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ABSTRACT 

An interactive method is presented for modifying a compromise 

solution to a multiobjective water resources planning stategy by 

changing constraining conditions on regional objectives and local 

variables. The method is illustrated by modifyin·g a bicri terion, 

sustained groundwater withdrawal strategy for minimizing the cost of 

meeting regional water demand on the Arkansas Grand Prairie. The 

strategy was developed using a model in which the finite difference 

form of the two-dimensional groundwater flow equation is embedded in 

an optimization process. The quadratic optimization is accomplished 

by utilizing the General Differential Algorithm to obtain values of 

the drawdown, pumping rate, and recharge rate in each finite 

difference cell. Results from the formal optimization process are 

submitted to a separate program for interactive evaluation and 

modification. The interactive algorithm applies the constraint method 

and constrained derivatives of the objective function to develop the 

noninferior solution and tradeoff functions. The modification 

procedures is also used in determining the influence on the regional 

objectives for repeated changes in several local decision variables. 
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INTRODUCTION 

The development of a regional water resources management strategy often includes the application of optimization theory to determine the allocation plan that most effectively satisfies a desired objective. The three major elements of any optimization problem are the objective function, the constraints and the variables. In this paper, an objective function is a statement of the desired goal of a regional water management strategy. The constraints in the optimization problem represent local conditions which affect attainment of the regional objectives and when a finite difference technique is used in management models such as this one, the conditions are each node or finite difference cell are considered "local" variables. Therefore, any decision made for the purpose of improving or degrading a local variable is referred to as a local decision. 

Within the complex arranagement of legislative, sociologic, and economic goals influencing water resources management, it is difficult, if not impossible, to optimize a single objective function without adversely affecting other regional objectives and the values of local variables. Because opposing interests and ideas cannot be ignored in a realistic optimization procedures, there is a need for a technique of rapidly modifying the constraining conditions on local variables and determining the resulting effect on multiple regional objectives. 

Because several decision makers are usually involved in selecting a water resources management strategy, the modification method should be interactive. Interactive techniques of multiobjective analysis have been used to improve the coordination of subjective decision makers with an objective numerical process (Mondarchi and others, 1973: Haimes and Hall, 1974). With an interactive procedure, the decision makers can actively participate in: (1) moving through the decision space defined by a multiobjection analysis to decide on a compromise between regional objectives, and: (2) changing the bounded on decision variables to reflect local considerations. 
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When conflicting objectives exist in the same problem, no single 
solution is available in which all aspects are optimally attained. 
However, through the application of generating techniques (Cohon and 
Marks, 1975) a noninferior set of solutions can be created. This 
solution set is also referred to as a "nondominated" set, the "Pareto 
Optimum", the "transformation curve" or the "efficiency" curve. A 
feasible solution is noninferior if no other feasible solution exists 
that will cause one objective to improve without forcing at least one 
other objective to degrade (Cohon, 1978). At each noninferior 
solution, the relationship between competing goals is expressed in 
terms of a tradeoff function. The tradeoff function describes the 
amount of one objective that must be sacrificed in order to improve 
attainment of another objective. Every basic or decision variable 
also exhibits a tradeoff relationship with the objective functions. 
Dual values, LaGrange Multipliers, shadow prices or constrained 
derivatives, describe the relative worth of each local decision 
variable on the regional objective. In the development of water 
management strategies, the objective functions applied to a region are 
frequently a maximization or minimization of the aggregate effects on 
subareas within the region. This utilitarian approach provides for 
regional optimization at the expense of local development. By knowing 
how local changes affect regional optimality, changes in local 
variables can be considered in regional management decisions. 

One purpose of this paper is to present a method and example that 
utilize quadratic parametric programing techniques in an interactive 
manner to develop the noninferior solution set and tradeoff functions. 
The second purpose is to demonstrate how this method may be used to 
rapidly determine the effect on the compromise solution due to 
repeated changes in any number of decision variables. 

As a developmental step in the Grand Prairie Water Supply Project, 
(Peralta and others, 1984a), the interactive method is demonstrated, 
in this paper, through application to the bicriterion problem of 
developing a conjunctive use, sustained yield pumping strategy for the 
Grand Prairie region of Southeast Arkansas. Opposing objective 
functions considered in this example include a linear function to 
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maximize regional groundwater withdrawal and a quadratic expression to 

minimize the total cost of supplying regional water demand. These 

objective functions are simultaneously evaluated within the same 

framework of physical and institutional constraints. 

These two regional goals are contradictory because the surface 

water network proposed by the C9rps of Engineers does not supply 

surface water to all areas of the Grand Prairie. Consequently, those 

areas not serviced by the surface water network must rely on 

groundwater resources alone to fulfill their irrigation needs. By 

pumping groundwater in areas where surface water is not available, 

other areas are "forced" to use surface water at a cost greater than 

that of groundwater. 

Groundwater flow is simulated by applying the finite difference 

form of the two-dimensional steady-state groundwater flow equation, 

(Pinder and Bredehoeft, 1968) as part of the constraining conditions 

in the optimization model. This technique of linking the simulation 

to the optimization model is called the embedding method (Gorllick, 

1983). 

In the illustrative example, local variables subject to management 

constraint include the drawdown, pumping, and recharge in each finite 

difference cell. (Several considerations for determining limitations 

on these variables are listed by Bear (1979)). In this paper drawdown 

is defined as the difference in elevation between a horizontal datum 

and the potentiometric surface. Groundwater pumping refers to the 

rate of groundwater removed from the system by a well penetrating the 

aquifer, and recharge represents the rate of water entering the 

groundwater system from outside the region. The net sum of pumping 

and recharge in each cell is referred to as excitation. 

OBJECTIVES FOR THE GRAND PRAIRIE 

The quadratic objective function applied in the example, is unique 

in that it estimates the cost of maintaining a sustained yield by 

minimizing the cost of both groundwater and surface water required to 
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satisfy regional demand. A complete derivation of this objective function and the factors involved is presented by Peralta and Killian, 1985. For·the purposes of this paper the following general representation is satisfactory. 

minimize 

where: 

N 
~ c e ( i ) p ( i ) f ( s ( i ) ) + cm ( i ) p ( i ) + ca ( i ) pa ( i ) i+i 

z 1 the total annual cost of water supply, ($/year); N the total number of finite difference cells in which drawdown and pumping are variable; 

p ( i) 

f(s(i)) 

the cost associated with raising a unit volume of groundwater one unit distance, ($/L 4 ); 
the annual volume of groundwater pumped fro cell i, 
{L3/year); 
a linear function of drawdown which describes the total 
dynamic head at cell i, (L); 
the annual cost associated with a unit volume of groundwater pumped, ($/L 3 ); 
the annual cost per unit volume of alternative water supplied in cell i, ($/t 3 ); 
the annual volume of alternative water use at cell i, 
(L 3/year). 

Because water requirements of each cell are satisfied by the conjunctive use of groundwater and an alternative water source, the following relationship is used to replace Pa(i) in equation (1). 

Pa(i) = w{i) - p(i) 
where: 

for i=l,N 

w(i) the annual water requirements in cell i, (L 3/year). 

( 2 ) 

(1) 
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The linear objective function used to maximize regional 
groundwater pumping is similiar to the formulation used by Aguado and 
others (1974), Alley and others (1976), and Elango and Rouve (1980). 

I· This is described as follows. 

maximize z
2 = 

where: 

N 
L 

i=l 
p ( i) 

( 3 ) 

the total volume of groundwater annually withdrawn from the 
region, (L 3/year). 

The problem consisting of both objective functions is a two 
dimensional vector within a solution space of dimension 2N + M, where 
Mis the total number of constant head cells with variable recharge. 
The following notation is used to describe this situation. 

( 4 ) 

Because it is not possible to maximize or minimize this problem 
without either prior knowledge or numerical representation of 
management preference, the term "optimize", as it appears in equation 
(4), refers to defining the set of noninferior solutions. 

The regional goals expressed by the objective functions are 
dependent on the drawdown, pumping, and recharge in each finite 
difference cell. Each of these local variables is limited by an upper and lower bound. The bounds on these variables delineate the feasible 
region, or solution space. The feasible region for the bicriterion 
example problem is defined by the following constraints. 

K 
p( i) = L - t(i,j) s(j) for i=l,N ( 5 ) j=l 

K 
r(m) = ~ - t(rn,j) s ( j) for m=l,M ( 6 ) j=l 

s 
min 

( i) < s ( i) < s ( i) for i=l,N ( 7 ) max 
Pmin(i) < p ( i) < Pmax(i) for i=l,N ( 8 ) 
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rrnin(m) < r(m) < rrnax(m) for m=l,M ( 9 ) 

where: 

K 
t(i,i) = ~ - t(i,j) 

t(i,j) 

s(j) 

K 

M 

smin(i) 

smax(i) 

Prnin(i) 

r(m) 

j=l 
jii 

the average transmissivity between finite difference cell i 
and j, for it j, (L 2/year); 
the drawdown.in finite difference cell j, (L); 
the total number of cells in the study area, also the total 
number of inequality constraints, K = N + M; 
the total number of constant head cells in the region; 
the lower limit on drawdown in cell i, CL); 
the upper limit on drawdown in cell i, (L); 
the lower limit on annual groundwater pumping 
in cell i, (L 3/year); 

the upper limit on annual groundwater pumping in cell i, 
(L 3/year); 

the annual recharge at constant head cell m, 
(L 3/year); 

the lower limit on annual recharge in constant head cell m, 
(L 3/year); 

the upper limit on annual recharge in constant head cell m, 
(L 3/year). 

Equality constraint (6) describes the recharge, necessary to 
achieve mass balance, which occurs in the constant head cells. The 
upper bound placed on a particular constant head cell,. rmax(m), is 
applied to limit the recharge to that volume historically available in 
a given area. The lower bound, rmin(m), if non-negative assures that 
no groundwater will leave the region at this point. In application of 
the management model, the lower limit on recharge was typically set 
equal to a negative value of large magnitude such that there was no 
restriction on the annual volume of water which left the system at 
constant head cells. 

Equality constraints (5) and (6) are substituted into the 
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objective functions and constraints (8) and (9) such that the only 

explicitly defined vaiiable is drawdown. Pumping and recharge are 

defined in terms of the slack variables associated with constraints 

(8) and (9), respectively. 

THEORY 

Generation Technique 

The method used in this paper to generate the noninferior solution 
set is referred to by Cohon and Marks (1975) as the constraint method. 

Under the constraint method, all but one objective become additional 

constraints. The single, or principal objective is optimized by 

conventional methods while the constrained objectives are limited by a 

chosen value. The selection of a principal objective does not 

indicate management preference. 

To construct the noninferior solution set, the limiting value for 

a particular constrained objective is varied and the principal 

objective optimized at each new point. This is generally defined by 

the following formulation. 

min/max zp = f(x) (10) 

subject to: 

zh > Lh For h=l,H (11) 
where: 

zp value of the principal objective function; 

zh value of objective constraint h; 

Lh the limiting value of objective constraint h; 

H total number of objective constraints. 

For the example, the linear objective function, equation (3), 

becomes an objective constraint and the problem description is 

represented in the operational form: 

minimize z
1 

= g(s) ( 1 2 ) 
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Subject to the conditions of the feasible region as previously defined 

by (5), (6), (7), (8), (9), and the following additional condition. 

z2 ~ L2 
where: 

g(s) equation (1) expressed in terms of drawdown alone; 

( 13) 

L2 the minimum allowable total groundwater annually withdrawn 

from the aquifer underlying the region, (L 3/year). 

At the value of L2 , a new value of z 1 is computed. Within the 

feasible region of the solution space, the objective constraint will 

be binding. Therefore, a noninferior solution exists as a set of N 

drawdown values, at which z2 is equal to L
2

. 

The values of L2 represent the minimum allowable regional pumping 

imposed by a management decision. The range of L2 for which the 

objectives will be conflicting and the corresponding range of regional 

cost values are defined by the following limits. 

z 2 at min z 1 ~ L2 ~ max z 2 
for: 

min z 1 ~ z 1 ~ z 1 at max z 2 

( 14) 

For values of L2 less than z 2 at min z 1 , the constrained objective and 

the principal objective are not in opposition, the objective 

constraint is not binding and the value of z
1 

resulting from the 

optimization is equal to min z
1

. 

A systematic approach to developing the noninferior solution set 

varies the value of L2 from one extreme to the other, covering the 

entire range in a predetermined number of steps. By using a 

controlled interactive method, only areas of the solution set which 

are of particular interest to the decision makers need be examined. 

Thus, by ignoring areas of the region which are of little concern, 

such as the extreme ends of the feasible range, each decision maker 

can accurately pinpoint his or her best-compromise solution with 

minimal computational effort. By using a differential algorithm in 
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this interactive procedure, tradeoff functions for each regional 

objective and each local decision variable are readily available. 

General Differential Algorithm 

The General Differential Algorithm, developed by Wilde and 

Beightler (1967) and discussed in detail by Morel-Seytoux (1972), is a 

direct climbing method of locating the optimal solution through a 

systematic gradient search routine. The interactive technique 

presented in this paper uses an extension of the General Differential 

Algorithm to evaluate the change in the value of the principal 

objective function and the system response resulting from a change in 

the optimal solution set. 

To aid in the explanation of the General Differential Algorithm 

consider the minimization of a quadratic objective function with N 

variables subject to K inequality constraints. During any iteration 

in the search process, the problem will consist of K equations and N+K 

variables, (K of these variables are slack variables introduced to 

transform the inequality constraints into equality conditions). The 

constraining equations are linear and K variables can be expressed as 

a function of N independent variables. N independent variables are 

initially referred to as decision variables while K dependent 

variables are referred to as solution or state variables. The 

specific separation of variables into state variables and decision 

variables is known as the partition of the system. 

The functional equivalents of the state variables are directly 

substituted into the objective function such that the objective 

function is an unconstrained expression of N decision variables and no 

state variables. Durinq each iteration in the optimization process, 

one decision variable is changed to improve the value of the objective 

function. A change in any decision variable will cause every state 

variable related hy the K equality conditions to change. 

Because the objective function is expressed in terms of drawdown 

alone in the example problem, a decision variable is either a drawdown 
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variable, or a slack variable corresponding to one of the inequality 

conditions described by constraints (8), (9), and (13). At the 

optimum, all decision variables that are limited by a binding 

constraint are associated with a non-zero constrained derivative. 

Assuming a minimization process, if a decision variable is against an 

upper limit, the related constrained derivative must be negative. A 

decision variable has a positive constrained derivative associated 

with it if the lower limit is binding. If the value of a decision 

variable is not equal to a•limiting condition, the corresponding 

constrained derivative is zero and any change in the decision variable 

does not improve the value of the objective function. This is simply 

a less dogmatic explanation of the Kuhn-Tucker conditions. 

Constrained Derivatives 

The change in the value of the unconstrained form of the principal 
objective function, for a given change in a particular decision 

variable, is expressed in terms of the gradient of the unconstrained 

objective function. The gradient of the objective function is the 

vector of first partial derivatives with respect to the decision 

variables. Each first partial derivative is referred to as a 

constrained derivative. ("Constrained" derivative implies that the 

constraining conditions have been substituted into the objective 

function.) The constrained derivative describes the direction and 

magnitude of a change in the value of the objective function for an 

instantaneous change in the value of the decision variable. 

Because the objective function described in this application is a 

quadratic expression, each constrained derivative of the objective 

function is a linear function of decision variables. Thus, for a 

change in the value of a single decision variable, the values of all 

related constrained derivatives also change. ~he change in the value 

of each constrained derivative is determined by evaluating the vector 

of second partial derivatives of the objective function with respect 

to the decision variables. For a quadratic objective function, this 

will be a vector of constant terms. The change in the constrained 

derivatives of the principal objective function for a change in 
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decision variable i is described in terms of the second partial 
derivatives as follows. 

·6v(j) = b(j,i) 6x (i) 
d 

for j=i,N 
and i-1,N 

(15) 

where: 

6v( j) 

6 xd ( i) 

b( j, i) 

the change in the value of the constrained derivative; 

the specific change in decision variable i, or the 
difference between x'd(i) and xd(i); 

the second partial derivative of z taken first with 
respect to decision variable j andpagain with respect to 
decision variable i; 

the new value of decision variable i; 

the value of decision variable i, prior to increasing or 
decreasing the value. 

Utilizing equation (15), the change in the value of the objective 
function for a change in one decision variable is expressed in terms 
of both the first order and second order partial derivatives as 

dzp/ dxa.C i) = V ( i) + b ( i, i) .6. Xa ( i) 

for i=l,N 

( 16) 

where: 

v(i) 

b(i,i) 

the constrained derivative of zp with respect to 
decision variable xd(i); 

the second partial derivativ~ of zp with respect 
to decision variable xd(i). 

For a specific change in a decision variable the above equation is 
integrated over 6xa< i) to yield 

6zp = f v ( i) + i. 5 bd ( i, i) ( 6xd ( i) ) 1 ( 6xd ( i) ) 

for i=l,N 

where: 

6z 
p the change in the value of the principal 

objective function; 

(17a) 
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For a specific change in the decision variable associated with an 

objective constraint, equation (17b) describes the tradeoff function. 

6zp = f v(h) + 1.s b(h,h) ( .6xd(h)) l ( .6xd(h)) 

for h=l,H 

(17b) 

Equations (15), (16), (17a) and (17b) are valid when the change in the 

decision variable does not cause a repartitioning of system variables. 

This limitation is discussed in detail in a subsequent section. 

The change in all system variables in response to a change in the 

value of a single decision variable is referred to as the system 

response. Because all decision variables are independent, a change to 

one decision variable will not effect the value of the remaining 

decision variables. Every state variable, however, is expressed as a 

function of decision variable and is, therefore, affected. By 

evaluating the gradients of the state variables, the change to the 

state variables in response to a change in the value of a single 

decision variable is determined. 

In the example, the constraints are linear and the gradients of 

state variables are vectors of constants. Therefore, the first 

partial of a state variable with respect to each decision variable is 

valid for any arbitrary change in a single decision variable, not 

merely an incremental change. The system response to a change in the 

value of a single decision variable is represented by the following 
formulation . 

.6xs(k) = d(k,i) .6xd (i) 

for k=l,K 

where: 

the change in state variable k; 

(18) 

the first partial derivative of state variable k 
with respect to decision variable i. 

The partial derivatives of the state variables, d(k,i), are revised 

each time the system variables are re-partitioned. 
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The concepts described indicate how the value of the principal 

objective function and the system variables change for a given change 

in a single decision variable. These methods are applied in the 

development of the interactive procedure. 

THE INTERACTIVE PROCEDURE 

The bicriterion example problem is formulated as it appears in 

equations (12) and (13) and L2 set equal to any feasible value of 

total regional pumping. This problem is initially solved by a 

quadratic programing procedure written by Leifsson and others (1981) 

which uses the General Differential Algorithm to determine the optimal 

solution. The optimal set of N drawdown values, N pumping values, and 

M recharge values that result from the initial optimization represent 

one non-inferior solution. These values, along with the values of the 

first and second order partial derivatives are transferred to a 

separate program for interactive evaluation. 

In a constrained optimization, the decision variables are 

generally variables with non-zero constrained derivatives. To modify 

the original non-inferior solution, any decision variable may be 

changed by modifying its upper or lower bound to expand or reduce the 

original size of the solution space. This effectively forces the 

decision variable to assume a desired value when the problem is 

optimized under the revised conditions. 

Moving Through the Non-inferior Solution Set 

To generate the set of non-inferior solutions, several changes to 

the binding limit, L2 , of the objective constraint are input, one at a 

time, to the interactive program. This modifies the value of the 

slack variable associated with constraint (13). The system response 

to each change is determined by equation (18) and the new value of the 

principal objective function is determined by equation (17b). The 

values of the constrained derivatives are revised by equation (15) and 

the system is checked for optimality. If the solution is not optimal, 

the interactive program performs the iterations necessary to make the 
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solution non-inferior. 

At any point in the non-inferior solution set, the relationship 

between regional objectives is described by the constrained derivative 

of the principal objective function with respect to the decision 

variable associated with each objective constraint. Once a favorable 

relationship is achieved and a compromise solution agreed upon, the 

resulting values of all local variables may be examined. 

In examining the local variables, a group of decision makers may 

identify areas at which the variable values of drawdown, pumping, or 

recharge are unsatisfactory. To refine the compromise strategy and 

address local concerns, the interactive program is utilized as 

explained in the following section. 

Local Influence on Regional Objectives 

At a non-inferior solution, each local variable is either a state 

variable, or a decision variable. The constrained derivative of the 

principal objective function with respect to a state variable is zero, 

indicating the independence between the principal objective function 

and the state variables. A change in a local condition represented by 

a state variable may be made by changing a decision variable, (or 

several decision variables), such that the desired effect on the 

particular state variable, (described by equation (18)), is achieved. 

To change the value of a decision variable representing drawdown, 

pumping or recharge, the binding limit is appropriately changed. 
~ 

A change in the bound on a local decision variable changes the 

feasible region of the solution space common to both the principal 

objective and the objective constraints. Depending on the extent of 

the change, the non-inferior solution that exists prior to changing a 

local bound is not necessarily optimal after the bound has been 

re-established. In other words, the solution may become inferior. At 

an inferior solution, one objective can be changed without adversely 

affecting the other objectives. Using the interactive procedure, the 

decision makers may choose the regional dimension in which to move 
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such that the solution becomes non-inferior. That is, the decision 

must be made as to what regional objective to improve. 

Equation (16a) is used to determine the change in the principal 

objective function resulting from a specific change in the value of a 

decision variable. In making this change the objective constraints 

. remain fixed and a new solution set results. At the new solution, the 

change in the value of an objective constraint, needed to insure that 

the principal objective renains its original value, may be calculated 

by solving equation {16b) for 6xd(h). This value is then used as 

input to the interactive program such that the original value of the 

objective function is obtained. 

Conditions Under Which the Procedure may be Utilized 

To change the value of a decision variable, the limiting bound is 

replaced with a value that either expands or reduces the size of the 

solution space. This effectively creates a new problem. Depending on 

the extent of the change to the bound, the new problem may require 

subsequent iterations to achieve optimality. 

The solution that exists prior to changing the bound (the old 

optimal solution) is the starting point for the new problem and must 

be feasible within the new solution space. If a change in a bound 

increases the size of the solution space (if the upper limit is 

increased or the lower limit is decreased) the old solution is always 

a feasible starting point. If, however, the solution space is reduced 

(a lower bound is increased or an upper bound is decreas~d) the extent 

of the change to the bound on a decision variable is limited by 

feasibility criteria. A reduction in the size if the solution space 

that causes the old optimal solution to be infeasible within the new 

solution space is not permitted with the interactive procedure. 

The magnitude of the feasible change is determined by the 

constraints imposed on the variables involved. A decision variable is 

allowed to increase or decrease until it, or another variable, 

encounters a limiting condition. Since the bound on the decision 
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variable itself is dictated by the user, the feasible positive and 
negative deviation is controlled by the first state variable to reach 
its upper or lower limit. The value of the feasible deviation is 
found by solving equation (18) fo~ ~d with 6xs(i) defined as the 
difference between the state variable and its approaching bound. 

If the change in the bound on a decision variable is within, or 
equal to the feasible deviation, the corresponding change in the value 
of the decision variable is equal to the change in the bound. The 
constraint remains tight, and the system response is feasible, though 
not necessarily optimal. 

Optimality is affected if a single decision variable is changed 
such that application of equation (16) causes one of the constrained 
derivatives to change signs. The maximum absolute change in the value 
of a decision variable such that none of the non-zero constrained 
derivatives change sign is referred to as the optimal deviation. To 
change sign, a constrained derivative must first change from a 
positive or negative·value, to zero. The optimal deviation is 
determined by applying equation (15) with Av(j) defined as the 
difference· between the value of the constrained derivative and zero. 
If the change in the bound on a decision variable is within both the 
optimal deviation and the feasible deviation, the change in the value 
of the decision variable is equal to the change in the bound and the 
resulting strategy is optimal. 

The bound on a decision variable can be changed in excess of the 
feasible and optimal deviation if the change increases the size of the 
feasible region. In such a case, a state variable reaches its bound 
and the initial change in the decision variable is less than the input 
change in the bound. A re-partitioning of the variables is performed 
such that the state variable becomes a decision variable and the 
decision variable becomes a state variable. Additional iterations may 
be necessary to make the feasible solution optimal as well. 

In summary: (1) the interactive process may be used to modify an 
existing strategy when a change in the limiting bound on any decision 
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variable decreases the size of the solution space if the change to the 

bound is within the feasible deviation determined through the use of 

the constrained deriva~ives; (2) the interactive modification method 

may not be used to change a bound in excess of the feasible deviation 

if the change decreases the size of the solution space; (3) the method 

can analyze any artitrary change in the limiting bound on a decision 

variable if the change increases the size of the solution space. When 

the change in the solution space exceeds the optimal deviation, 

additional iterations are necessary if the optimal result is desired. 

These iterations are performed in the interactive program by utilizing 

the same subroutines developed for the optimization process. 

APPLICATION AND DISCUSSION 

Site Description 

The quadratic and linear objective functions for minimizing total 

cost and maximizing total regional groundwater withdrawal are applied 

in the multiobjective format to the Grand Prairie of southeastern 

Arkansas. Figure 1 shows the Grand Prairie subdivided into 204 finite 

difference cells. Of the 204 total cells, 52 are constant head cells 

used to simulate conditions along the periphery of the study area. Of 

the 204 inequality constaints. 152 are pumping constraints (see (5)) 

and 52 are recharge constraints applied to the constant head cells 

(see (6)). The total number of variables, including slack variables 

is 356; 152 decision variables and 204 state variables. 

The Grand Prairie is an extensively cultivated and irrigated 

agricultural area and one of the prime rice producing regions of the 

country (Griffis, 1972). A heavy layer of clay underlies the topsoil 

and prevents infiltration from recharging the aquifer. The only 

apparent sources of recharge are the rivers which border the area and 

extensions of the aquifer outside the study area. Extensive pumping 

and limited recharge has resulted in a declining water table and water 

shortages in this Quaternary aquifer. 

Aquifer characteristics used for simulation are those reported by 



Figure 1 
The Grand Prairie Study Area Subdivided into Finite Difference Cells 
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Peralta and others (1984b). These data include the elevation of the 
top and bottom of the aquifer, (used in determining the saturated 
thickness), and a hydraulic conductivity of 82 meters per day, (270 
feet per day). Validation of an unsteady state groundwater simulation 
model for the area indicated that the area can be treated as a 
homogeneous confined groundwater system surrounded by constant head 
cells. 

The drawdown and pumping in the non-constant head cells are 
bounded by an upper and a lower limit. The lower limit on drawdown 
represents the average elevation of the ground surface in each cell. 
The upper limit on drawdown is such that 6 meters (20 feet) of 
saturated thickness is guaranteed in each cell. The lower limit on 
pumping is zero (to prevent physically unrealistic internal recharge 
from being computed) and the upper limit on pumping is equal to the 
current average annual groundwater withdrawals. The variable recharge 
in constant head cells is limited such that maximum annual observed 
recharge from outside the system is never exceeded. 

Cost coefficients used in the quadratic objective function are 
estimated from information received from the U.S. Army Corps of 
Engineers, (personal communication with Joe Clements, Dwight Smith, 
and Stony Burke). In areas where no surface water is available for 
use as an alternative source, the opportunity cost associated with 
reduced production is used as the alternative water cost. 

The matrix of second partial derivatives in the least-cost 
objective funciton, equation (1), is a matrix of constants consisting 
of groundwater cost coefficients and transrnissivity values. Before 
optimization, this Hessian matrix was examined and found to be 
positive-definite, thus insuring that the resulting solution is the 
global optimum. 

Non-inferior Solution Set 

Figure 2 displays the resulting set of non-inferior solutions 
interactively generated as outlined previously. Shown with every 



Figure 2 
The Noninferior Solution Set and Tradeoff Functions in Dollars per Cubic Decameter 
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exact non-inferior solution is the corresponding tradeoff function 

expressed by the first order partial derivatives in units of dollars 

per cubic decameter. Although the total range defined by (14) is 

presented in Figure 2, in actual practice it is not necessary to 

produce the entire set of solutions. 

From the non-inferior solution ~et, the best-compromise solution 

may be determined by implementing the surrogate worth tradeoff method 

introduced by Haimes and Hall (1974). For illustrative purposes, 

solution set A is chosen as a compromise solution, though not 

necessarily the best compromise solution. For solution A, the total 

annual regional groundwater pumping is maintained at 138,000 cubic 

decameters (112,000 acre feet). The total regional cost of the 

conjunctive use strategy is 9.3 million dollars and the average 

combined cost of groundwater and alternative water (including 

opportunity cost) is 26 dollars per cubic decameter (32 dollars per 
acre foot). 

Local Change 

At the compromise solution, the local groundwater pumping in cell 

(3,4), (see Figure l for row, column location coordinates), is equal 

to its lower limit, which is 1.1. In other words, for the benefit of 

the region as a whole, no groundwater withdrawal is permitted at this 

cell and in fact, no water needs are satisfied. Assuming that a group 

of decision makers wish to improve the equity of the compromise 

solution to groundwater users in cell (3,4), the lower limit on 

groundwater pumping in cell (3,4) is increased, and the regional 
effect analyzed. 

The constrained derivative for the pumping in cell (3,4) is 32 

dollars per cubic decameter ,(4~ dollars per acre foot). For every 

cubic decameter increase in groundwater pumping in cell (3,4), the 

regional cost increas~s by 32 dollars. Because the second partial 

derivative of the objective function with respect to the pumping is a 

positive i.g~a dollars per cubic decameter per cubic decameter (~.112 

dollars per acre foot per acre foot} the constrained derivative, (32 
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dollars per cubic decameter), will increase as the local pumping 

increases. 

The most that pumping can be increased in cell (3,4) and still 

maintain feasibility is 237 cubic decameters, (192 acre feet), at 

which point the pumping in cell (5,5) reaches its lower limit. 

Because the change will reduce the size of the solution space, the 

limit of 237 cubic decameters must be recognized. If the desired 

increase in the pumping at cell (3,4) is greater than 237 cubic 

decameters, the original problem must be reformulated and submitted 

for execution using a standard optimization procedure. 

Assume that the decision makers agree to increase pumping in cell 

(3,4) by 227 cubic decameters (184 acre feet). In accordance with 

equation (17a), the modification causes the total regional cost to 

increase by 7,73~ dollars. The change of 227 cubic decameters also 

causes the values of some of the constrained derivatives to change 

sign, thus making the solution inferior. The interactive program 

requires 5 subsequent iterations to calculate the optimal solution. 

At the revised optimum, the increase in total regional cost is 7,400 

dollars and the pumping in cell (3,4) is 227 cubic decameters. 

This new non-inferior solution is point Bon Figure 3, an enlarged 

section of Figure 2 in the vicinity of the compromise solution. At 

point B, the total regional pumping is still 138,000 cubic decameters 

but the cost is 7,400 dollars greater than.the cost of solution point 

A. 

The decision makers may also want to know how the total regional 

pumping of strategy A is affected by a local increase of 227 cubic 

decameters in cell (3,4), if the total cost remains constant. At 

point B, the constrained derivative of the principal objective with 

respect to the constrained objective, (the instantaneous tradeoff 

function), is 30 dollars per cubic decameter (37 dollars per acre 

foot), and the corresponding second partial derivative is 0.002 

dollars per cubic decameter per cubic decameter, (0.003 dollars per 

acre foot per acre foot). Solving equation (17b) for xd with zp 



Figure 3 
The Noninferior Solution Set in the Vicinity of the Compromise Solution 
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equal to -7,400 dollars results in a reduction in total regional 

pumping of 250 cubic decarneters, (202 acre feet). Because this 

increase in the -size of the feasible region is less than the maximum 

feasible deviation, the first and second partial derivatives remain 

valid. This means that in order to increase groundwater availability 

at cell (3,4) from g to 227 cubic decameters, while maintaining total 

regional cost at 9.3 million dollars, a total of 477 cubic decameters 

of groundwater must be forsaken in all remaining cells. Implementing 

this change results in the-·non-inferior solution indicated by point c 
in Figure 3. 

At point C, the total cost is the original 9.3 million dollars, 

but the total regional pumping has decreased by 250 cubic decameters. 

The curve connecting points Band C indicates a portion of the set of 

non-inferior solutions for the new solution space. At any point on 

the revised curve, the minimum amount of groundwater pumping at cell 

(3,4) is 227 cubic decameters. Figure 4 is a copy of the output from 

the interactive session used to locate points Band Con Figure 3. 

The extension of the non-inferior solution set in a local 

dimension is possible at any compromise solution with any decision 

variable. Therefore, for the 152 decision variables in this example, 

the total number of possible decision directions, including the two 

regional dimensions, is 154. 

SUMMARY 

An interactive quadratic programing method which uses ~arametric 

variation is introduced in the form of a computer program to 

effectively and efficiently evaluate several conflicting objectives. 

With this technique, the user is able to interactively investigate any 

area of the feasible solution space and utilize both regional and 

local tradeoff functions in selecting and designing a regional water 

management strategy. 

By applying this method, decision makers may interactively modify 

a management strategy in terms of both regional and local concerns. 



Figure 4 
Output From a Sample Interactive Session 
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Regional changes are made by moving through the set of non-inferior 
solutions to locate a compromise solution and region.al tradeoff 
functions. Local changes., or modifications in the finite difference 
variables are accomplished by changing the constraining conditions on 
local decision variables. The constrained derivatives are available 
for evaluating the response of regional objectives to repeated changes 
in local decision variables. 

In the example the procedure is used to locate and modify a 
compromise solution to a regional conjunctive use, sustained 
groundwater withdrawal strategy. The strategy is initially obtained 
from a management model that minimizes the cost of meeting water needs 
from the conjunctive use of groundwater and surface water while 
maintaining a sustained yield. The optimization process uses the 
finite difference form of a two dimensional groundwater flow equation 
as part of the constraining conditions. For multiobjective analysis, 
a second objective function that maximizes the total regional 
groundwater withdrawal under sustained yield conditions is included in 
the original problem as an additional constraint. The results of the 
formal optimization include local values representing the drawdown, 
pumping, and recharge in each finite difference cell. The initial 
results also include the value of a decision variable that represents 
the total regional groundwater withdrawal under the optimum strategy. 

The results of the formal optimization are used as input to an 
interactive computer program and the set of non-inferior solutions is 
generated. At any feasible soltuion, the tradeoff function between 
competing objectives is given to aid in locating a compromise 
solution. The procedure also provides information on the response of 
the regional objectives to a change in any local decision variable. 
This information is used for modifying the compromise solution with 
respect to local concerns. 

The interactive modification method may be applied for any change 
in a bound on a decision variable, when the change increases the size 
of the feasible region. For the given example of 152 decision 
variables and 204 inequality constraints, if a change in the bound on 
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a decision variable is less than the maximum feasible deviation, the 
optimal solution is calculated with a few additional iterations. If 
the change in the bound causes a re-partitioning of the system 
variables, it may take more than a hundred iterations and considerably 
more processing time to arrive at an optimum. 

When a change in a bound decreases the size of the feasible 
region, the change is limited by the feasible deviation determined by 
utilizing constrained derivatives. The interactive procedure is not 
appropriate if a desired change decreases the size of the feasible 
region in excess of the feasible deviation. In such a case the 
problem must be re-submitted and solved by a standard optimization 
process. 



NOttENCL.ATURE 

the second partial derivative of th• unconatrained 

objective function with reapect to variable 1 and 

variable j. 

c <1> the cost per unit volume of alternative water supplied a 
in eel l i, (S/L3>. 

c <1> the cost aaaociatad with a unit volume of groundwater 
m 

C ( i) 

• 
d(k,1> 

pumped, (S/1.3). , 

the coat as■ociated with rai•ing a unit volume of 

groundwater one unit distance, (S/L4>. 

the fir■t partial derivative of ■tate variable k with 

respect to decision variable 1. 

f<a<i>> a linear function of drawdown de■cribing the total 

dynamc head at cell i, <L>. 

H the total number of objective conatrainta. 

h an index defining a specific objective constraint. 

i a general index. 

j a general index. 

K the total number of finite difference cells in the 

region, also the total number of inequality conetraints. 

k an index defining a specific state variable. 

L the limiting value of objective constraint h. 
h 

L the minimum allowable total groundwater annually 
2 

withdrawn from the aquifer underlying the region, 
3 

<L. /year>. 

n the total number of.constant head cells in the region. 



m an index defining a specific constant head cell; 

N th• total number of finite difference cells in which 

pumping and drawdown are variable. 

p<i> the annual volume of groundwater pumped from cell i, 
3 

p ( i) 

• 

<I.. /year>. 

the annual volume of altarnativa water use at call i, 

<L:3/year). 

p ( i) the lower limit on annual groundwater pumping in cell i, 

<L:3/year>. 

p 

r 

r 

a 

a 

min 

( i )· 
max 

r<m> 

< m > 
■ in 

<m> 
max 

( i ) 
min 

( i ) 
max 

t(i,j) 

V ( i) 

th• upp•r li ■it on annual groundwater pumping in cell i, 

<L:3/year). 

the annual recharge in constant head cell m, <L /year>. 

the lower limit on annual recharge in constant head cell 

m, < 1.:3/ year>. 

the upper limit on annual recharge in constant head call 

m., CL3/year>. 

the lower limit on drawdown in call i, <I..>. 

the upper limit on drawdown in cell i, <I..>. 

the average tranamissivity between finite difference 
2 

cell i and call j, for i = j, <L /year>. 

the first partial derivative of the unconstrained 

objective function with respect to variable j. 
3 

the annual water requirements in call i, (1. /year>. 

x <i> the old value of d•cision variable i. 
d 

x' (i) the new value of decision variable i. 
d 



z the value of objective constraint h. 
h 

z the value of the principal objective function. 
p 

z the total annual cost of water supply, CS/year>. 
1 

z the total volume of groundwater annually withdrawn from 
·2 

the region, (L3/year>. 

~v<j> the change in the value of constrained derivative j • 

.6x <i> the change in decision variable i. 
d 

~x Ck> the change in state variable k. 
a 

6 z the change in the value of the principal objective 
p 

function. 



References Cited: 

Aguado, E., I. Remson, n.F. Pikul, and W.A. Thomas, Optimal 

pumping in aquifer dewatering, Journal 2.!, the Hydraulics 

Division American Society 2.!. Civil Engineers, 100<HY7>, 860-

1974. 

Alley, w.n., E. Aguado, and I. Remson, Aquifer management under 

transient 

Bulletin, 

and steady-state conditions, Water Resources 

12(5), 963-972, 1976. 

Bear, J., Hydraulics ot Groundwater, McGraw-Hill, New York, 1979. 

Cohon, J.L., nultiobjective Programming and Planning, Academic 

Press, New York, 1978. 

Cohan, J.L., and D.H. narks, A review and evaluation ot 

nultiobjective programing techniques, Water Resources Research, 

~). 206-220, 1975. 

Elango, K., and G. Rouve, Aquifers: finite-element linear 

programming model, Journal ot ~ Hydraulics Division American 

Society 2.!. Civil Engineers, 106<HY10>, 1641-1656, 1980. 

Gorelick, s.n., A review ot distributed parameter groundwater 

management modeling methods, Water Resources Research, 

305-319, 1983. 

19(2), 

Griffis, C.L., Modelling a groundwater aquifer in the Grand 

Prairie ot Arkansas, TRANSACTIONS ot the American Society of 

Agricultural Engineers, 15C2>, 261-263, 1972. 

Haimes, Y.Y. and W.A. Hall, nultiobjectives in water resource 

systems analysis: the surrogate worth trade ott method, Water 

Resources Research, 10(4), 615-623, 1974. 



Leifsson, T., Morel-Seytoux, H.J., and T. Jonch-Clausen, User's Manual 

for QPTHOR: a Fortran IV Quadratic Programming Routine, 

HYDROWAR Program, Colorado State University, Fort Collins, 

Colorado, 1981. 

Monarchi, D.E., C.C. Kisiel, L. Duckstein, Interactive multiobjective 

programming in water. resources: a case study, Water 

Resources Research, 9(4), 837-850, 1973. 

Morel-Seytoux, H.J., Foundations of Engineering Optimization. Bound 

class notes for CEE 640, Colorado State University, Fort 

Collins, Colorado, 1972. 

Peralta, R.C. and P. Killian, Optimal Regional Potentiometric Surface 

Design: Least-Cost/Sustained Groundwater Yield, Transactions 

of the American Society of Agricultural Engineers, 28(4), 

1985. 

Peralta, R.C., A.W. Peralta, and L.E. Mack, Water management by 

design, Symposium proceedings, Water for the 21st 

Century-Will it be there?, Southern Methodist University, 

Dallas, Texas, 1984a. 

Peralta, R.c., A. Yazdanian, P.J. Killian, and R.N. shulstad, Future 

quaternary groundwater accessibility in the Grand Prairie -

1992, Bulletin No. 877, Agricultural Experiment Station, 

University of Arkansas, Fayetteville, Arkansas, 1984b. 

Pinder, G.F. and J.D. Bredehoeft, Application of the digital computer 

for aquifer evaluation, Water Resources Research, 4(5), 

1069-1093, 1968. 

Wilde, D.J. and c.s. Beightler, Foundations of Optimization, 

Prentice-Hall, Englewood Cliffs, N.J., 1967. 


