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Play in teams of three or four.  Each team needs
100 identical dice-like wooden cubes, 1.0 to 1.5 cm
on a side, each painted on one face.  You can make
these from a board 1.0 to 1.5 cm thick that is painted
on one side (a different color for each team) by sawing
it into � 100 identical cubes.  Each team also needs a
small bucket, named “Cubeland,” graph paper, and a
cardboard box.  

Students could begin by investigating simple prob-
abilistic aspects of the cubes.  Toss, say, 10 cubes and
count the number and the fraction that come up
painted.  Repeat several times and graph the results.
Do the same with 50 cubes and 100 cubes.  What do
students notice about the fraction coming up painted
in the three cases (it “should” get closer to 1/6)?  

Begin the game with all cubes in the box.  Remove
one cube, put it into Cubeland, and toss it onto a level
surface.  If it comes up painted, it “reproduced” that
year, and the team should add one more cube to
Cubeland.  Note that Cubelanders procreate asexually,
like bacteria.6  Put the one or two inhabitants back in-
to the bucket and toss again.  Add zero, one, or two
inhabitants to Cubeland, depending on the outcome
of the toss.  Continue:  Each toss represents one year
in Cubeland history, and the number of painted sides
showing on each toss is the number of “babies” that
year.  Graph the population N versus the year, begin-
ning with N0 = 1 in year 0.  Cubeland’s “carrying ca-
pacity” is arbitrarily deemed to be N = 100.  The 
object of the game is “sustainability,” which we arbi-
Agame-like activity using dice-like cubes can
bring population growth home to all stu-
dents, scientists, and nonscientists alike,

while demonstrating many aspects of probability and
uncertainty that are too often ignored in the physics
curriculum.  The activity can proceed at a variety of lev-
els of sophistication and complication, from a simple
demonstration of exponential growth through an elab-
orate modeling of life expectancy, advanced versus
primitive societies, family planning, birth rate, and
population momentum.  Variations can demonstrate
radioactive decay, resource depletion, and the approach
of a thermodynamic system to statistical equilibrium. 

Humankind needed about 5 million years to reach,
in 1825, a population of one billion.  We reached our
second billion by 1930, our third by 1960, and our
sixth by 1999.  Populations of individual nations such
as the United States show similarly surprising growth.
A population’s annual number of births tends to be
proportional to its size, a feature that can be taken as
the defining characteristic of exponential growth.
Stated differently, populations tend to grow by a con-
stant percentage per year rather than by a constant
amount per year.  

Exponential growth can be surprising.  All of us,
scientists and nonscientists, had better understand
these surprises.  Al Bartlett1, 2 has taught us the signif-
icance of exponential growth, and how to teach it to
our students.  Bartlett’s work has inspired many oth-
ers, including myself in this paper, to expand on this
topic.3 At least two introductory physics texts for
nonscientists present this topic.4, 5
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trarily define as survival of the population for 50 years
without either dying out (N = 0) or exceeding the car-
rying capacity.  

As the game proceeds, you could ask students:
How long do you think it will be before Cubeland is
full?  Predict the shape of the graph.  Will the number
of new offspring be approximately the same every
year?  What will be approximately the same every
year?  (This is a key point:  The percentage increase is
approximately the same each year).  What is the ex-
pected (or average) percentage increase in population
each year (1/6 = 16.7%)?  Is this the actual percentage
increase in every year?  

Exponential growth is identifiable in either of two
equivalent ways:  (1) The percentage increase per unit
of time is unchanging.  (2) The doubling time (the
time for any population N to grow to 2N) is unchang-
ing.  Thus, the preceding questions lead to the conclu-
sion that the expected (or average) growth of Cube-
land is exponential.  

Activities: Estimate the doubling time from the
graph and check whether it is indeed unchanging.
Where and why do deviations occur?  Compare the
observed annual percentage increase with the predic-
tion for this game that P � 75/T (see the following
paragraphs) and also with P � 1/6.  

Many questions can now be pursued.  For example:
Suppose some enterprising Cubelander discovers an
entire empty bucket into which the population can
continue expanding.   How long will it be before this
bucket, too, is full?  Exhibit a graph of the population
explosion7 and ask students if, judging from doubling
times, it really is exponential.  As the statistics quoted
in the opening paragraph show, it was faster than ex-
ponential during most of this time.  More precisely, it
was faster than exponential until 1970, after which it
was slower than exponential.  

For those who want a more detailed analysis:  Since
each cube has a probability of 1/6 of reproducing in
any given year, the expected population in the kth year
is

<Nk> = <Nk-1> + (1/6) <Nk-1>  =  (7/6) <Nk-1> 
=  ....  =  (7/6)k <N0> = (7/6)k.  

Time is in the exponent, which is why we call it
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“exponential growth.”  Solving (7/6)k = 2, we find a
doubling time of T = 4.497 � 4.5 yr.  Thus,
PT = 16.7 � 4.5 = 75, larger than the prediction for
continuous (not stepwise) exponential growth PT �
70.5,8,9

Inform students that the theoretical doubling time
is about 4.5 years, or ask them to calculate and/or find
it experimentally.  Ask each team to make a table
showing the expected population every 4.5 years (see
Table I ).  Apparently, Cubeland reaches overpopula-
tion (N = 100) in about 30 years.  Individual student
graphs, and the class average graph, could be com-
pared with the table.  Using PT � 70, ask the class to
find the doubling times for China (P = 0.6% y-1), the
United States (1.2% y-1), Pakistan (2.8% y-1), and the
European Union (0.1% y-1).  

Life Expectancy 
The previous model is highly unrealistic for human

populations, because death is not included and so
overpopulation is inevitable.  Once students have
played the game as described, they are ready to experi-
ment with a finite life expectancy.  

The game can model life expectancy by simply
specifying a fixed lifetime for all inhabitants, using the
recorded data to remove the necessary number each
year, and otherwise playing the game as described.  It
is helpful to keep a table of births B, deaths D, and
population increase � each year.  Suppose, for exam-
ple, that the lifetime is 10 years.  Then one cube
should be removed from Cubeland at the end of the
10th year (because one cube was “born” in year zero);

k = years doublings      <Nk> =(7/6)k

0 0 1

4.5 1 2

9 2 4

13.5 3 8

18 4 16

22.5 5 32

27 6 64

31.5 7 128

36 8 256

40.5 9 512

Table I.  The expected population of Cubeland.
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for any year k >10, the number removed should be the
same as the number born in year k –10.  

What is a reasonable life expectancy for Cube-
landers?  For survival of a population, the life ex-
pectancy should be at least comparable to the “child”-
bearing age.  The probability of a particular cube hav-
ing its first “baby” in its kth year is 

Pk =  Prob (unpainted at the first k-1 throws) �
Prob (painted at kth throw)

=  (5/6)k-1 � (1/6) .

Table II shows this probability Pk of a single cube
having its first baby in its kth year, and the cumula-
tive probability that a single cube will have its first
baby sometime during its first k years.  Apparently,
the median age of a cube at the time of its first baby
is a little less than 4 years.  You could just provide
this information to students, or ask them to calculate
and/or find it experimentally.  

Thus, a primitive Cubeland would have a life ex-
pectancy of 4 to 6 years, just a little larger than  the
childbearing age.  Different teams should try life ex-
pectancies of say 4, 6, 8, 10, 12, and 14 years.  Among
nations, Japan’s 82-year average life expectancy —
three or four times the human childbearing age — is
the world’s longest.  Average life expectancy in the
most advanced nations has risen linearly for 160 years
and could reach 100 within six decades.10

Cubeland societies with a four-year life expectancy
will probably become extinct (N = 0) during the first
few years.  There is also a high probability of extinc-
tion with lifetimes of 6 to 8 years.  There is a lesson

Table II. The probability Pk of a Cubelander having its
first baby in its kth year and its cumulative probability
of having its first baby during its first k years.

k Pk �n=1
k Pn

1 0.167 0.167

2 0.139 0.306

3 0.116 0.421

4 0.0964 0.518

5 0.0803 0.598

6 0.670 0.665
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here, of course:  Populations that are both small and
very primitive are highly susceptible to extinction.
These teams should then start over with a new graph
and a longer assigned lifetime.  Teams with lifetimes
of 12 to 14 years will probably reach overpopulation
well before 50 years, mirroring the fact that the hu-
man population explosion is a consequence of in-
creased life expectancy arising from medical advances.
This suggests that advanced societies cannot survive
without family planning.  

Family Planning
After students have played the game with finite

lifetimes, they are ready to add family planning.  To
model universal one-child family planning (all inhabi-
tants have at most one child), let the game proceed
with a finite lifetime and no family planning until the
population has reached a certain size, and then insti-
tute family planning as illustrated in the following 
example.  

Choose a lifetime such as 14 years, corresponding
to an advanced nation, and play the game with no
family planning until the population passes, say, N =
60.  At this point, a Cubeland physicist notices the
population problem and recommends a one-child
family-planning policy beginning next year.  On the
next throw, all the cubes that come up painted should
be put into a special “no-further-babies” zone outside
of the bucket (although these are still counted as citi-
zens of Cubeland).  In order not to make mistakes, the
team should keep careful track of B, D, and � each
year.  It is also a good idea to specifically add Bk cubes
to the bucket in the kth year, and then separately re-
move Dk (= Bk-14) cubes.  

There is one additional proviso:  Deaths must
come proportionally from both the no-babies zone and
from the bucket.  For example, if there are about twice
as many in the bucket as in the no-babies zone, then
about two-thirds of the deaths should come from the
bucket and one-third from the no-babies zone.  

Students can observe “population momentum” in
this model:  Rapid growth continues for a few years
after family planning has started.  This can carry
Cubeland to overpopulation even when family plan-
ning starts at, say, N = 60.  But if planning starts at 
N = 40, for example, the graph will probably continue
rising but at a reduced rate, and then level off and de-
229
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Fig. 1. Fifty-year population history of Cubeland for a primitive society having individual lifetimes of only
6 years, slightly above the childbearing age of about 4 years, with no family planning. 
cline in a bell-shaped curve.
Two-child family planning can be modeled by us-

ing a second bucket (for cubes that have had one ba-
by) in addition to the no-further-babies zone (for
cubes that have had two).  I’ll leave the details to the
reader.  

Students can model various real-world scenarios:
(1) A less-developed nation in which life expectancy is
low and there is no family planning.  (2) An initially
less-developed nation that, after a certain number of
years, becomes more developed (longer life expectan-
cy) but still with no family planning.  (3) A nation
that proceeds through the “demographic transition”
— less-developed period of short life expectancy and
no family planning, followed by a development period
of longer life expectancy and no family planning, fol-
lowed by a developed period of long life expectancy
and family planning.11 Different teams can experi-
ment with different life expectancy and family-
planning assumptions.  

Teams can compete to attain a specific sustainable
population goal.  Each team should choose a particu-
lar set of assumptions and play the game with those
fixed assumptions.  The team whose population levels
off closest to the pre-assigned goal wins.  

Some teams could experiment with cubes painted
on two sides (paint the board on both sides before
230
sawing it into cubes) to mirror the effect of a higher
annual per capita birthrate.  The game could be com-
pleted faster and with more variations on a computer,
using a random number generator.  A computer could
vary the longevity, family-planning options, maxi-
mum population, number of years of data, and espe-
cially the birthrate, which is set at 16.7% babies per
cube per year in the Cubeland model.  But my guess is
that this would not be as much fun as the hands-on
version.  

Classroom Trials
The simplest models (the life-expectancy model

and the life-expectancy-plus-one-child-family-
planning model) were tested at two workshops in
Guilin, China.  There were about 25 people in each
workshop, divided into seven teams.  The workshop
attendees were graduate students in physics education
at Guangxi Normal University in Guilin and universi-
ty physics professors from all over China.  Each work-
shop spent about four hours playing all three versions
of the game and discussing the pedagogy and the soci-
etal implications.  

Figures 1–3 show typical results.  Each figure is a
graph of Cubeland’s population during 50 “years” of
play.  Births are tabulated in row “B” below the graph,
deaths are tabulated in row “D,” and the population
THE PHYSICS TEACHER � Vol. 41, April 2003
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Fig. 2. Population history for an advanced society having individual lifetimes
of 14 years and universal one-child family planning beginning when the popu-
lation passes 60. 
increase each year is tabulated in row “�.”  
The conditions used for Fig. 1 are a lifetime of six

years and no family planning.  A six-year lifetime is
barely above the childbearing age of about four years
and corresponds to a primitive society.  In the work-
shop, such societies either became extinct or grew very
slowly.  In Fig. 1, the population grows very slowly,
mirroring the slow growth of the human population
from about 5 million years ago until the advent of
more modern sanitation and medicine around 1400
A.D.  The population of Fig. 1 reaches the 50-year
mark with a population of only 26, well below over-
population.  At least during this time, family planning
is not needed.  Note that 50 years is 12 times the aver-
age childbearing age, and so corresponds to some
three centuries of human history.  

The conditions for Fig. 2 are a lifetime of 14 years
and one-child family planning beginning when the
population passes 60.  The 14-year lifetime is about
four times the childbearing age and corresponds to an
advanced society such as Japan.  The necessity of fami-
ly planning in such a society can be seen in Fig. 2,
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which is clearly on the path to
overpopulation by the time N =
60.  The population first exceeds
60 in year 26, and the one-child
policy is instituted.  But the new
policy starts too late:  By year 30,
the population exceeds 100.  We
see here the effect of population
momentum.  The preponderance
of younger individuals (those
cubes that have not yet been
placed into the no-further-babies
zone) implies large population
increases even long after the one-
child policy begins.  

Figure 3, on the other hand,
corresponds to a more rational
advanced society.  Again, the life-
time is 14 years, but the one-
child policy begins when the
population passes 30.  This level
is reached in year 15.  Then, the
slope of the graph begins to de-
crease, but population momen-
tum maintains a population in-
crease until about year 27, when the graph finally
turns around.  The society sustains itself for 50 years,
but by this time the population has dropped to the
dangerously low level of eight.  Apparently, this soci-
ety would have done well to relax its one-child policy,
perhaps to a two-child policy, around year 32.  

Other Phenomena
RRaaddiiooaaccttiivvee ddeeccaayy::12 Start with all the cubes in the
bucket, toss them, and remove the ones that come up
painted because they “decayed” during that year.  Put
the undecayed cubes back in the bucket and toss
them, again removing the decayed cubes, etc.  At
what “time” (number of throws) is the “radioactive
sample” (cubium?) down to one-half of its original
size?  Predict the time at which the sample will be
down to one-fourth.  To one-eighth.  Predict the
time until the sample is entirely decayed.  Compare
the results of different teams.  Try two species mixed
together, one with a single side painted and the other
with two sides painted.  
231
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Fig. 3. Population history for a society that is identical to that of Fig. 2, except that the one-child policy is adopt-
ed when the population passes 30.  
CCoonnssuummppttiioonn ooff aa nnoonnrreenneewwaabbllee rreessoouurrccee:: Each
team needs three buckets.  Buckets A and B contain
the resource, “cube ore,” initially divided equally
between the two buckets.  Bucket C, initially empty,
represents the cumulative production of cube ore.
Place 50 cubes in A and 50 in B.  Remove one cube
from A and place it in C, representing the first suc-
cessful mining of cube ore.  Toss the cube from C.
After one or more tosses (years), it comes up painted,
representing further mining:  Move one more cube
from A to C.  Toss both of the cubes in C and move
0, 1, or 2 cubes from A to C depending on the num-
ber that come up painted.  Continue, graphing the
annual production, the cumulative production C,
and the remaining resource A + B until A is deplet-
ed.  If a few additional cubes are needed on the last
toss, take them from B.  

The total resource (A + B) is now half depleted and
production becomes more difficult (typical for nonre-
newable resources).  To represent this turnaround
point, begin tossing the cubes in bucket B because the
production process is now resource limited (bucket B)
rather than production-efficiency limited (bucket C).
Oil has passed this turnaround point in the United
232
States but is still approaching it worldwide.  As usual,
the cubes that come up painted have been “mined”
and are moved from B to C.  Continue mining bucket
B, continuing all three graphs.  

IIrrrreevveerrssiibbiilliittyy aanndd tthhee aapppprrooaacchh ttoo ssttaattiissttiiccaall 
eeqquuiilliibbrriiuumm:: Use two buckets, A and B.  Place all
100 cubes in A.  The two buckets represent the left
and right halves of a box that contains “cubium” gas
molecules.  Initially, the gas is entirely in the left
half, kept there by an impermeable membrane.  At t
= 0, the membrane is punctured and cubium begins
diffusing into B.  Toss the cubes.  Cubes coming up
painted are deemed to have diffused from A to B;
put them into bucket B.  Now toss both buckets.
Cubes from A coming up painted have diffused to B,
while cubes from B coming up painted have diffused
to A.  Continue, graphing the two populations, and
observe the evolution to equilibrium.  This model is
basically Paul Ehrenfest’s “double-urn” model of the
approach to equilibrium.13

The reader can probably dream up additional ways
of using the population cubes.  
THE PHYSICS TEACHER � Vol. 41, April 2003
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