Publications on Magentohydrodynamics and of Magnetic Field Effects for Microfluidics: Fundamental and Applications

  1. Arumugam, P. U.; Belle, A. J.; Fritsch, I. “Inducing Convection in Solutions on a Small Scale: Electrochemistry at Microelectrodes Embedded in Permanent Magnets ”, IEEE Transactions on Magnetics, 2004, 40(4), 3063-3065.
  2. Clark, E. A.; Fritsch, I. “Anodic Stripping Voltammetry Enhancement by Redox Magnetohydrodynamics”, Chem., 2004, 76(8), 2415-2418.
  3. Arumugam, P. U.; Clark, E. A.; Fritsch, I. “Use of Paired, Bonded NdFeB Magnets in Redox Magnetohydrodynamics”, Chem.  2005, 77, 1167-1171.
  4. Anderson, E. C.; Fritsch, I. “Factors Influencing Redox Magnetohydrodynamic-Induced Convection for Enhancement of Stripping Analysis”, Chem. 2006, 78(11), 3745-3751.
  5. Aguilar, Z. P.;Arumugam, P.; Fritsch, I. “Study of magnetohydrodynamic driven flow through LTCC channel with self-contained electrodes”, Electroanal. Chem.  2006, 591, 201-209.
  6. Arumugam, P. U.; Fakunle, E. S.; Anderson, E. C.; Evans, S. R.; King, K. G.; Aguilar, Z. P.; Carter, C. S.; Fritsch, I. “Redox Magnetohydrodynamics in a Microfluidic Channel: Characterization and Pumping”, Electrochem. Soc. 2006, E185-E194.
  7. Weston, M. C.; Anderson, E. C.; Arumugam, P. U.; Yoga Narasimhan, P.; Fritsch, I. “Redox Magnetohydrodynamic Enhancement of Stripping Voltammetry: Toward Portable Analysis Using Disposable Electrodes, Permanent Magnets, and Small Volumes”Analyst 2006, 131, 1322-1331.
  8. Anderson, E. C.; Weston, M. C.; Fritsch, I., “Investigations of Redox Magnetohydrodynamic Fluid Flow At Microelectrode Arrays Using Microbeads”, Chem., 2010, 82 (7), 2643–2651.
  9. Weston, M. C.; Nash, C. K.; Fritsch, I. “Redox-Magnetohydrodynamic Microfluidics Without Channels and Compatible with Electrochemical Detection Under Immunoassay Conditions”, Chem. 2010, 82 (17), pp 7068–7072. (NIHMS226633) PMCID: PMC2967306
  10. Sen, D.; Isaac, K. M.; Leventis, N.; Fritsch, I. “Investigation of Transient Redox Electrochemical MHD using Numerical Simulations, J. Heat and Mass Transfer 2011, 54(25-26), 5368-5378.
  11. Ensafi, A. A.; Nazari, Z.; Fritsch, I. “Redox Magnetohydrodynamics (MHD) Enhancement of Stripping Voltammetry of Lead(II), Cadmium(II) and Zinc(II) Ions Using 1,4-Benzoquinone as an Alternative Pumping Species”, Analyst 2012, 137, 424-431; DOI: 10.1039/c1an15700k.
  12. Cheah, L.T.; Fritsch, I.; Haswell, J.; Greenman, J. “Evaluation of Heart Tissue Viability under Redox-Magnetohydrodynamics Conditions: Toward Fine-Tuning Flow in Biological Microfluidic Applications”, Biotechnology and Bioengineering 2012, 109(7), 1827-34.
  13. Weston, M. C.; Fritsch, I. “Manipulating Fluid Flow on a Chip Through Controlled-Current Redox Magnetohydrodynamics”, Actuat. B  2012, 173, 935-944; DOI:10.1016/j.snb.2012.07.006.
  14. Weston, M. C.; Nash, C. K.; Homesley, J.; Fritsch, I. “Harnessing the High Ionic Current from the Faradaic Transient to Maximize Flow Velocities in Redox-Magnetohydrodynamic Microfluidics”, 2012, Chem., 84, 9402−9409.
  15. Scrape, P. G.; Gerner, M. D.; Weston, M. C.; Fritsch, I. “Redox-Magnetohydrodynamics for Microfluidic Control: Remote from Active Electrodes and their Diffusion Layers” Electrochem. Soc., 2013, 160, H338-H343, DOI: 10.1149/2.076306jes.
  16. Gao,F.; Kreidermacher, A.; Fritsch, I.; Heyes, C. D., “3-D Imaging of Flow Patterns in an Internally-Pumped Microfluidic Device: Redox Magnetohydrodynamics and Electrochemically-Generated Density Gradients”, Chem., 2013, 85(9), 4414-4422. DOI: 10.1021/ac3036926.
  17. Sahore, V.; Fritsch, I. “Flat Flow Profiles Achieved with Microfluidics Generated by Redox-Magnetohydrodynamics (MHD)” Chem., 2013, 85, 11809–11816. (doi:10.1021/ac402476v).
  18. Sahore, V.; Fritsch, I., “Redox-Magnetohydrodynamics, Flat Flow Profile-Guided Enzyme Assay Detection: Toward Multiple, Parallel Analyses”, Chem., 2014,86(19), 9405-9411. DOI: 10.1021/ac502014t
  19. Sahore, V.; Fritsch, I. “Microfluidic Rotational Flow Generated by Redox-Magnetohydrodynamics (MHD) under Laminar Conditions using Concentric Disk and Ring MicroElectrodes”, Nanofluid., 2015, 18(2),159-166. DOI 10.1007/s10404-014-1427-6.
  20. Hutcheson, J. A.; Powless, A. J.; Majid, A. A.; Claycomb, A.; Fritsch, I.; Balachandran, K.; Muldoon, T. J., “High-throughput microfluidic line scan imaging for cytological characterization”, Proceedings, in SPIE BiOS (pp. 93200Y-93200Y). International Society for Optics and Photonics, 2015.
  21. Nash, C. K.; Fritsch, I. “Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Magnetohydrodynamics (MHD): Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution”, Chem., 2016, 88(3), 1601-1609. DOI: 10.1021/acs.analchem.5b03182.
  22. Hutcheson, J. A.; Khan, F. Z.; Powless, A. J.; Benson, D.; Hunter, C.; Fritsch, I.; Muldoon, T. J. “A light sheet confocal microscope for image cytometry with a variable linear slit detector”, Proceedings in SPIE BiOS, (pp. 97200U-97200U) International Society for Optics and Photonics, 2016.
  23. Khan, F. Z.; Hutcheson, J.; Hunter, C. J.; Powless, A. J. Benson, D.; Fritsch, I.*; Muldoon, T. J.* “Redox-Magnetohydrodynamically controlled fluid flow with poly(3,4-ethylenedioxythiophene) (PEDOT) coupled to an epitaxial light sheet confocal microscope for image cytometry applications”, Chem., 2018, 90(13), 7862-7870, DOI: 10.1021/acs.analchem.7b05312.
  24. Hähnel, V.; Khan, F. Z.; Mutschke, G.; Cierpka, C.; Uhlemann, M.; Fritsch, “Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems:, Scientific Reports 2019, 9:5103. DOI: 10.1038/s41598-019-41284-0.
  25. Khan, Z.; Fritsch, I. “Chip-Scale Electrodeposition and Analysis of Poly(3,4-ethylenedioxythiophene) (PEDOT) Films for Enhanced and Sustained Microfluidics Using DC-Redox-Magnetohydrodynamics”, Journal of The Electrochemical Society 2019, 166 (13), H615-H627.