	3.3 a	2.4 b	27.0 b	26.1 b
Surface-240 lb/acre	1.07 a	3.4 a	1.7 c	25.4 b	24.5 b
Fertigation-240 lb/acre	1.04 a	3.3 a	2.5 b	25.4 b	24.5 b
		9	Second harves	t	
Control	0.60 a	3.1 b	2.2 a	22.7 a	21.8 a
Surface-120 lb/acre	0.75 a	3.3 a	2.7 b	23.0 a	22.1 a
Fertigation-120 lb/acre	0.68 a	3.3 a	2.6 b	21.8 a	21.3 a
Surface-240 lb/acre	0.90 a	3.4 a	2.7 b	19.8 b	19.6 b
Fertigation-240 lb/acre	0.73 a	3.2 b	2.7 b	21.5 ab	21.1 b
F-test significance (P > F)				
Source of variation	•				
Method	0.42	0.27	0.18	0.40	0.50
Rate	0.13	0.10	<0.01	<0.01	<0.01
Method (Rate	0.67	0.06	<0.01	0.02	0.03
Method (Harvest	<0.01	0.04	0.02	0.17	0.14
Rate (Harvest	0.03	0.07	<0.01	0.32	0.16

Table 1. Fruit quality characteristics of highbush blueberries as influenced by N rate and method of application.

^z Mean separation within columns by LSD at $P \le = 0.05$. Means followed by the same letter are not significantly different.

^y Fruit N, glucose and fructose are expressed as percent dry weight.

^x Firmness is expressed in Newtons.

Wheat Yield Response from Spring Nitrogen Sources, Application Methods and Rates

L. G. Stauber, D. M. Freeze and R. A. Klerk

Introduction

ypically, the fertility of clay soils of the northeastern Arkansas Delta Region are limited only in nitrogen. The high fertility of these soils may on occasion require phosphorus inputs and pH adjustments. These soils lend themselves to properties of expansion and contraction directly related to excess or absence of available soil moisture. These dramatic physical characteristics immediately cause nitrogen losses from denitrification and volatilization. The growers who depend on these soil types must use their best judgment on fertilizer application methods. Environmental conditions aggravate nitrogen uptake into the wheat plant. An obvious correction to the problem is increasing nitrogen rates for each application. The wheat plant can only tolerate certain levels of this type of practice. The resulting condition of the wheat plant under Arkansas conditions usually gives negative effects of lodging, delayed maturity, depressed yields and severe disease pressure (Wells et al., 1995). Recent research has updated nitrogen recommendations for wheat on clay soils by increasing the total spring requirements from 100 to 140 lb N/acre (Chapman et al., 1991). Not all growers are convinced of this practice and are unclear about the amounts of nitrogen per application. The financial aspects of fertilizer sources do confuse the issue of effective utilization of nitrogen by the wheat plant. The stability of nitrogen in its marketed form undergoes soil and bacterial chemical changes that are influenced by temperatures, humidity and soil moisture.

The following study was conducted to contribute to nitrogen effectiveness for wheat production on clay soils. These studies were part of the Cooperative Extension staffs' efforts to assist growers in improved wheat production.

Methodology

Fertility studies were conducted on a Sharkey silty clay soil at locations of

West Memphis, Arkansas, (Location A) and a Tunica clay at Osceola, Arkansas, (Location B). Locations were geographically in the Delta Region of the state. Both tests were conducted over one year during 1995/1996. Prior crop rotations consisted of soybeans and rice, respectively.

The experimental design for both locations was a randomized complete block with four replications. The nitrogen treatments as urea for Location A were as follows: 1) single low input of 85 lb N/acre, 2) 100 lb N/acre, 3) 130 lb N/acre, 4) 150 lb N/acre and 5) 180 lb N/acre. All treatments excluding the single low input were applied as two-way or three-way splits, which totaled nine treatments. The nitrogen rates were evenly applied at three-week intervals using sand as a filler to help distribute the lower plot amounts. The entire test area was previously fertilized with 85 lb N/acre on 2 March 1996. Urea treatments were supplemented above the 85 N unit base to accommodate the specific treatment level on the same day. The plot size consisted of seven rows (7in. spacing) 20 ft in length. The wheat cultivar 'Pioneer 2684' was drillseeded at a rate of 100 lb/acre. This cultivar was chosen for its excellent disease resistance against various common pathogens and grain yield. A uniform application of 100 lb/acre of ammonium sulfate was applied at planting on 12 October 1995. The Location B evaluated three factors as follows: fertilizer sources as urea and ammonium nitrate; nitrogen rates of 120, 150, and 180 lb N/acre; and three application timings. This gave an 18-treatment test. Fertilizer applications were evenly distributed at four-week intervals beginning on 15 February 1996. The test area had previously been fertilized with 100 lb/acre of 18-46-0 prior to planting on 30 September 1995. The plot size consisted of seven rows (7-in. spacing) 20 ft in length. The wheat cultivar 'NK Coker 9543' was no-till, drilled-seeded at a rate of 100 lb/acre.

Individual plots were harvested with a small plot combine removing the center four rows. Plot grain weights were adjusted to 13.5% moisture prior to statistical analysis. Analyzed parameters included grain test weights and yields at maturity. Data were analyzed by Analysis of Variance, and differences were determined by the least significance difference test at the 5% level of probability (LSD $_{0.05}$).

Results and Discussion

Location A

Average weather conditions during this growing season did not interfere with nitrogen uptake in the wheat plant based on growth and yield results. An average wheat test weight of 57.6 lb/bu resulted since there were no statistically differences from application timings on nitrogen rates ranging from 85 to 180 lb/acre. The low input treatment resulted in a grain yield of 66.9 bu/acre, and the highest nitrogen rate yielded 82.3 bu/acre. Interactions between appli-

cation timings and nitrogen rates were not statistically different. Application timings were not found significant between two-way and three-way nitrogen splits. Nitrate rates were, however, found statistically different among each other. A general trend of increased yields occurred as nitrogen rates were also increased from 85 to 180 units/acre. Mean separation methods determined that 85 units were statistically different from all other treatments. The 100 and 130 nitrogen rates were not significant from each other but were lower yielding than the remaining treatments (Figure 1). Yield means from the 150 and 180 nitrogen rates were also not statistically inseparable yet yielded approximately 6 bu more than 100 and 130 units of nitrogen. The grain yields from Location A show nitrogen levels above the recommended level are advantageous. The Pioneer 2684 cultivar responds to elevated nitrogen inputs in this particular cropping season. This variety does not respond to application methods. A single application of the total spring nitrogen treatments was not investigated against two-way and three-way splits. The single application of 85 units of nitrogen was unusual in producing a yield of 66.9 bu/acre.

Location B

Grain test weights were not found statistically different for this test. Thus, an average was determined at 56.8 lb/bu. Several variable interactions were tested for grain yields. The nitrogen rate and nitrogen timings were significant. The nitrogen sources comparing urea to ammonium nitrate were also not found significant. Data generated from the nitrogen rates showed an increase in yields from the lowest to the highest rate. The 180 lb N/acre rate did show numerically a negative yield effect but was not statistically different from the 150-lb/ acre rate. This is typical of excess nitrogen for most wheat cultivars. The grain vield ranged from 55 to 60.3 bu/acre, with the 180 lb N/acre vielding 58.6 bu/ acre. This reaction is demonstrated in Figure 2. The nitrogen timings comparing a single application, two-way split and three-way split, generated grain yield effects that increased with multiple applications. Grain yields improved by five bushel increments as application timings increased in frequency. The single nitrogen application resulted in a 52.7 bu/acre yield. The best application treatment was the three-way split, which resulted in a 64.2 bu/acre yield (Figure 3). Results at this location demonstrated this cultivar also generated maximum yields at 150 lb N/acre. The Coker 9543 cultivar did show a positive response to multiple applications of the total spring nitrogen this growing season.

Acknowledgments

The authors wish to thank the producers Alan Cox, III and Randy Veach for allowing the tests to be accomplished on their farm. Appreciation is also

extended to Howard Black and Dr. William Johnson for statistical inputs. Contributions and funding for this research was provided by Chickasaw Chemical Company and the Wheat Promotion Board.

Literature Cited

- Chapman, S.L., C.S. Snyder, W.E. Sabbe, B.R. Wells, H.J. Mascagni, Jr. and B. Baker. 1991. Wheat production series: Wheat fertility/fertilization. Univ. of Ark. Coop. Ext. Serv. FSA 2075-5M.
- Wells, B.R., R.K. Bacon, J.T. Kelly and M.D. Correll. 1995. Wheat cultivar response to nitrogen rate and fungicide treatment. Arkansas Agri. Exp. Sta. Res. Bull. 436.

Figure 2. Effect of specific N rates on wheat yields.

Figure 3. Effect of applications on wheat yield.

Limestone Requirements for Soybean

J.H. Muir, C.S. Snyder, W.E. Sabbe and J.A. Hedge

Research Problem

S oil acidity is a major soil fertility concern in Arkansas. Limestone use has been decreasing for the past 20 years while limestone needs have been increasing, due largely to the increased use of acid-forming nitrogen fertilizers.

The objective of this study was to determine whether soybean and any other crop(s) in rotation indicated agronomic yield response to current lime-stone recommendations.

Background Information

No field limestone research data were generated from the 1970s until the early 1990s in Arkansas. Also, current methods of estimating limestone requirements by the University of Arkansas Soil Testing Laboratory may underestimate true requirements.

Research Description

Experimental sites were located in farmers' fields with low pH. Treatments were 0, 0.5, R and 2R with R equal to current University of Arkansas limestone recommendation. Treatments were applied only once at each location. Treatment effects were determined for several years at each site.

Sites monitored were in Crittenden and Greene counties and at the Pine Tree Experiment Station (PTES). The Crittenden County site is a clay soil. All other sites are silt loam soils. The Crittenden County and PTES sites were in a wheat-soybean, double-crop rotation. The experimental design was a randomized complete block with four replications.

Soil Samples were collected periodically throughout the growing season, and pH was determined. Leaf samples were collected at the early bloom growth stage for nutrient analyses.

Results

No yield response to applied limestone has been reported at the Greene County site in five years (Table 1).

No response to limestone has been reported with either soybeans or wheat at the Crittenden County site (Table 2).

Soybean yields at PTES were low at this dryland site, and no response to applied limestone has been reported with either soybeans or wheat (Table 3).

Practical Application

Application of limestone to acid soils has increased pH in the year of application at every site in this study. At no time has there been a soybean yield nor wheat yield response to applied limestone. Although drought has limited yield at some sites in some years, no response has been obtained in years with adequate rainfall.

Acknowledgment

Financial support from the Arkansas Fertilizer Tonnage Fee is appreciated.

Limestone			Yield	F	
Treatment	1992	1993	1994	1995	1996
			—bu/acre—-		
0.0R ^y	42.9	13.3	28.6	20.6	39.4
0.5R	44.9	15.4	26.6	21.7	41.0
1.0R	40.2	18.4	28.8	21.4	40.8
1.5R	41.3	12.4	28.3	21.2	41.6
2.0R	41.0	15.4	25.5	20.7	41.0
LSD _(0.05)	5.4	3.0	8.4		

 \overline{P} R = current limestone recommendation of 1.0 tons limestone/acre.

Table 2. Influence of limestone treatments						
on soybean	and wheat yields at	Crittenden Cour	ity, Arkansas, 1	993-1996.		
Limestone	Soybean	Soybean	Wheat	Soybean		
Treatment	1993	1994	1996	1996		
ton/acre	bu/acrebu/acre					
0.0	30.2	19.1	53.3	24.4		
1.5	33.0	20.2	50.4	26.5		
3.0	33.3	16.7	50.1	24.3		
5.5	33.1	20.1	47.8	22.8		
8.0	33.2	19.8	51.2	23.5		
LSD _(0.05)	8.2	5.5	8.4	6.1		

77

Tree Experiment Sta	ation, Colt, Arka	nsas, 1995-1996.
Soybean	Wheat	Soybean
1995	1996	1996
	—— bu/acre ——	
15.2	38.3	7.5
14.3	37.7	6.4
12.9	40.4	7.0
14.6	25.3	4.4
14.0	36.4	3.7
7.7	12.3	6.5
	Soybean 1995 15.2 14.3 12.9 14.6 14.0 7.7	Soybean Wheat 1995 1996

Table 3. Influence of limestone treatments on soybean and wheat yields at the Pine Tree Experiment Station, Colt, Arkansas, 1995-1996.

 ${}^{y}R$ = current limestone recommendation of 2.0 tons limestone/acre.

Wheat Response to Nitrogen and Phosphorus Fertilization

B.R. Wells, M.D. Correll, R.K. Bacon and J.T. Kelly

Research Problem

rkansas wheat farmers are constantly faced with choosing from a wide array of wheat varieties with new varieties being introduced at a rapid rate by both public and private breeding programs. New varieties have increased grain yield potential. This increased yield potential means the crop is placing high demands on the nutrient-supplying power of the soil. The two nutrients that are most limiting for wheat yields on Arkansas soils are nitrogen (N) and phosphorus (P). Research must constantly be updated to be sure that soil fertility recommendations for N and P are adequate to supply the needs of the new varieties. The objective of this study was to evaluate an array of the new wheat varieties in terms of response to N and P and to use these data to update soil test recommendations for the crop.

Background Information

Research conducted with N fertilization over the past several years shows that the new wheat varieties require more fertilizer N to achieve optimum yields as compared to the older varieties such as 'Caldwell' and 'Florida 302'. Additionally, these studies show that more fertilizer N is required for wheat growing on clay soils as compared to silt loam soils. Other studies show that P is limiting for optimum wheat growth and yield, especially on silt loam soils where rice is included in the rotation. Other studies show that P fertilizer may be applied to a wheat crop anytime from planting until early March without limiting grain yields. This allows a wheat farmer flexibility in managing cash flow throughout the crop year.

Research Description

The studies were conducted on a Crowley silt loam soil at the University of

Arkansas Rice Research and Extension Center (RREC) near Stuttgart, Arkansas, and on a Calhoun silt loam at the University of Arkansas Pine Tree Station (PTS) near Colt, Arkansas. The studies consisted of four fall P fertilizer rates, four spring N fertilizer rates and four wheat varieties arranged in a strip, split plot experimental design. Recommended management practices were followed. The P fertilizer rates were 0, 40, 80 and 120 lb P_2O_5 /acre as triple superphosphate (0-46-0). The N rates were 60, 110, 160 and 210 lb/acre as urea (46-0-0). The wheat varieties were 'Wakefield', 'Hazen', 'Jackson' and 'Coker 9543'.

Results

Fall P fertilizer applications significantly increased grain yields of wheat at the RREC location; however, P fertilizer had no effect on grain yields at the PTS location (Table 1-a). Soil test levels for P were 13 lb/acre at RREC and varied from 20 to 50 lb/acre across replicates at the PTS location. Spring N fertilizer applications of 60 lb/acre were sufficient to optimize grain yields at both locations (Table 1-b). This optimum N rate is considerably lower compared to optimum N rates from previous years. The resultant effect is probably related to an array of factors including soil N release, time of planting (late at RREC) and cold damage to the wheat, particularly from a cold episode that occurred in mid-March. Coker 9543 had highest grain yields at RREC and lowest grain yields at PTS (Table 1-c). Test weights were not influenced by P fertilizer applications at PTS but were increased by the first P fertilizer increment (40 lb P_2O_5) at RREC (data not shown). Test weights were decreased by increasing increments of N fertilizer at both locations.

Practical Applications

These studies continue to emphasize that both N and P are limiting for wheat production on silt loam soils of eastern Arkansas. The P and N rates required to optimize yields are a function of soil N and P levels as well as cultural practices such as date of seeding and weather conditions. These studies, coupled with the earlier studies on P fertilizer timing, indicate that wheat varieties can be managed successfully to produce high yields with minimum management risk by delaying N and P fertilization until mid to late February. Cash flow can be managed to minimize interest costs, thus reducing the overall cost of production.

	Grain Yield	Grain Yield
Item	RREC ¹	PTS ²
	bu/acre	bu/acre
1-a.		
Fall P rate (lb P ₂ O ₅ /acre)		
0	21	71
40	48	74
80	60	72
120	63	72
LSD (0.05)	11	ns
1-b.		
Spring N rate (lb/acre)		
60	53	77
110	48	75
160	46	70
210	46	67
LSD (0.05)	3	7
1-с.		
Variety		
Wakefield	47	75
Hazen	45	71
Jackson	47	74
Coker 9543	54	69
LSD (0.05)	3	4

Table 1. Grain yields of soft red winter wheat as influenced by P rate. N rate and variety at two locations. 1995/1996.

¹ Rice, Research and Extension Center, Stuttgart, Arkansas.

² Pine Tree Station, Colt, Arkansas.

Influence of Poultry Litter and Phosphorus on Soybean Grown on Saline Soils

J.H. Muir and J.A. Hedge

Research Problem

S oil salinity is a problem in some areas of Arkansas. The problem is often caused by irrigating with water containing excessive amounts of soluble salts. The salinity problem has evidently become more widespread with the increased use of irrigation. Long-term solutions may involve removing salt from irrigation water or finding sources of water that contain lower levels of soluble salts. Short-term solutions would be helpful in allowing continued crop production until long-term solutions are available.

Background Information

Observations from studies in rice indicate that additions of poultry litter may be beneficial in reclaiming saline soils. There are also indications that phosphorus may compete with chlorides and reduce salt damage. The objective of this study was to determine whether poultry litter and phosphorus amendments might reduce damage to soybeans grown on saline soils.

Research Description

Studies were initiated in 1995 in Monroe County, which has a history of a high chloride problem due to use of irrigation water with high chloride levels. A second site was established at Arkansas State University (ASU), where a saline condition was created. An 'includer' soybean cultivar was grown at each location.

Monroe County:

Experimental design: Factorial experiment in a randomized complete design

Poultry litter treatments: 0, 250, 500, 1000, 2000 and 4000 lb/acre. Phosphorus treatments: 0, 40, 60 and 80 lb P2O5/acre.

Arkansas State University:

Experimental design: randomized complete block with a split-plot arrangement of treatments. Main plots: 0, 2000 and 4000 lb/acre KCl. Subplots: factorial arrangement of a) 0, 2000 and 4000 lb/acre poultry and b) 0, 40 and 80 lb/acre P2O5.

Results

There were no significant treatment effects at the Monroe Co. site in 1995. The site was not irrigated, and there was an extended drought. Yields averaged less than 10 bu/acre. The site was too wet in the fall of 1996 to harvest the plots.

Applied KCl significantly reduced soybean yield at ASU in 1995. The highest rate of KCl resulted in reduced stands and small, pale green plants. Applied KCl did not significantly affect yields in 1996. However, poultry litter did increase yields regardless of KCl treatment (Table 1).

Practical Application

It is too early to draw conclusions from this study. The added poultry litter and phosphorus at the Monroe Co. site have had little chance to react in the soil during the first year due to extremely dry conditions most of the growing season. More time may be required for the amendments to equilibrate at both sites.

Acknowledgment

Financial support of the Arkansas Soybean Promotion Board is appreciated.

Table 1. Influence of applied poultry litter and phosphate						
on soybean yield at Arkansas State University, Jonesboro, Arkansas, 1996.						
Poultry Litter	Phosphate	Yield				
lb/acr	e ———	bu/acre				
4,000	80	38.3				
4,000	0	35.4				
4,000	40	34.1				
2,000	0	33.5				
2,000	40	32.7				
2,000	80	30.1				
0	40	29.9				
0	0	28.7				
0	80	28.6				
LSD _(0.05)		5.6				

Effect of Salt Type on Soybean Growth

H. J. Pulley and C.A. Beyrouty

Research Problem

S alt-affected soils are common in semiarid and arid climates where evapotranspiration exceeds precipitation and salts accumulate near the soil surface. However, salinity has also been identified as a problem in the humid southern regions of the United States. Elevated salt levels in Arkansas are often caused by application of irrigation water high in soluble salts. The prolonged use of this poor quality irrigation water can cause salts to accumulate in the soil at a rate that cannot be leached by rainfall. Soil salinity can decrease the amount of water available to plants and facilitate an imbalance in the influx of ions into roots that may cause toxicities. Salinity has also been shown to suppress uptake of some nutrients in plants, as well as suppression of other metabolic processes. Previous research has concluded that the concentration of salt as well as type of salt can alter plant growth and nutrient uptake.

Background Information

Most soybean problems with salts can be attributed to application of poor quality irrigation water. Sodium, calcium and magnesium chlorides constitute the bulk of salts found in soils and irrigation water of Arkansas. Variations in chloride tolerance among soybean cultivars has been identified and classified by other researchers. Soybean cultivars are grouped into three categories regarding chloride: includer, excluder and segregating. Includer varieties accumulate chloride throughout the plant roots and shoots, and excluders restrict accumulation of chloride to the roots. Segregating cultivars contain both includer and excluder plants. Research on a number of vegetable crops shows that cultivars with low amounts of salt accumulation in the leaves produce high yields on saline soils. Therefore, excluder cultivars that prevent chloride uptake and distribution throughout the plant may be better suited for growth on saline soils than includers.

Research Description

A greenhouse study was conducted with two chloride includers ('Deltapine 105' and 'Hutcheson') and two chloride excluders ('Hartz 5164' and 'NK S59-60') soybean cultivars. Three seeds of each cultivar were planted in pots on a Captina silt loam amended with NaCl and CaCl₂ at the following rates: 0.10% NaCl, 0.10% CaCl₂ and 0.05% each of NaCl and CaCl₂ on a dry weight of soil basis. At the V1 stage, plants were thinned to one plant per pot and grown for 84 days. Plants were harvested at late vegetative stage (V11 to V13). Measurements of shoot dry weight, leaf area and plant height were made, and elemental analyses of shoot and root tissue were made.

Results

Includers were generally sensitive to all types of salinity, showing decreases of 61, 52 and 73% in shoot dry weight (SDWT) and leaf area (LA) for NaCl, $CaCl_2$ and $NaCl/CaCl_2$ additions, respectively (Table 1). Excluders were sensitive to NaCl, indicated by a 59 and 32% decrease in SDWT and LA, respectively. Additions of $CaCl_2$ and $NaCl/CaCl_2$ to the excluders did not significantly affect LA or SDWT. There were no significant differences in plant height in response to treatments in either includers or excluders (data not shown).

Root and shoot tissue concentrations of Na and Ca were not affected by salt treatments (Table 2). Potassium shoot concentrations were significantly reduced in excluders subjected to addition of all salts (Fig. 1). Cations from salt may compete with K for sites along the root surface where active K uptake occurs. Cations such as Na can substitute for K in many metabolic processes without inhibiting growth. However, when the Na concentration exceeds a critical concentration in tissue, toxicity can occur, and disruption of many physiological processes will result in reduction in plant growth and yield. It may be possible to enhance K uptake by excluders on salt-affected soils by applying K fertilizer without contributing to soil salinity. This hypothesis needs to be tested further to develop fertilizer strategies for soybean grown on salt-affected soils.

Practical Applications

The results of this study suggest that soybean cultivars appear to differ in their response to salinity based upon the capacity to include or exclude chlorides. Shoot and root growth of the includers were most sensitive to all types of salts, and growth of the excluders appeared to be reduced mainly by addition of NaCl. In contrast, K tissue concentrations in shoots were reduced only in the excluders by addition of all salts. It is interesting that this reduction in K concentration did not manifest into a parallel reduction in shoot growth. However, the study was not taken to reproductive development, and the influence of low concentrations of K in shoots on pod formation was not obtained. This study also showed that salt concentration should be taken into consideration when planting soybean, but it is not the only parameter that needs to be addressed. Cation composition of the salt should be examined when choosing a cultivar. The proportion of salt that is Na should be considered in soil testing and fertilizer management.

includers and excluders in response to salt treatments.						
	Shoot D	ry Weight	Leaf	Area		
Salt Treatment	Includer	Excluder	Includer	Excluder		
	g/r	g/plant		:m ²		
No Salt	16.1a [†]	10.0a	3718a	2375b		
NaCl	6.2a	4.1a	2180a	1626a		
CaCl	7.7a	9.2a	2627a	2110a		
NaCl/CaCl ₂	4.3a	8.7b	1961a	1867a		

Table 1. Shoot dry weight and leaf area of chloride
includers and excluders in response to salt treatments

[†] Means within the same treatment and growth parameter followed by the same letter are not significantly different at P = 0.05.

and excluder shoot tissue as affected by salt treatment.						
	N	а	C	a	l	K
Salt Treatment	Inc [†]	Exc‡	Inc	Exc	Inc	Exc
	——mg	/kg——		C	%	
No Salt	32a§	28a	1.2a	1.5a	2.2a	2.2a
NaCl	126a	75a	1.6a	1.6a	2.3a	2.0b
CaCl	38a	30a	1.7a	1.7a	2.2a	1.8b
NaCl/CaCl ₂	62a	51a	1.8a	1.5a	2.2a	1.7b

Table 2. Nutrient concentrations in soybean includer and excluder shoot tissue as affected by salt treatment.

[†] Inc = chloride includers.

[‡] Exc = chloride excluders.

 $^{\$}$ Means within the same treatment and element followed by the same letter are not significantly different at P = 0.05.

Figure 1. Percentage potassium (K) in shoot tissue of soybean chloride includers and excluders as affected by salt treatment. Means within the same treatment followed by the same letter are not significantly different at P = 0.05.

Grain Yield of Maturity Group IV and V Dryland and Irrigated Soybean as Affected by Fertilizer Rates and Row Width

W.E. Sabbe and R.E. DeLong

Research Problem

n increase in potential soybean grain yield should increase the probability of a response to fertilizer application. The use of a cultural management practice such as irrigation to increase yield potential should provide an opportunity to compare the recommended fertilizer rate with higher fertilizer rates.

Background Information

Soybean fertilization studies in Arkansas have resulted in moderate annual rates of fertilizer rather than an occasional high rate or annual high rates. These studies, which occurred prior to 1980, were located primarily on dryland fields with limited yield potential. With high grain yields requiring more nutrients, the need for higher or more frequently applied nutrient amendments may include higher fertilizer rates.

Research Description

The study at the Main Experiment Station, Fayetteville, Arkansas, consisted of two sites with six replications each. Cultivars H5164 and 'Hutcheson' were planted in 1995 and 1996, respectively. The first site was a comparison between irrigation and dryland with P rates of 0, 45 or 180 on a Captina (Typic Fragiudults, fine-silty, mixed, mesic) soil with an initial Mehlich III where P=38 and K=270. The second site was a comparison of no fertilizer with a higherthan-recommended P and K fertilizer rate of 80-120 under irrigation on a Pickwick (Typic Hapludults, fine-silty, mixed, thermic) soil with an initial Mehlich III where P=21 and K=180 lb/acre. The study at the Vegetable Branch Substation, Kibler, Arkansas, was a comparison between 16 starter fertilizer rates at a 7-in. row width with four replications. Cultivars H4464 and NK S42-60 were planted in 1995 and 1996, respectively. The soil was a Roellen silty clay loam (Vertic Haplaquolls, fine, montmorillonitic, thermic), and the Mehlich III soil test recommended no fertilizer with the P = 102 and K = 450 lb/acre.

Results

Main Experiment Station

On the Captina silt loam site the dryland yields were better than average, and the irrigation yields were average (Table 1). There were no significant differences among fertilizer rates for the dryland site, but there was a significant (P = 0.05) increase in irrigated yields for 1996 as the fertilizer rate was increased from 0-0-0 to 0-180-0. The Pickwick silt loam site had average irrigated grain yields with a significant (P = 0.05) increase in yield of 4.0, 9.2 and 11.7 bu/acre for 1994, 1995 and 1996, respectively, with the addition of fertilizer.

Vegetable Branch Substation

The grain yield increased greatly from 1995 to 1996 (Table 2). The yield range in 1995 was 27.2 to 37.0 bu/acre, and in 1996 the range was 49.0 to 61.8 bu/acre. A significant increase in yield occurred in 1996 between the highest yielding fertilizer treatment and the no fertilizer treatment.

Practical Applications

The fertilizer rate recommended by soil test levels appears to be sufficient for a wide range of soybean grain yields. Also, where a recommendation for both P and K is given, it is imperative that both nutrients be applied. What isn't known is the residual effect of excess fertilizer for succeeding crops. Therefore, the current recommendation of an annual fertilizer application seems prudent.

Acknowledgment

Financial support from the Arkansas Fertilizer Tonnage Fee is appreciated.

Evnorimont St	ation E	avottovill	o Årkan	eae 100	1-1996	
tilizer Treatme	nt	Dryland		303, 133-	Irrigatior	1
N-P ₂ O ₅ -K ₂ O	1994	1995	1996	1994	1995	1996
— Ib/acre —		– bu/acre			bu/acre -	
0-0-0	33.2	24.7	34.7	52.2	47.6	48.3
0-45-0	35.8	26.1	36.3	54.2	46.2	51.7
0-180-0	32.2	25.1	35.8	54.0	46.2	55.4
LSD(0.05)	ns†	ns	ns	ns	ns	6.6
0-0-0				43.7	58.6	45.2
0-80-120				47.7	67.8	56.9
LSD _(0.05)				2.8	4.0	3.0
	$\begin{array}{c} \hline \textbf{xperiment St} \\ \hline \textbf{tilizer Treatme} \\ \hline \textbf{N-P}_2 O_5 - K_2 O \\ \hline \textbf{M} - \textbf{Ib} / \textbf{acre} - \\ \hline \textbf{0} - 0 \\ 0 - 0 \\ 0 - 45 - 0 \\ 0 - 45 - 0 \\ 0 - 180 - 0 \\ \textbf{LSD}_{(0.05)} \\ \hline \textbf{0} - 0 \\ 0 - 80 - 120 \\ \textbf{LSD}_{(0.05)} \end{array}$		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Experiment Station, Fayetteville, Arkan tilizer Treatment Dryland $N-P_2O_5$ - K_2O 1994 1995 1996 $-$ Ib/acre	Experiment Station, Fayetteville, Arkansas, 1994 tilizer Treatment Dryland 1994 N-P ₂ O ₅ -K ₂ O 1994 1995 1996 1994 - Ib/acre	Experiment Station, Fayetteville, Arkansas, 1994-1996. tilizer Treatment Dryland Irrigation N-P ₂ O ₅ -K ₂ O 1994 1995 1996 1994 1995 - Ib/acre

Table 1. Irrigated soybean grain yield as affected by high phosphorus (P) or high P and potassium (K) rates, Main Experiment Station, Fayetteville, Arkansas, 1994-1996

[†] ns = nonsignificant.

Table 2. Dryland soybean (Group IV) grain yield as affected by starter fertilizer, Vegetable Branch Substation, Kibler, Arkansas, 1995-1996.

Starter Fertilizer	Grain Yield		
N-P ₂ O ₅ -K ₂ O	1995	1996	
Ib/acre	bu/a	acre ———	
0-0-0	35.0	53.3	
60-0-0	31.9	59.4	
120-0-0	29.8	55.2	
0-60-0	32.3	57.8	
0-120-0	32.6	55.7	
0-240-0	30.9	56.0	
0-0-60	31.2	58.9	
0-0-120	27.4	61.8	
0-0-240	27.3	52.2	
0-240-240	27.4	55.7	
60-60-0	30.8	59.2	
60-0-60	32.9	60.2	
0-60-60	27.2	55.9	
60-60-60	34.8	52.3	
30-30-30	35.7	49.0	
120-120-120	37.0	49.9	
LSD _(0.05)	6.2	8.5	

Influence of Phosphorus Plus Potash Fertilizer and Irrigation on Grain Yields of Soybean Cultivars

W.E. Sabbe and R.E. DeLong

Research Problem

The predicted response of soybean grain yield to phosphorus (P) and potassium (K) fertilizer indicates that the size of the response increases as yield potential increases. This proportional response dictates that fertilizer applications are most economical when cultural management practices allow a high yield potential. The objective of this study was to vary the cultural management practices of irrigation and cultivar selection such that the effect of a fertilizer application could be evaluated under various yield potentials.

Background Information

Previous fertility studies have involved only a single cultivar at each location. Grain yield response to fertilizer applications has been reported on both alluvial and loessial soils with the response to K fertilizer occurring more often than response to P fertilizer. Also, as a soil's clay content increases, the level of response decreases, regardless of soil fertility levels, probably due to an increase in the soil's replenishment capacity. Arkansas climate allows for the success of several soybean cultivar maturity groups (MG) IV to VII, with the majority of acreage devoted to MG V and VI under dryland situations. The interaction of soybean cultivars, irrigation and fertilizer application at various locations has not been investigated.

Research Description

Two locations were selected such that an alluvial soil at the Southeast Branch Station (SEB), Rohwer, Arkansas, and a loessial soil at the Cotton Branch Station (CBS), Marianna, Arkansas, were included. The alluvial soil was the Desha series (Vertic Hapludolls, very-fine, mixed, thermic), and the loessial soil was the Calloway series (Typic Glossaquic, fine-silty, mixed, thermic). At each location a dryland site and an irrigated site were utilized. The respective soil test values at SEB and CBS were 67 lb P/acre and 220 lb K/acre and 34 lb P/ acre and 190 lb K/acre. The eight cultivars in 1995 included two in MG IV (H4715 and 'Manokin'), three in MG V (A5403, 'Hutcheson' and RS577) and three in MG VI (A6297, H6686RR and P9641). The eight cultivars in 1996 included two in MG IV (H4715 and 'Manokin'), four in MG V (A5403, H5545, 'Hutcheson' and TV5797) and two in MG VI (A6711 and P9611). The two fertilizer rates were 0-0-0 and 0-60-120 (N-P₂O₅-K₂O) pounds per acre with the fertilizer applied broadcast prior to incorporation and planting. Individual plots consisted of four 38-in. rows with a length of 20 ft and 12 replications at CBS and five 19-in. rows with a length of 25 ft and 8 replications at SEB.

Results

The 1995 growing season included an extended dry period, which resulted in low dryland grain yields (Table 1). The average yields among cultivars in 1995 ranged from 17.2 to 27.0, 35.0 to 54.7, 4.1 to 20.4 and 33.1 to 51.5 bu/ acre for CBS dryland, CBS irrigated, SEB dryland and SEB irrigated sites, respectively. The average yields among cultivars in 1996 ranged from 27.9 to 48.5, 49.0 to 57.4, 25.8 to 36.0 and 37.7 to 54.6 bu/acre for CBS dryland, CBS irrigated, SEB dryland and SEB irrigated sites, respectively. There were no responses to the fertilizer treatment for either the dryland or the irrigated sites at either location. The significant differences among maturity groups were evident for both locations with MG V appearing to have the highest yield except for MG VI at CBS in 1996.

Practical Application

Selection of cultivar had a greater affect than fertilizer rate in the obtainment of high yields. Irrigation did produce the greatest yields, but high yield potential, maturity group and cultivar selection appeared to have a greater effect than fertilizer application.

Acknowledgment

Financial support from the Arkansas Fertilizer Tonnage Fees is appreciated.

		Tab	le1. Int	eractio	n of lo	cation,	s uo uc	ohorus	(P) and	l potas:	sium (K) fertiliz	er, 996			
			Cott	on Brar	Jch Sta	tion		200		5	South	east Bra	anch Sta	tion		
		Dry	land			Irriga	ted			Dryl	and			Irriga	ited	
	0-0	0-0	09-0	-120	0-0	0	-09-0	.120	0-0	0-	-09-0	120	0-0	0-	0-60-	120
Cultivar (MG)	1995^{z}	1996	1995	1996	1995	1996	1995	1996	1995	1996	1995	1996	1995	1996	1995	1996
									ou/acre							
A4715 (IV)	20.5	30.6	20.1	29.5	38.5	50.4	37.0	50.4	15.8	28.7	14.9	25.8	36.4	38.1	36.6	37.7
Manokin (IV)	23.2	37.2	23.4	38.5	45.1	55.7	46.1	57.4	17.9	29.5	17.7	33.0	41.2	45.8	42.1	46.8
A5403 (V)	17.2	28.3	17.3	27.9	37.7	50.4	38.4	50.3	15.9	29.3	17.9	29.4	42.5	41.0	42.6	44.0
H5545 (V)	*	30.7	*	31.9	*	49.0	*	49.3	*	36.0	*	34.2	*	52.7	*	53.1
Hutcheson (V)	27.0	35.9	23.7	38.3	54.7	55.5	52.7	57.0	18.3	34.8	20.4	36.0	51.5	54.6	50.7	54.3
RS577 (V)	19.6	*	18.5	*	42.1	*	42.0	*	15.4	*	15.4	*	48.5	*	44.5	*
TV5797 (V)	*	43.4	*	41.3	*	50.1	*	50.0	*	34.5	*	29.6	*	42.3	*	41.3
A6711 (VI)	*	48.5	*	48.1	*	54.3	*	52.0	*	34.8	*	35.8	*	45.2	*	42.7
A6297 (VI)	19.1	*	18.5	*	35.0	*	36.5	*	4.2	*	4.1	*	33.0	*	33.1	*
H6688RR (VI)	17.4	*	17.6	*	39.1	*	42.6	*	10.0	*	8.2	*	43.9	*	44.4	*
P9611 (VI)	*	46.1	*	45.0	*	51.4	*	50.2	*	30.7	*	27.9	*	45.6	*	45.4
P9641 (VI)	21.0	*	17.3	*	42.9	*	45.4	*	11.0	*	13.0	*	46.3	*	44.1	*
LSD _(0.05)	3.1	5.4	3.1	5.4	4.8	3.8	4.8	3.8	3.1	5.9	3.1	5.9	3.3	4.5	3.3	4.5

Continued

Table 1. Continued.

	CB	Sv	SE	а	
Main Factors	1995	1996	1995	1996	
		5			
1) Irrigation					
None	20.1	37.6	13.7	31.9	
Irrigated	42.2	52.1	42.6	45.7	
LSD _(0.05)	6.5	4.3	3.2	3.1	
2) Fertilizer					
0-0-0	31.3	44.8	28.2	39.0	
0-60-120	31.1	44.8	28.1	38.6	
LSD _(0.05)	ns	ns	su	ns	
Maturity Group					
≥	31.7	43.7	27.8	35.7	
>	32.6	43.1	32.0	40.4	
~	29.4	49.4	24.6	38.5	
LSD _(0.05)	3.2	4.8	6.4	1.7	
² Cultivar was not included	d in the test.				

^Y CBS=Cotton Branch Station, Marianna, Arkansas; SEB=Southeast Branch Station, Rohwer, Arkansas.

Grain Yield of Double Crop Wheat and Soybean as Affected by Fertilizer, Lime and Irrigation

W.E. Sabbe and R.E. DeLong

Research Problem

ropping systems allow for the input of fertilizer at various times during the cycle of the system. The timing can be a decision based on fertilizer price, suitability of weather and field conditions and economic return based on specific crops. The objectives of this study were to include the inputs of fertilizer rate and timing, lime application and irrigation on a wheat-soybean cropping system (two crops per year).

Background Information

The wheat-soybean cropping system is popular in Arkansas and allows several opportunities for inputs. Also, this intensive cropping system (two crops per year) should demonstrate responses to lime and fertilizer. The inclusion of irrigation vs dryland involves the parameter of soil moisture into the expected responses. Current recommendations apply P and K fertilizer during the wheat portion of the cycle; however, no timing recommendation is given for limestone during this cycle, nor is irrigation a factor in the timing of either fertilizer or limestone application.

Research Description

The wheat-soybean double crop study was conducted at the Pine Tree Experiment Station, Colt, Arkansas, and consisted of three sites with four replications each. Wheat cultivars 'Jackson' and NK Coker 9543 and soybean cultivars H5164 and 'Hutcheson' were harvested in 1995 and 1996, respectively. The first site was irrigated, and a comparison between a starter P_2O_5 -K₂O rate of 60-30 or 80-80 lb/acre with subsequent fertilizer treatment of 80-80 in the fall of 1995 was conducted. The second site was irrigated, and a comparison of

none and a recommended lime rate of 2.5 tons/acre was conducted. The third site was dryland, and a comparison between a P_2O_5 - K_2O fertilizer rate of 80-80:0-0:60-30:0-0 or 80-80:40-60:80-80:40-60 lb/acre for the four cropping seasons was conducted. Sites were located on a Calloway (Glossaquic Fragiudalfs, fine-silty, mixed, thermic) soil with an initial Mehlich III value where P=33 and K=284.

Results

In the first study (Table 1) there were no significant differences between the two starter fertilizer rates for the two years or crops. In the second study (Table 2) a significant difference was evident in 1996 for soybean with a 2.7 bu/acre increase in yield for 2.5 tons/acre of lime. In the third study (Table 3) there were no significant differences between the two fertilizer rates for the two crops or years.

Practical Applications

Statistically the data revealed no consistent effects due to P and K fertilizer timing nor limestone application. The trends were directed toward a soybean grain yield response from the limestone application. However, continued research will be needed to justify the differences.

Acknowledgment

Financial support from the Arkansas Fertilizer Tonnage Fee is appreciated.

Pine	Tree Experi	iment Station, C	Colt, Arkansas.		
Starter	Wł	neat	Soyt	bean	
Fertilizer (P2O5-K2O)	1995	1996	1995	1996	
—lb/acre—	——— bu/	acre ———	——— bu/a	acre ——	
60-30	61.1	50.1	37.3	45.4	
80-80	59.3	48.4	35.2	44.3	
LSD (0.05)	ns⁺	ns	ns	ns	

Table 1. Irrigated double crop wheat and soybean grain yield as affected by phosphorus and potassium starter fertilizer, Pine Tree Experiment Station, Colt, Arkansas.

[†] ns = nonsignificant.

as affected	l by lime, Pine T	ree Experiment	: Station, Colt, Ark	ansas.
	Wh	neat	Soyl	bean
Lime	1995	1996	1995	1996
— T/acre —	bu/	acre ———	——— bu/a	acre ——
0	62.6	50.6	35.3	36.4
2.5	62.3	56.0	39.4	39.1
LSD (0.05)	ns†	ns	ns	2.1

Table 2. Irrigated double crop wheat and soybean grain yield

[†] ns = nonsignificant.

Table 3. Dryland double crop wheat and soybean grain yieldas affected by phosphorus and potassium fertilizer,Pine Tree Experiment Station, Colt, Arkansas.

Treatment				
(Fall 1994, Spring 1995,	W	neat	Soyt	bean
Fall 1995, Spring 1996)	1995	1996	1995	1996
	—— bu/	acre ——	——— bu/a	acre ——
80-80, 0-0, 60-30, 0-0	61.1	62.5	17.3	34.0
80-80,40-60,80-80,40-60	58.5	64.8	15.7	33.0
LSD (0.05)	ns†	ns	ns	ns

[†] ns = nonsignificant.

Evaluation of Soybean to Soil Test Levels and Associated Fertilization Rates in Arkansas

W.E. Sabbe, R.E. DeLong, N.A. Slaton, C.E. Wilson, R.J. Norman and B.R. Wells

Research Problem

The advent of precision agriculture with its inclusion of monitoring yield on a small area allows for fertilizer application via variable rate technology. Prior to precision agriculture the goal of soil sampling was to obtain a sample that contained the mean values of a field. Precision agriculture allows for numerous fertilizer and application rates within a field based on the soil analyses for each specific area. Therefore, the correlation and calibration data must be precise to allow for grower and applicator confidence in the process. Additionally, the cropping system that contains the soybean response must be documented as to nutrient uptake and nutrient removal to facilitate the timing and rates of fertilizer application.

Background Information

Soybean response to fertilizer phosphorus (P) on soils having low soil test P values has been inconsistent over the past twenty years. The yield responses have been low (2 to 5 bu/acre) and the fertilizer rate responsible for those increases varies among locations and years. While responses to potassium (K) fertilizer have been more nearly consistent than responses to P fertilizer, variations still exist. A recent study on Arkansas soils indicated that P and K fixation values ranged up to 60% of the applied P and 30% of the applied K. Much of the P fixation occurred within 16 hours after application; whereas, the K fixation values were higher at 60 days after application.

Research Description

The study was conducted at the Pine Tree Experiment Station, Colt, Arkan-

sas, with four replications on a Calloway (Glossaquic Fragiudalfs, fine-silty, mixed, thermic) soil. Cultivar 'Hutcheson' was planted in 1996 with 10 ft wide by 30 ft long plots with 30-in. rows. The study was a comparison of low, medium and high soil test levels for P-K and their combinations of Low-Low, Low-Medium, Low-High, Medium-Low, Medium-Medium, Medium-High, High-Low, High-Medium and High-High where low P was < = 33 and K was < = 165 lb/acre, medium P was 34-44 and K was 166-200 lb/acre, and high P was > = 45 and K was > = 201 lb/acre. P and K fertilizer rates of 0, and 1/2, 1, and 2 times the recommended rate on each of the specific soil test P and K treatment combinations was applied broadcast and incorporated before planting.

Results

Grain yield for the initial P and K soil test levels was significantly higher for the High-Medium than the Low-Low soil test level with 47.3 and 41.9 bu/ acre, respectively (Table 1). The grain yields for the High-High plots were not included due to low yields caused by poor drainage. Significant differences were present for the analyses of plants sampled at the R3 growth stage for P and K for leaves and P for whole plants. The P for the leaf and whole plant analyses were significantly higher for the High-High than for the Low-Low soil test levels at 0.13 and 0.11 %, and 11.2 and 7.1 mg/plant, respectively. Grain yield for the initial P and K soil test levels was significantly higher for the High-Medium than for the Low-Low soil test level at the 0X recommended P and K fertilizer rate with 48.7 and 41.8 bu/acre, respectively (Table 2). The grain yields for the High-High plots were not included due to low yield caused by poor drainage. Significant differences were present for the analyses of plants sampled at the R3 growth stage for P and K for whole plant at the 0X rate, P for leaves at the 1/2X rate, P for leaves and whole plants at the 1X rate, and P and K for leaves and whole plants at the 2X rate. The P and K for the whole plant analyses at the 0X rate was significantly higher for the High-High than Low-Low soil test levels at 14.2 and 8.0 mg/plant, and 101.2 and 58.0 mg/plant, respectively. The P for the whole plant analyses at the 1X rate was significantly higher for the High-High than for the Low-Low soil test levels at 13.8 and 7.8 mg/plant, respectively. The P for the whole plant analyses at the 2X rate was significantly higher for the High-High than for the Low-Low soil test levels at 10.2 and 5.1 mg/plant, respectively.

Practical Applications

With the advent of a technology that allows the application of variable rates of fertilizer, the results from this experiment is a first step in helping to understand the influence of various recommended fertilizer rates on soils with specific P and K soil test levels. This greater understanding will assist fertilizer applicators in the application of P and K fertilizer to specific areas of a field that may require different amounts of fertilizer.

Acknowledgment

Financial support from the Arkansas Fertilizer Tonnage Fee is appreciated.

and K soil te	st levels in 199	96, Pine Tre	e Experiment	Station, Colt,	Arkansas.
Soil Test		Leaf A	nalysis	Whole Pla	nt Analysis
Level		(R3 \$	Stage)	(R3 \$	Stage)
(P-K) ^z	Grain Yield	P	K	P	K
— Ib/acre —	— bu/acre —	9	/o ———	mg/p	plant ———
Low-Low	41.9	0.11	0.85	7.1	53.0
Low-Medium	43.1	0.11	0.79	8.6	68.1
Low-High	45.0	0.13	0.82	10.2	65.5
Medium-Low	42.0	0.12	0.83	9.3	65.4
Medium-Medium	n 41.4	0.12	0.82	7.7	66.4
Medium-High	43.6	0.14	0.85	8.5	62.8
High-Low	43.8	0.13	0.79	9.5	66.4
High-Medium	47.3	0.14	0.76	8.2	59.2
High-High	У	0.13	0.91	11.2	73.6
LSD (0.05)	3.6	0.02	0.11	3.4	ns×

Table 1. Irrigated soybean grain yield and plant analysis as affected by phosphorus (P) and potassium (K) fertilizer on low, medium and high P and K soil test levels in 1996. Bing Tree Experiment Station. Colt. Arkansas

^z Low - P < = 33 and K < = 165 lb/acre, Medium - P = 34-44 and K = 166-200 lb/acre, and High - P > = 45 and K > = 201 lb/acre according to Mehlich III.

^Y Not included since poor drainage led to low grain yield.

^x ns = nonsignificant.

				w, mec		na nig	าาส	Recomi	nend	ed Pa	nd K F	996, P ertilize	er Rate	e Exp	Derime	int Sta	tion, (Colt, A	rkans	ß.
			X0					1/2X					1X					2X		
		Γe	∋afy	Мh	olev		Le	af	W	ole		Ľ	af	Whe	ole		Lea	af	Who	e
Soil Test	Grain	_				Grain					Grain					Grain				
Level (P-K) ^z	Yield	٩	×	٩	¥	Yield	٩	¥	٩	×	Yield	٩	¥	٩	х	Yield	٩	¥	٩	¥
—lb/a—	bu/a		%	mg/	plant	bu/a	~		mg/p	olant	bu/a			l/ɓш	olant	bu/a			mg/pl	ant
Low-Low	41.8	0.12	0.88	8.0	58.0	41.1	0.11	0.81	7.4	50.6	41.0	0.11	0.93	7.8	65.6	43.6	0.11	0.79	5.1 3	7.8
Low-Med	43.3	0.12	0.80	7.2	60.0	41.2	0.11	0.82	8.5	72.5	42.7	0.11	0.83	9.7	73.8	43.9	0.12	0.73	9.0 6	6.0
Low-High	42.2	0.13	0.84	13.0	81.1	46.6	0.13	0.85	9.0	62.1	44.6	0.15	0.81	10.3	71.5	47.2	0.13	0.77	8.5 6	3.2
Med-Low	40.9	0.12	0.83	7.9	48.7	43.0	0.13	0.87	9.0	55.3	44.1	0.12	0.85	9.8	77.4	42.9	0.12	0.77	10.5 8	0.4
Med-Med	41.9	0.12	0.81	8.0	77.4	40.1	0.12	0.78	6.5	49.4	38.3	0.12	0.85	8.5	66.1	38.7	0.12	0.85	7.8.7	2.8
Med-High	44.9	0.13	0.89	6.5	51.3	41.3	0.15	0.91	9.2	65.5	42.1	0.13	0.89	8.6	65.0	45.9	0.14	0.73	9.9 6	9.4
High-Low	44.7	0.14	0.72	8.4	52.9	42.3	0.14	0.78	10.3	69.2	43.1	0.12	0.87	10.6	78.9	45.0	0.14	0.79	8.6 6	4.5
High-Med	48.7	0.13	0.73	5.1	38.6	44.4	0.15	0.77	10.1	67.6	47.8	0.15	0.77	8.3	60.7	48.1	0.14	0.79	9.1 6	9.7
High-High	×	0.15	06.0	14.2	101.2	×	0.12	0.83	6.4	41.3	×	0.12	0.94	13.8	84.0	×	0.13	0.95	10.2 6	7.8
LSD (0.05)	5.9	ns ^x	ns	5.8	41.0	6.0	0.04	ns	ns	ns	6.6	0.03	su	4.8	ns	5.9	0.03	0.18	4.6 3	0.1
z Low - P < = z	33 and	× 	165 lb/	acre, N	Jedium	– Р – Г	34-44	and K.	= 166	-200 lb	/acre,	and H	iah - P	< = 4	and h	(> = 2	01 lb/a	cre ac	cordine	p

Table 2. Irrigated soybean grain yield and plant analysis as affected by recommended phosphorus (P) and potassium (K)

מ 6 Mehlich III.

 $^{\rm Y}$ Analysis at R3 growth stage. $^{\rm x}$ Not included since poor drainage led to low grain yield.

* ns = nonsignificant.

ARKANSAS SOIL FERTILITY STUDIES – INDEX

Commodity	Description	Res Series	Year	Page
Apple Apple	Clonal Apple Rootstock Effects on Foliar Nutrient Content Fertilizer Formulation and Liming on Foliar Nutrient Content, Growth	421 425	1991 1992	85 41
Asparagus	Effect of Supplemental Nitrogen on Green and White Asparagus	436	1993	9
Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass Bermudagrass	Nitrate Levels in Bermudagrass as Affected by Nitrogen Applications Sulfur Rate and Timing Effects on Coastal Bermudagrass Coastal Bermudagrass Production Influenced by S and Mg Sulfur Response of Bermudagrass and Dallisgrass in Conway County Sulfur Fertilization on Production, Quality and Fertilizer Efficiency Sulfur Fertilization on Production, Quality and Efficiency Coastal Bermudagrass Production Influenced by S and Mg Rates Sulfur Rate and Timing Effects on Coastal Bermudagrass 'Coastal' Bermudagrass Production Influenced by S and Mg Rates Influence of Sulfur Fertilization on a Hybrid Bermudagrass Response of Bermudagrass and Dallisgrass in Conway County	450 385 385 425 421 425 411 398 436 436	1995 1988 1988 1992 1991 1992 1990 1990 1989 1993 1993	94 31 27 112 7 123 9 5 25 16 32
Blackberry	Fertilizer Effect on Post-Harvest Quality of 'Arapaho' Thornless	450	1995	31
Blackberry	Response of 'Arapaho' Thornless to Fertilization - Second Year Results Fertilizer Effect on Post-Harvest Quality of 'Arapaho' Thornless Fruit	450	1995	34 44
Blackberry Blackberry	Response of 'Arapaho' Thornless Blackberry to Fertilization Response of 'Arapaho' Thornless Blackberry to Nitrogen Fertilization:	443	1994	41
	Third Year and Final Report	455	1996	61
Blueberry	Nitrogen Fertilization of Highbush Blueberry	421	1991	101
Blueberry	Fertilization of Bluecrop' Blueberry - Second Year Results	398	1989	5
Blueberry	Establishment of Period Fertilization of 'Bluecrop' Blueberry	421	1991	105
Blueberry	Response to Nitrogen Rate and Method of Application	443	1994	48
Blueberry	Nitrogen Fertilization of Highbush Blueberry	385	1988	7
Blueberry	Rate and Source Effects on Soil Analysis Values of 'Highbush	421	1991	109
Blueberry	Nitrogen Fertilization of Highbush Blueberry - Fourth Vear Results	450	1995	28 69
Blueberry	Nitrogen Rate Effects on Soil Analysis of Highbush blueberries	411	1990	73
Blueberry	Establishment Period Fertilization of 'Bluecrop' Blueberry	411	1990	79
Blueberry	Soil-Applied Iron Materials on Highbush Blueberry	385	1988	1
Blueberry	Establishment Period Fertilization of 'Bluecrop' Blueberry	385	1988	5
Blueberry	Blueberry Response to Nitrogen Rate and Method of Application: Third year Results Effect of Nitrogen Rate and Method of Application	455	1996	64
	on Highbush Blueberry Fruit Quality	455	1996	68
Broccoli Broccoli	Broccoli Response to Fertilization with Micronutrients Micronutrient Fertilization of Broccoli in a Sustainable System	425 425	1992 1992	32 37
Corn	Nitrogen Rates for Corn	411	1990	33
Corn	Nitrogen Rates for Corn	421	1991	11
Corn	Fertilization of Wheat Following Grain Sorghum or Corn	398	1989	65
Cotton	Nitrogen Rate on Four Cotton Cultivars Grown on a Clay Soil	411	1990	129
Cotton	Cotton Response to Deep Potash Fertilization	411	1990	137
Cotton	Three Cotton Cultivars to Nitrogen Fertilization in SE Arkansas	411	1990	121
Cotton	Foliar Fertilization in Waterlogged Soil and/or During Cool Temp	411 425	1990	123
Cotton	A Summary of Foliar Fertilization of Cotton with Potassium Nitrate	425	1992	97
Cotton	Three Cotton Cultivars to Nitrogen Fertilization in SE Arkansas	425	1992	92
Cotton	Potassium in Field-Grown Plants Under Levels of Potassium	450	1995	75
Cotton	Response to Supplemental Foliar Nitrogen in Central Arkansas	450	1995	78
Cotton	Effect of Sulfur Fertilization on Cotton Yield on Sandy Soils	411	1990	95
Cotton	Leaf Photosynthesis, P Concentration and Sugar Content to Soil	425	1992	103
Cotton	Late-Season Foliar Nitrogen Fertilization of Cotton	411	1990	91
Cotton	Potassium Rates for Cotton	411	1990	105
Cotton	Cotton to Fertilization and Applications of Mepiquat Chloride	411	1990	113
Cotton	Nitrogen Rates for Cotton	411 411	1990	107
Cotton	Effects of Cover Crops and Irrigation on Cotton	411	1990	109
Cotton	Cotton Response to Nitrogen Under Four Irrigation Methods	385	1988	21
Cotton	Starter Fertilization for Cotton	385	1988	19
Cotton	Late-Season Foliar Nitrogen Fertilization of Cotton 1988-1991	421	1991	127
Cotton	Effect of INITOgen Kate on Cotton CultiVars Potassium Rates and Placement for Cotton	385 385	1988	23
Cotton	Effects of Cover Crops and Irrigation on Cotton	385	1988	11
Cotton	Low-Input Dryland Cotton Production	421	1991	119
Cotton	Nitrogen Rates and Placement for Cotton	385	1988	15
Cotton	Manganese, Nitrogen and Potassium for Cotton	385	1988	13
Arkansas Soil Fertility Studies 1996

Cotton	Foliar Application of K Fertilizers on Cotton Vield and Quality	125	1002	80
Couon	Tonal Application of R Fertilizers on Cotton Tred and Quanty	423	1992	100
Cotton	Foliar Application of K Fertilizers on Cotton Yield and Quality	421	1991	131
Cotton	Irrigation Methods and Fertilization Rates in Cotton Production	425	1992	87
Cotton	Late-Season Foliar Fertilization of Cotton with Nitrogen	425	1992	84
Cotton	E la contra	425	1992	
Cotton	Foliar-Applied Potassium Nitrate Effects on Cotton Genotypes	425	1992	11
Cotton	Phosphate and Poultry Litter on Production on Leveled Land	425	1992	64
Cotton	Cotton Grown on Compacted Soils to P and K Fertilization	425	1992	58
Cotton	Designed to Limestone on Costions to Pills Fine Sondy Loom	125	1002	71
Cotton	Response to Limestone on Caspianna/Killa Fine Sandy Loam	425	1992	/1
Cotton	Response to Mid-Season Sulfur Fertilization in Mississippi County	425	1992	67
Cotton	Foliar Fertilization of Cotton with Potassium Nitrate Arkansas	421	1991	135
Cotton	Assessment of Cotton Nitro con Status Using Chlorophyll Maton	126	1002	67
Cotton	Assessment of Cotton Nitrogen Status Using Chlorophyn Meter	430	1995	07
Cotton	Effects of Foliar Application of Five Fertilizers on Yield and Quality	436	1993	62
Cotton	Yield Response of Cotton to Supplemental Foliar Urea	436	1993	79
Cotton	Deticle Son as Method for Monitoring Cotton N and K in the Field	126	1002	71
Cotton	Penole Sap as Method for Monitoring Cotton N and K in the Field	450	1995	/1
Cotton	Potassium Rates for Cotton	398	1989	21
Cotton	Plant Physiological Aspects of K Nutrition in Cotton	436	1993	54
Cotton	Failer Ambied V Nitrote Effects on Cotton Constrance	126	1002	51
Cotton	Fonar-Applied K Nitrate Effects on Cotton Genotypes	450	1995	51
Cotton	Nitrogen Rates for Cotton	398	1989	19
Cotton	Foliar Fertilization of Cotton with Potassium in Arkansas	436	1993	58
Cotton	Load Crowth and Faliar Nitragan Absorption	142	1004	67
Cotton	Lear Growth and Foliar Nitrogen Absorption	445	1994	0/
Cotton	Late-Season Fertilization with K-Nitrate in Jefferson County	443	1994	83
Cotton	Irrigation Methods and Fertilization Rate in Production	443	1994	76
Cotton	Estion Fortilization in Coutbootem Advances	442	1004	70
Cotton	Fonal Fertilization in Southeastern Arkansas	445	1994	12
Cotton	Partitioning During the Development of Deficiency Symptoms	443	1994	91
Cotton	Enhancing Mineral Nutrient Uptake with Plant Growth Regulators	436	1993	83
Cetter	Effecte of Come Control of University of the Control	200	1000	22
Cotton	Effects of Cover Crops and Irrigation on Cotton	398	1989	23
Cotton	Response of Cotton Grown on Compacted Soils to Fertilization	443	1994	96
Cotton	Vield Response to Foliar Fertilization in Relation to Boll Load	436	1003	88
Cotton	The class of the second s	401	1001	140
Cotton	I free Cotton Cultivars to Nitrogen Fertilization in Sw Arkansas	421	1991	149
Cotton	Irrigation Methods and Fertilization Rates in Cotton Production	421	1991	145
Cotton	Cotton Response to Deep Potash Fertilization	421	1991	173
Cotton		421	1001	101
Cotton	Cotton Grown on Compacted Soils and P and K Fertilization	421	1991	181
Cotton	Effect of Foliar Fertilization of Droughted Cotton Seedlings	421	1991	141
Cotton	Irrigation Methods and Fertilization Pates in Cotton Production	450	1005	67
Cotton	The Definition Methods and Technization Rates in Control Addition	450	1005	70
Cotton	Foliar Potassium on Kinetic Uptake Parameters of Cotton	450	1995	12
Cotton	Influence of Lime and Boron on Cotton Yield on a Sandy Soil	421	1991	185
Cotton	Foliar Nitrogen Fertilization of Cotton in SE Arkansas	450	1995	63
Cotton		426	1002	0.5
Cotton	Late-Season Foliar Fertilization with K Nitrate in Jefferson County	436	1993	36
Cotton	Cotton Growth on Compacted Soils to Fertilization and Deep Tillage	436	1993	44
Cotton	Nitrogen Rate on Four Cotton Cultivars Grown on a Clay Soil	308	1989	13
Cetter	Vide Demonstration of Demonstration of the state of the s	120	1002	41
Cotton	field Response of Dryland Cotton to Supplemental Foliar K, Nitrate	430	1993	41
Cotton	Significance of Solution pH on Efficacy of Foliar Fertilizers	443	1994	107
Cotton	Nitrogen Rate on Four Cotton Cultivars Grown on Sandy Soil	421	1991	153
Cetter	E-lie E-stille-stille of Cotton Decimina - t Discussion in Sundy Bon	442	1004	101
Cotton	Foliar Fertilization of Cotton Beginning at Broom in Farmer's Fields	445	1994	101
Cotton	Effect of Sulfur Fertilization on Cotton Yield of Sandy Soils	421	1991	163
Cotton	Slow-Release Soil and Foliar Fertilizer on Cotton	455	1996	15
Cotton	Disvision and a second and the second second second second	100	1770	10
Cotton	Physiological Research on Plant Potassium Nutrition			
	at the University of Arkansas	455	1996	18
Cotton	Foliar Nitrogen Fertilization of Cotton in Southeast Arkansas	455	1996	22
Cotton	Timing of Control Second Nitrogen Eastilization of Cotton	155	1006	27
Cotton	Timing of Early Season Nilrogen Fertilization of Cotton	433	1990	21
Cotton	Irrigation Methods of Nitrogen Fertilization Rates in Cotton Production	455	1996	- 30
Cotton	Cotton Gin Trash as Soil Amendment for Small-Scale Vegetable Production	455	1996	36
conon	coust of that as post-finenament for binan beau vegetable frouveron	100	1770	20
Dallisgrass	Sulfur Response of Bermudagrass and Dallisgrass - Two Year Results	436	1993	27
Fasana	Phosphorus Fortilizer on Magnesium Unteka by Fesous	125	1002	110
Facana	Effect of Fertilizer Dates and Timing on France Dradient	126	1002	112
Fescue	Effect of Fertilizer Rates and Timing on Fescue Production	436	1993	13
Fescue	Final Report on Response of Tall Fescue to Surface Liming	436	1993	21
Fescue	Rock Phosphate and Triple Superphosphate on Fescue	425	1992	115
T escue	Rock i nospitate and imple Superprise priate on rescue	425	1992	100
Fescue	Response of Tall Fescue to Surface Liming in Logan County, AR	425	1992	108
a 1		1.10	1004	
General	Soll Testing Summary for Fiscal Year 1993-94 Consumption Trends	443	1994	155
General	Lime Placement Studies in the 1994 Season	443	1994	123
General	Total Determination in Plant Material by Persulfate Digestion	443	1994	132
General	Total Determination in Flant Material by Fersulate Digestion	115	1774	152
Grain	'Jasmine' 'Millie' 'Teymont' and Experimental Line PU8801121	411	1000	63
Grain	Jasimie, Winie, Texinoit and Experimental Ene (000001121	411	1990	05
Grain	Delmont', 'Lacassine', 'Orion' and 'Rosemont' to Fertilization	421	1991	43
a		125	1000	
Grape	Elemental Analysis of Grape Petioles by Cultivar and Thinning	425	1992	47
Grape	Elemental Analysis of Grape Petioles by Cultivar and Thinning	421	1991	113
Grass	Warm-Season Grass Forage Response to Weed Control	436	1993	27
Miaa	Chamical Changes Following Modification of Asidia Provide 10	442	1004	21
IVIISC.	Chemical Changes Following Mounication of Actual Pragludalf	443	1994	21
MISC.	Fertilizer Kates Under Irrigation and Dryland Conditions	450	1995	44
Misc.	Soil Test Data: Summary for the Growing Season - 1995	450	1995	81
Mico	Nitrogan and Diamage A asymptotion to Drought and Nitrogan	450	1005	20
IVIISC.	Nurogen and Diomass Accumulation to Drought and Nitrogen	430	1995	39
IVIISC.	Sous with Properties That May Inhibit Deep Root Growth	421	1991	1
Misc.	Soil Test Data: Summary for the Growing Season - 1996	455	1996	1
Peach	Influence of Rate and Timing of Fertilizer on Yield and Quality	436	1993	1

Pice	Pice Perports to D Fertilization of Soils Testing Low in D	411	1000	17
Ricc	Receives points to F Fertilization of Solis Testing Low in F	711	1770	
Rice	Plant Area Measurements to Estimate Mid-Season N Rates	411	1990	43
Dice	Pasponso of 'Lamont' Pice to Micron PG and N Fortilization	411	1000	20
Rice	Response of Lemont Rice to Microp-BO and N Pertilization	411	1990	37
Rice	Nutrient Uptake Related to Shoot and Root Growth of Rice	411	1990	49
Pice	Pice Response to Zinc Phosphorus Fertilization	450	1005	10
Ricc	Rice Response to Zhie-Thosphorus Fertilization	450	1995	19
Rice	Sodium and 'Ca' Interaction on 'K' Influx in Salinity Tolerance	450	1995	22
Pice	Pice Perponse to Fertilizer Applications	450	1005	15
Ricc	Rice Response to returnizer Applications	450	1995	15
Rice	Delayed Flood on Nitrogen Management and Rice Yield	411	1990	51
D:	Fortilization of Discourse Conduct Soils Using Opposite Materials	411	1000	
Rice	Fertilization of Rice on Graded Solis Using Organic Materials	411	1990	55
Rice	'Nutralene TM' and Methylene Urea-NH4 Sulfate as Nitrogen	411	1990	37
D:		10.6	1000	1.50
Rice	Soil Test Procedures for Predicting Available Phosphorus for Rice	436	1993	168
Pice	Zinc Deficiency Produced on Alkaline Soils	113	100/	27
Ricc	Zine Deneterely Hoddeed on Arkanne Sons	445	1994	21
Rice	Poultry Litter and Phosphorus Amendments on Rice on Saline Soils	443	1994	32
D:	Deficiency in Directificity at Colle	120	1002	1.0
Rice	Denciency in Rice of High-pH Solis	430	1993	100
Rice	Poultry Litter Amendments to Rice Produced on Saline Soils	436	1993	143
D'		100	1002	1 47
Rice	Grain Yield of Several Rice Lines to Fertilization	436	1993	147
Pice	Personne to Polyolefin Coated Urage as Sources	136	1003	155
Rice D:	Response to Polyotetini-Coated Oreas as Sources	750	1995	155
Rice	Rice Yield Response to Nitrogen and Rotation on a Sharkey Soil	398	1989	41
Dice	Viold Passages of 'Skylonnat', 'Katy' and 'Mayballa' Pice to N	208	1090	25
Rice	Tield Response of Skybolinet, Katy and Maybelle Rice to N	398	1989	55
Rice	Yields of 'Lemont' Rice Influenced by N Rate, N Time	398	1989	33
Diss	Nites of Menore first of Francisco Lais and Apiro	200	1000	42
Rice	Nitrogen Management of Furrow-Irrigated Rice	398	1989	43
Rice	Effect of Tillage System on Nitrogen Management in Rice	443	1004	36
Trice	Enteet of Thinge System on Third gen blandgement in Rice	115	1//1	50
Rice	Fertilization of Rice on Leveled Soils	398	1989	45
Pice	Viald Personse of Pice to Water and Nitrogen Management	421	1001	71
Ricc	Tield Response of Rice to water and Mitogen Management	421	1991	/1
Rice	Response of Rice to Amended Ureas as Nitrogen Sources	421	1991	65
D:	Dia Dana da Castina Data and Nitra Manut Cast	205	1000	20
Rice	Rice Response to Seeding Rates and Nitrogen Mgmt. Syst.	385	1988	- 39
Rice	Plant Area Measurements Indicator of Nitrogen Fertilization	385	1988	45
D:	That the Measurements indicated of the best for the base	505	1000	15
Rice	Plant Area Measurement to Mid-Season Nitrogen Rates	421	1991	47
Dico	Phoenhomic Fortilization on Soils Testing Low in Phoenhomic	421	1001	20
Rice	Phosphorus Pertilization on Sons Testing Low in Phosphorus	421	1991	39
Rice	Fertilizer Uptake from Granular Urea, Urea, NH4 or Nitrate in Uan	421	1991	59
D:	Coll Maintena Angl Time and Hanne Lability of Hatala & Viold	401	1001	
Rice	Soli Moisture, Appl. Time and Urease inhibitor on Uptake & Yield	421	1991	55
Rice	Phosphorus Availability in Soils with Low Soil Test Phosphorus	425	1992	11
Rice D:	Thospholus Availability in Sons with Low Son Test Thospholus	425	1002	11
Rice	Plant Area Measurements to Estimate Mid-Season Nitrogen Rates	425	1992	18
Pice	'Bangal' 'Cypress' 'Delmont' 'LaCassine' and Experimental Rice	425	1002	1
Ricc	Bengar, Cypress, Dennont, Lacassine and Experimental Rice	425	1992	1
Rice	Application Time and Soil Moisture Condition on Yield / Recovery	425	1992	7
Diag	Nutriant Untaka Delated to Deat Mambalaay and Abcomtion	421	1001	01
Rice	Nutrient Uptake Related to Root Morphology and Absorption	421	1991	81
Rice	Impact of Water and Nitrogen Management on Nutrient Untake	421	1991	75
D:	input of viter and through humagement on ruthent optake	121	1000	,5
Rice	Response to Polyoletin-Coated Ureas as Nitrogen Sources	425	1992	- 22
Pice	Fartilizer Untake from Granular Urea, Urea, NH4 or Nitrate	425	1002	25
Ricc	Termizer Optake nom Granular Orea, Orea, 1414 of Hurae	425	1992	25
Rice	'Newbonnet' Rice to N Fertilizer Applications Made in Floodwater	411	1990	61
Dias	"Tabonnat' Diag to Nitrogan Course Date and Time of Application	411	1000	50
Rice	Tebonnet Rice to Nitrogen Source, Rate and Time of Application	411	1990	59
Rice	Rice Yield Response to Nitrogen and Rotation on a Sharkey Soil	411	1990	67
			1000	10
Rice	Rice Nutrient Composition Response to P and K Fertilization	455	1996	40
Pice	Influence of Phosphorus Fartilizer Source and Pate on Pice	455	1006	44
Ricc	influence of Thosphorus Pertifizer Source and Rate of Rice	455	1990	44
Rice	Influence of Phosphorus Rate, Potassium Source			
	and Data on Diag Draduation	155	1006	40
	and Kate on Kice Froduction	455	1990	49
Rice	Rice Response to Phosphorus and Potassium Fertilization			
1000	the fifth and for the formula	155	1000	51
	at Different Soil lest Levels	455	1996	54
Soil	P and K Fixation Canacities of Selected Arkansas Soil Series	425	1992	133
5011	and R Trixation Capacities of Defected Arkansas bon Defes	725	1))2	155
G 1		200	1000	21
Sorgnum	Previous Crop and Nitrogen Rate on Grain Sorghum Production	398	1989	- 31
Sorghum	Response of Sweet Sorghum to Foliar Boron Applications	385	1088	53
Sorghum	Response of Sweet Sorghum to Fonal Boron Applications	565	1900	55
Sorghum	Planting Grain Sorghum on Wide Beds on a Clay Soil	385	1988	49
8				
Souhaan	Group V Grain Viold Pasponse to Management and Fertilizer 1000.04	112	1004	142
Soybean	Group v Grain Tield Response to Management and Fertunzer, 1990-94	445	1994	142
Sovbean	Fertility / Management Studies on Group IV Sovbean 1990-94	443	1994	148
Souhaar	Proplant Eartilizar Nutriants on Viold Crown W on Devens Cilt I	126	1002	120
Soybean	riepiant returned Nutrients on Tield Group IV on Koxana Silt Loam	430	1993	130
Sovhean	Grain Yield to Fertilizer and Irrigation on Silty Clay	436	1993	134
Soybean C	Shan Their berthizer and migacine birty Chay	100	1002	120
Soybean	Potassium Fertilization on Roxana Silt Loam	436	1993	138
Soubean	Drought and Fartilization Effects n Vield in Souhaan	450	1005	37
Soybean	Diought and retuinzation Effects in field in Soybean	450	1995	57
Soybean	Efficiency of Uptake by Soybean Genotypes	436	1993	140
Coubson	Detersiver Untelse by Seyheen Constructs	450	1005	10
Soybean	Polassium Optake by Soybean Genotypes	450	1995	40
Sovbean	Limestone Requirements for Soybean	450	1995	42
Carlan	Discrete and Discrete Details To the State of the State o	450	1007	
Soybean	Prosphorus Plus Potash Fertilizer and Irrigation on Grain	450	1995	51
Sovhean	Poultry Litter and Phosphorus on Soybean Grown on Saline Soils	450	1995	61
0 1	a state and thosphotos of boycour of own of both both	450	1007	
Soybean	Gain Yields of Group IV and V Affected by Row Width and Fertilization	450	1995	64
Souhean	Nutrition of Soybean on Acid Soils	443	100/	125
Soyucan	Nutrition of Soybean off Actu Solis	443	1994	123
Soybean	Yield Response During Drought to Nitrogen Source	443	1994	137
Souhaar	Limestone Pequirements for Souther	112	1004	110
Soybean	Linestone Requirements for Soybean	443	1994	118
Sovbean	Efficiency of Potassium Uptake by Sovhean Genotypes	443	1994	114
Carlan	Nutrition of Cost on Asid Colle	200	1000	114
soybean	numuon of Soydean on Acid Sons	398	1989	49
Sovhean	Fertility and Row Width Studies on Group IV on Silty Clay Learn	436	1003	132
Soyucan	Toring and now which builds on Gloup IV on Sity Clay Loall	-50	1775	1.54
Soybean	Nutrition of Soybean on Acid Soils	411	1990	87
Sovhean	Response to Fertilizer and Litter on Loam in Monroe County	425	1992	160
Soyucan	Response to returned and Enter on Examinin Wollide County	-25	1994	100
Soybean	Effect of Nutrients on Grain Yield of Group IV	425	1992	163
Souhaar	Stale Pad fartilization of Souhaan	200	1000	50
soybean	State Ded tertilization of Soybean	398	1989	59
Sovbean	Deep Placement of P205, K20 and Lime Potential for Yields	421	1991	17
Carlan	Nutition of Condense And Coll	421	1001	10
Soybean	Nutrition of Soybean on Acid Soils	421	1991	13
Souhean	Nutrition of Soybean on Acid Soils	425	1002	140
Soyocan	runnion of boybean on richt bons	745	1774	140

Arkansas Soil Fertility Studies 1996

Soybean				
Souheen	Fertilization on Roxana Silt Loam	425	1992	167
		425	1002	107
Soybean	Response of Grain Yield to Fertilizer, and Irrigation on Silty Clay	425	1992	165
Sovbean	Placement of P and K Fertilizer on Early-Season Sovbeans	411	1990	85
Soubean	Souhean Planting Patterns and K Fertilizer on Grain Vield on Clay	411	1990	83
Soybean	by being the second state of the second state	405	1000	107
Soybean	Fertility, Row Studies on Groups IV and V on Nonifrigated Soli	425	1992	137
Soybean	Response of High Rates of Phosphate and Potash on Yield	436	1993	114
Sovbean	Response to Poultry Litter Phosphate and Potash Fertilizer	436	1993	109
Soybean Santa an	Production of Charida Tarrisian Conductor	425	1000	140
Soybean	Evaluation of Chloride Toxicity in Soybeans	425	1992	149
Soybean	Response to Fertilizer and Row Width for Group IV and V	436	1993	116
Soubean	Group IV Yield Influence by Row Width and Preplant Fertilizer on Loam	436	1993	130
Soybean	Stoup it field in delice by Row what and Frephant Fertilizer on Eduar	426	1002	104
Soybean	Nutrition of Soybean on Acid Soils	436	1993	124
Sovbean	Limestone Requirements for Sovbean	436	1993	120
Soubean	Fertility Pow Studies on Nonirrigated Poellen Silty Clay Loan	125	1002	145
Soybean	Tertinity, Row Studies on Hommigated Roenen Shty Clay Loan	425	1992	145
Soybean	Limestone Requirements for Soybean	425	1992	154
Sovbean	Correction of Mg Deficiency in Crittenden County	425	1992	157
Soubean	Grain Vield by Pow Width and Preplant Fertilizer on Silt Loam	125	1002	147
Soybean	Grain Tield by Row width and Frephant Fertilizer on Sitt Loan	423	1992	14/
Soybean	Stale Bed Fertilization of Soybeans	385	1988	59
Sovbean	Fertilization Practices of Early-Season Soybeans	385	1988	55
Soubcon	Eartilization Practices of Early Season Southeans 1087 1080	209	1080	51
Soybean	Fertilization Practices of Early-Season Soybeans 1987-1989	398	1989	51
Soybean	Limestone Requirements for Soybean	455	1996	76
Sovbean	Influence of Poultry Litter and Phosphorus on Soybean Grown			
	on Solino Solio	155	1006	62
~ .	on same sons	455	1990	04
Soybean	Effect of Salt Type on Soybean Growth	455	1996	84
Sovbean	Grain Yield of Maturity Group IV and V Dryland and Irrigated Soybeans			
Boyeeun	a Affected by Fertilizer Detes and Devy Width	155	1006	00
	as Affected by Fertilizer Rates and Row width	433	1990	00
Soybean	Influence of Phosphorus Plus Potash Fertilizer and Irrigation			
5	on Grain Yields of Soybean Cultivars	455	1996	91
C 1	Crear Wild of Dership Crear Wilson of Constraints of Afforda 1	155	1770	1
Soybean	Grain Yield of Double Crop wheat and Soybean as Affected			
	by Fertilizer, Lime and Irrigation	455	1996	95
Soubean	Evaluation of Sovhean to Soil Test Levels and Associated			
Soybean	Evaluation of Soydean to Son Test Levels and Associated		100 6	00
	Fertilization Rates in Arkansas	455	1996	98
a · · ·		200	1000	~
Spinach	Response of 'Fall Green' Spinach to Sulfur Fertilization	398	1989	9
Spinach	'Fall Green' Spinach to Rates of Nitrogen and Sulfur Fertilizers	421	1991	115
Spinoch	'Eall Graan' Spingab to Potes of Nitrogan and Sulfur Fortilizors	411	1000	25
Spinacii	Fair Oreen Spinach to Rates of Nutogen and Suntu Fertuizers	411	1990	35
Spinach	Application of Pelletized Poultry Litter on Fall Spinach Production	436	1993	5
Surface Liming	Response to Surface Liming by Established Fescue Pastures	411	1990	1
_				
Tomatoes	Rate and Timing Effects on Yield and Revenue	450	1995	25
Tomataas	Nitrogen Fertilization of Vine Pinened Tomatoes Following			
	INTERVENTION AND A MICHAELEN AND A TOTALOUS FUTURENTS			
Tomatoes		455	1000	
Tomatoes	a Winter Annual Legume Cover Crop	455	1996	57
Tomatoes	a Winter Annual Legume Cover Crop	455	1996	57
Weed Control	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization	455 425	1996 1992	57 106
Weed Control	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization	455 425	1996 1992	57 106
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment	455 425 425	1996 1992 1992	57 106 52
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation	455 425 425 385	1996 1992 1992 1988	57 106 52 35
Weed Control Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of a Delivering of Dhomburg Fortilizar	455 425 425 385 425	1996 1992 1992 1988	57 106 52 35
Weed Control Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer	455 425 425 385 425	1996 1992 1992 1988 1992	57 106 52 35 49
Weed Control Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds	455 425 425 385 425 385	1996 1992 1992 1988 1992 1988	57 106 52 35 49 65
Weed Control Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorehum or Corn	455 425 425 385 425 385 385	1996 1992 1988 1992 1988 1992 1988	57 106 52 35 49 65 61
Weed Control Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com	455 425 425 385 425 385 385 385 421	1996 1992 1992 1988 1992 1988 1988 1988	57 106 52 35 49 65 61
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program	455 425 425 385 425 385 385 385 421	1996 1992 1988 1992 1988 1992 1988 1988 1991	57 106 52 35 49 65 61 35
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat	455 425 385 425 385 385 385 421 421	1996 1992 1988 1992 1988 1988 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization	455 425 425 385 425 385 385 421 421 450	1996 1992 1988 1992 1988 1992 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Public of Public Core and Nitrogen Rete on Wheat Production	455 425 385 425 385 385 385 421 421 421 450 398	1996 1992 1988 1992 1988 1988 1988 1988 1988	57 106 52 35 49 65 61 35 21 10
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production	455 425 385 425 385 385 385 421 421 421 450 398	1996 1992 1988 1992 1988 1992 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21 10 69
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil	455 425 385 425 385 425 385 421 421 421 450 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21 10 69 63
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat 1988-89	455 425 385 425 385 385 385 421 421 450 398 398 398	1996 1992 1988 1992 1988 1992 1988 1991 1991	57 106 52 35 49 65 61 35 21 100 69 63 73
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Clutivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Estrilization of Wheat Group on Wide Baied Bade	455 425 385 425 385 385 421 421 450 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1991 1995 1995 1989 1989	57 106 52 35 49 65 61 35 21 10 69 63 73 73
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds	455 425 385 425 385 425 385 421 421 450 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21 10 69 63 73 77
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer	455 425 385 425 385 425 385 421 421 421 450 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1991 1995 1995 1989 1989	57 106 52 35 49 65 61 35 21 10 69 63 73 77 55
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization	455 425 425 385 425 385 421 421 450 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21 10 69 63 73 73 75 56
Weed Control Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization	455 425 385 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1991 1995 1989 1989 1989	57 106 52 35 49 65 61 35 21 10 0 69 63 73 77 55 16
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment	455 425 385 425 385 421 421 450 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	57 106 52 35 49 65 61 35 21 10 69 63 73 77 55 16 98
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization	455 425 385 425 385 385 385 421 421 421 421 421 421 421 421 421 421	1996 1992 1988 1992 1988 1988 1991 1991 1991	57 106 52 35 49 65 61 35 21 10 69 63 73 77 55 16 16 98
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer	455 425 385 425 385 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	57 106 52 35 49 65 61 35 21 10 69 63 73 77 55 16 98 105 92
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Outivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Outivar Response to Rate Rate Impricide Treatment	455 425 385 425 385 385 385 421 421 421 421 421 421 421 421 421 421	1996 1992 1988 1992 1988 1998 1988 1991 1991	$57 \\ 106 \\ 52 \\ 35 \\ 49 \\ 65 \\ 61 \\ 35 \\ 21 \\ 100 \\ 69 \\ 63 \\ 73 \\ 77 \\ 55 \\ 16 \\ 98 \\ 105 \\ 92 \\ 92 \\ 92 \\ 92 \\ 92 \\ 92 \\ 92 \\ 9$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 443 436 443 436 443	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	$57 \\ 106 \\ 52 \\ 35 \\ 49 \\ 61 \\ 35 \\ 21 \\ 10 \\ 63 \\ 73 \\ 77 \\ 55 \\ 16 \\ 98 \\ 105 \\ 92 \\ 8 \\ . \\ .$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Clutivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Time of Application of Fertilizer	455 425 385 425 385 425 385 421 421 421 421 421 420 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1998 1991 1991 1995 1989 1989 1989	$57 \\ 106 \\ 52 \\ 35 \\ 49 \\ 65 \\ 61 \\ 35 \\ 21 \\ 10 \\ 69 \\ 63 \\ 73 \\ 77 \\ 55 \\ 16 \\ 98 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 8 \\ 1 \\ 105 \\ 92 \\ 105 \\ 1$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Culturar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Wheat Following Presence Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Fertilizer	455 425 385 425 385 385 421 421 450 398 398 398 398 398 398 398 443 443 443	1996 1992 1988 1992 1988 1991 1991 1995 1989 1989 1989 1989	57 106 52 355 61 355 21 10 69 63 73 77 55 16 988 105 92 8 8 105
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Clutivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Time of Application of Fertilizer	455 425 385 425 385 425 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	57 106 52 355 61 355 61 35 55 10 69 98 81 05 55 16 98 88 10 52 88 10 52 21 10 69 88 80 92 92 92 92 88 80 92 92 92 92 92 92 92 92 92 93 93 93 93 93 93 93 93 93 93 93 93 93
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cluviars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat	455 425 385 385 385 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	57 106 52 355 61 355 61 100 69 69 63 377 75 55 16 69 98 80 105 92 28 8 8 1 62 69 97 27
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production	455 425 385 425 385 425 385 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	57 106 52 35 49 65 61 35 21 100 69 63 37 77 75 55 16 98 810 5 92 88 8 1 69 69 73
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Calviars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultural Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Response to Nitrogen and Phosphorus Fertilization	455 425 385 385 385 385 421 450 398 398 398 398 398 398 443 443 443 443 443 443 385 450	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	57 106 52 355 355 61 100 69 63 355 16 63 73 77 75 55 16 69 98 8 8 1 62 69 97 3 3 73
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilizer Ultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Paulery Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Response to Nitrogen and Phospators Fertilization Wheat Response to Nitrogen and Phospate Settilizer Management and Fertility Practices on Wheat Production Wheat Response to Nitrogen and Phosphorus Fertilization Wheat Response to Nitrogen and Phosphorus Fertilization	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	57 106 52 35 49 49 65 61 100 69 63 37 77 75 55 16 6 98 8 92 8 8 8 1 1 62 69 73 3 1 1 62 69 63 63 65 63 73 75 75 75 75 75 75 75 75 75 75 75 75 75
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Calivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Ultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management	455 425 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	57 106 52 35 49 65 61 35 21 100 69 63 35 73 77 77 55 55 16 69 92 28 8 8 105 92 26 99 73 3 11 62 69 97 3 3 5 92 63 10 65 63 10 65 20 53 53 53 53 53 53 53 53 53 53 53 53 53
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Following Rice on Wheat Production Wheat Response to Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Fertility - Sulfur Timing	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 51\\ 21\\ 13\\ 55\\ 16\\ 69\\ 98\\ 105\\ 92\\ 8\\ 8\\ 1\\ 1\\ 62\\ 8\\ 8\\ 1\\ 1\\ 62\\ 6\\ 6\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\end{array}$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cluivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultural Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Forwing on Permeable Soils to Sulfur Additions	455 425 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 65\\ 61\\ 35\\ 21\\ 100\\ 69\\ 63\\ 35\\ 16\\ 69\\ 92\\ 88\\ 105\\ 922\\ 88\\ 105\\ 922\\ 88\\ 11\\ 62\\ 69\\ 93\\ 11\\ 62\\ 69\\ 73\\ 11\\ 62\\ 75\\ 55\\ 72\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Nitrogen and Seeding Rate on Winter Wheat Response to Time of Application of Fertilizer Wheat Response to Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertilizer Mheat Fertilizy Sulfur Timing Wheat Growing on Permeable Soils to Sulfur Additions Phoenborns Fertilization on Meat Cultivare	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 52\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 55\\ 16\\ 69\\ 98\\ 8\\ 1\\ 1\\ 62\\ 69\\ 73\\ 1\\ 1\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 73\\ 1\\ 1\\ 62\\ 73\\ 73\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 2$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Intensive Management Studies with Wheat Monitoring Program Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultural Prollowing Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Wheat Following of Application of Fertilizer Wheat Following and Phospate and Potash Fertilizer Wheat Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Fertilizer Of Net Following Rice - Fertility Management Wheat Fertility - Sulfur Timing Wheat Growing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars	455 425 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 9\\ 65\\ 61\\ 10\\ 69\\ 63\\ 35\\ 21\\ 10\\ 69\\ 88\\ 8\\ 10\\ 55\\ 69\\ 92\\ 8\\ 8\\ 8\\ 11\\ 6\\ 69\\ 92\\ 11\\ 6\\ 6\\ 92\\ 11\\ 6\\ 6\\ 92\\ 33\\ 23\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 3$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Nitrogen and Seeding Rate on Wheat Polduction Meat Response to Time of Application of Fertilizer Wheat Response to Time of Application of Fertilizer Wheat Response to Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Fertility - Sulfur Timing Wheat Growing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars Intensive Management Studies with Wheat	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 52\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 55\\ 16\\ 69\\ 98\\ 8\\ 1\\ 1\\ 62\\ 69\\ 73\\ 1\\ 1\\ 62\\ 69\\ 73\\ 1\\ 1\\ 62\\ 23\\ 31\\ 5\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization at Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Fertility - Sulfur Timing Wheat Fertility - Sulfur Timing Wheat Fertilization of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars Intensive Management Studies with Wheat Nit	455 425 385 385 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1995 1989 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 355\\ 499\\ 65\\ 61\\ 135\\ 21\\ 10\\ 69\\ 63\\ 77\\ 77\\ 75\\ 55\\ 16\\ 69\\ 8\\ 8\\ 8\\ 1\\ 16\\ 22\\ 3\\ 1\\ 1\\ 6\\ 4\\ 4\\ 4\\ 75\\ 23\\ 3\\ 15\\ 5\\ 25\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Following Grain Sorghum or Corn Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Following Rice on Wheat Production Wheat Response to Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Forwing on Permeable Soils to Sulfur Additions Phosphorus Fertilizion of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil 'Broen' Wheat to Nuw (N HH AU Polynbosphate per Thoosulfare	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 52\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 1\\ 62\\ 69\\ 8\\ 8\\ 1\\ 1\\ 62\\ 69\\ 73\\ 3\\ 1\\ 1\\ 62\\ 25\\ 23\\ 15\\ 25\\ 57\\ 9\end{array}$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Following Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Wheat Following of Pertilizer Wheat Following Rice to Fall Fertilizer Wheat Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Forowing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil 'Rochen' Wheat to N w/o NH4 Polyphosphate or Thiosulfate	455 425 385 385 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1995 1989 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 56\\ 11\\ 10\\ 69\\ 63\\ 73\\ 77\\ 75\\ 55\\ 16\\ 69\\ 8\\ 8\\ 8\\ 1\\ 16\\ 22\\ 3\\ 1\\ 1\\ 6\\ 6\\ 4\\ 4\\ 4\\ 1\\ 1\\ 6\\ 23\\ 3\\ 15\\ 5\\ 23\\ 3\\ 15\\ 5\\ 79\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Fertilization of Wheat With Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilization Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Time of Application of Fertilizer Wheat Response to Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Fertility - Sulfur Timing Wheat Growing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Nitrogen Effects on Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars Intensive Management Wheat Following Rice o Heat Cultivars Intensive Management Studies with Wheat Nitrogen Kertilizer on Wheat Cultivars Neat Or Wheat to Application of Linewstone, P and K	455 425 385 425 385 421 421 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1991	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 52\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 35\\ 21\\ 1\\ 1\\ 62\\ 28\\ 8\\ 8\\ 1\\ 1\\ 62\\ 23\\ 15\\ 25\\ 79\\ 9\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29\\ 29$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Fertilization of Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poultry Litter and Phospate and Potash Fertilizer Wheat Following Rice - Fertility Management Mheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Following Rice - Fertility Management Wheat Forwing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil 'Rosen' Wheat to N w/o NH4 Polyphosphate or Thiosulfate 'Caldwell' Wheat to Applications of Limestone, P and K Wheat Yield Response from Spring Nitrogen Sources.	455 425 385 385 385 385 385 385 421 450 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1991 1995 1989 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 56\\ 11\\ 10\\ 69\\ 63\\ 73\\ 77\\ 75\\ 55\\ 16\\ 69\\ 88\\ 10\\ 55\\ 20\\ 11\\ 6\\ 69\\ 92\\ 8\\ 8\\ 11\\ 6\\ 22\\ 3\\ 15\\ 5\\ 23\\ 3\\ 15\\ 5\\ 23\\ 15\\ 5\\ 29\\ 29\\ 29\\ \end{array}$
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Corn Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response of Wheat Following Rice to Fall Fertilizer Wheat Following Rice to Fall Fertilizer Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Cultivar Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Poulry Litter and Phospate and Potash Fertilizer Applied Nitrogen and Seeding Rate on Winter Wheat Management and Fertility Practices on Wheat Production Wheat Following Rice - Fertility Management Wheat Following One Premable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars Intensive Management Studies with Wheat 'Nitrogen Effects on Wheat Cultivars Intensive Management Studies	455 425 385 425 385 421 421 421 420 398 398 398 398 398 398 398 398 398 398	1996 1992 1988 1992 1988 1988 1988 1991 1995 1989 1989 1989	577 1066 522 355 499 655 211 101 355 211 100 699 633 777 755 566 988 105 922 88 11 6226 699 733 15 215 2259 729 299
Weed Control Wheat	a Winter Annual Legume Cover Crop Forage Response to Weed Control and Balanced Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Fertilization of Wheat Following Rice in the Rotation Response to Time of Application of Phosphorus Fertilizer Nitrogen Fertilization of Wheat Grown on Wide Beds Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Fertilization of Wheat Following Grain Sorghum or Com Nitrogen Timing on Wheat Yields with Wheat Monitoring Program Intensive Management Studies with Wheat Wheat Following Rice to Fertilization Influence of Previous Crop and Nitrogen Rate on Wheat Production Nitrogen Effects on Wheat Cultivars at Stage Ten on Clay Soil Large-Scale Maximum-Yield Studies with Wheat, 1988-89 Nitrogen Fertilization of Wheat Grown on Wide, Raised Beds Cultural Practices on Wheat Response to Nitrogen Fertilizer Wheat Following Rice to Fall Fertilization Cultivar Response to Nitrogen Rate and Fungicide Treatment Response to Strongen Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Rate and Fungicide Treatment Response to Time of Application of Fertilizer Wheat Response to Nitrogen and Phosphorus Fertilizer Wheat Response to Nitrogen and Phosphorus Fertilizer Mheat Following Rice - Fertility Management Mheat Following Rice - Fertility Management Wheat Fertility - Sulfur Timing Wheat Growing on Permeable Soils to Sulfur Additions Phosphorus Fertilization of Wheat Cultivars Intensive Management Studies with Wheat Nitrogen Effects on Wheat Cultivars Stage Ten on Clay Soil 'Rosen' Wheat to Nw/o NH4 Polyphosphate or Thiosulfate 'Caldwell' Wheat to Nye Neat Applications of Limestone, P and K Wheat Yield Response from Spring Nitrogen	455 425 385 385 385 385 385 385 385 421 421 421 421 421 421 421 421 421 421	1996 1992 1988 1992 1988 1992 1988 1991 1995 1989 1989 1989 1989 1989	$\begin{array}{c} 57\\ 106\\ 52\\ 35\\ 49\\ 96\\ 65\\ 61\\ 10\\ 69\\ 63\\ 35\\ 10\\ 69\\ 98\\ 8\\ 10\\ 55\\ 56\\ 16\\ 69\\ 92\\ 8\\ 8\\ 1\\ 1\\ 62\\ 69\\ 93\\ 1\\ 1\\ 6\\ 23\\ 3\\ 15\\ 5\\ 79\\ 29\\ 29\\ 71\\ 1\\ 70\\ 29\\ 71\\ 70\\ 29\\ 71\\ 70\\ 29\\ 71\\ 70\\ 70\\ 29\\ 71\\ 70\\ 70\\ 29\\ 71\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$