Ultrasmall Electrochemical Devices

Essentially, smaller (both in size of device and of sample) is better, more sensitive, and provides better detection limits! A variety of procedures that were developed for silicon wafer-based, integrated circuit electronics fabrication are used to construct microscopic devices with submicron dimensions.

We have also developed a simple and inexpensive fabrication method for devices on flexible substrates that are capable of self-contained electrochemistry from microliter to picoliter-sized samples. For example, cavities of various geometries can be formed into layered materials of conductor and insulator, each 100’s of angstroms to several 100’s of microns thick. This yields nanometer to micron-sized features on the walls of the cavities. Such devices provide multiple functionality both laterally (parallel to the plane of the substrate) and vertically (perpendicular to the plane of the substrate). If several of the layers are conducting, then many electrodes may reside in a very small space. The combination of the close proximity of these electrodes and the ability to analyze ultrasmall samples in the small space provides unique capabilities that are not possible with traditional electrochemical cells. We are using this basic construct to develop fast microelectrochemical immunoassays (on volumes less than 1µL) and to investigate new approaches for in vivo analysis of neurotransmitters.

If you want more information or to join us you can contact us!

Back to Research Projects