

EVALUATION OF WATER QUALITY DATA BEAVER LAKE

Prepared by:

James W. Moore Principal Investigator Department of Civil Engineering University of Arkansas Fayetteville, Arkansas 72701

Prepared for:

Department of the Army Little Rock District, Corps of Engineers P.O. Box 867 Little Rock, Arkansas 72203

Publication No. MSC-83A

Arkansas Water Resources Center 112 Ozark Hall University of Arkansas Fayetteville, Arkansas 72701

Table of Contents

.

ł

.

Section		F	age
I	SUMMARY AND CONCLUSIONS	•	1
	Summary	•	1
	White River Basin	•	1
	Beaver Lake	•	2
	Conclusions	•	3
II	BACKGROUND		24
	Water Quality		24
	Water Quality Standards for Surface Waters in Arkansas	•	24
	Waterbody Uses	•	24
	Extraordinary Resource Waters	•	25
	Ecologically Sensitive Waterbody	•	25
	Natural and Scenic Waterways	•	25
	Primary Contact Recreation	•	25
	Secondary Contact Recreation	•	25
	Fisheries	•	25
	Trout	•	25
	Lakes and Reservoirs	•	25
	Streams	•	25
	Ozark Highlands Ecoregion	•	25
	Boston Mountains Ecoregion	•	26
	Arkansas River Valley Ecoregion	•	26
	Ouachita Mountains Ecoregion	•	27
	Typical Gulf Coastal Ecoregion	•	27
	Springwater-influenced Gulf Coastal Ecoregion	•	27

Table of Contents (Cont'd)

Section

III

· · · ·

Least-altered Delta Ecoregion .	•	•	•	•	28
Channel-altered Delta Ecoregion	•	•	•	•	28
Domestic Water Supply	. •	•		•	28
Industrial Water Supply	•		•	•	29
Agricultural Water Supply	•	•	•	•	29
• Other Uses	•	•	•	•	29
General Standards	•	•	•	•	29
Specific Standards	•	•	•	•	30
Temperature	•	•	•		30
Turbidity	•	•		•	30
рн	•			•	32
Dissolved Oxygen	•	•	•		32
Radioactivity	•			•	34
Bacteria		•	•		34
Toxic Substances		•			35
Nutrients			_		36
Oil and Grease		_			37
Mineral Quality	-	•	•	•	37
Drinking Water Regulations	•	•	•	•	37
BEAVER LAKE BASIN DESCRIPTION	•	•	•	•	12
Project Description	•	•	•	•	43
Location	•	•	•	•	43
General Description	•	•	•	•	43
Enclitica and Operation	•	•	•	•	43
racificies and operations	•	•	•	•	44
Dam	•	•	•	•	44

Table of Contents (Cont'd)

1

ł

Section		Page
Flood Control	• "	. 44
Pool Fluctuation and Streamflow	•	. 44
Lake Basin Characteristics	•	. 45
General	•	. 45
Fish and Wildlife	•	. 45
Public Use Areas	•	. 45
IV WATER QUALITY DATA AND COLLECTION SUMMARY .	•	. 47
Water Quality Monitoring Site Description	•	. 47
Station Number 1	•	. 47
Station Number 2	•	. 47
Station Number 3	•	. 47
Station Number 4	•	. 47
Station Number 5	•	. 47
Station Number 6	•	. 48
Station Number 7	•	. 48
Station Number 8	•	. 48
Station Number 9	•	. 48
Station Number 10	٠	. 48
Station Number 11	•	. 49
Water Quality Monitoring Data	•	. 49
Station Number 1 (White River Site)	•	. 49
Station Number 2 (Eureka Springs Site) .	•	. 49
Station Number 3 (Prairie Creek Site) .	•	. 50
Station Number 4 (Highway 12 Site)	•	. 50
Station Number 5 (Monte Ne Site)		51

- iii -

* Table of Contents

Section Page Station Number 6 (War Eagle Site) 51 Station Number 7 (Goshen Site) 52 Station Number 10 (Highway 68 Site) . . . 53 Station Number 11 (Richland Creek Site) . . 53 Station Number 1 (White River Site) 54 Five-Day Biochemical Oxygen Demand 56 Dissolved Oxygen 60 Fecal Coliform 62 Hardness 62 Nitrogen 71 Phosphorous 75 Sulfate 76 Station Number 2 (Eureka Springs Site) . . . 78 Alkalinity 80

Table of Contents

Section

]	Page	3
	Five-Day	Bi	ocl	nei	ni	Ca	al	03	ĸ٧٩	jen	n I	Den	nar	nd	•	•	•	•	80	
	Chloride	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81	
	Chlorophy	y11	a		•	•	•	•	•	•	•	•	•	•	•	•	•	•	82	
	Chlorophy	yll	b		•	•	•	•	•	•	•	•	•	•	• 1	•	•	•	82	
	Color .	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	83	
	Conductiv	vit	У		•	•	•	•	•	•	•	•	•	•	•	•	•	•	83	
	Fecal Co	lif	ori	n.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	84	
	Hardness	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85	
	Metals .	•	• •	•	•	•	•	•	•	•.	•	•	•	• •	•	•	•	•	87	
	Nitrogen	•	• •	•		•	•	•	•	•	è	:	•	•	•	•	•	•	92	
	рн	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	93	
	Phosphore	ous	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	93	
	Sulfate	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	94	
	Transpare	enc	у.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	95	
	Turbidity	!	• •	-		•	•	•	•	•	•	•	•	•	•	•	•	•	95	
st	cation Nur	nbe	r 3	3 (P	ra	ir	rie	e C	re	ek	S	it	e)		•	•	•	96	
	Alkalinit	гу	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	96	
	Five-Day	Bi	ocł	nen	ni	ca	1	Ох	yg	en	E	em	an	d	•	•	•	•	97	
	Chloride	٠	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	98	
	Chlorophy	<i>,</i> 11	a			•	•	•	•	•	•	•	•	•	•	•	•	•	98	
	Chlorophy	<i>,</i> 11	b			•	•	•	•	•	•	•	•	•	•	•	•	•	99	
	Color .	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	99	
	Conductiv	/it	у	•		•	•	•	•	•	•	•	•	•	•	•	•	3	00	
	Reservoi	c D	ept	:h		•	•	•	•	•	•	•	•	•	•	•	•	1	.01	
	Dissolved	ı o	xyo	ger	ı		•		•				•					1	01	

1

' Table of Contents

Section		Page
	Fecal Coliform	102
	Hardness	102
	Nitrogen	105
	рН	105
	Phosphorous	106
	Temperature	107
4.	Transparency	107
•		108
	Station Number 4 (Highway 12 Site)	108
	Alkalinity \ldots \ldots \ldots \ldots \ldots	108
	Five-Day Biochemical Oxygen Demand	109
	Chloride	110
	Chlorophyll a	110
	Chlorophyll b	111
	Color	112
	Conductivity	112
	Reservoir Depth	113
	Dissolved Oxygen	113
	Fecal Coliform	114
	Hardness	115
	Metals	117
	Nitrogen	122
	рН	125
	Phosphorous	126
	Sulfate	127

,

1

Section		Page
	Temperature	128
	Transparency	128
	Turbidity	129
	Station Number 5 (Monte Ne Site)	130
	Alkalinity	130
	Five-Day Biochemical Oxygen Demand	130
	Chloride	131
	Chlorophyll a	131
	Chlorophyll b	132
	Color	133
	Conductivity	134
	Reservoir Depth	134
	Dissolved Oxygen	135
	Fecal Coliform	135
	Hardness	136
	Nitrogen	139
	рН	140
	Phosphorous	140
	Temperature	141
	Transparency	142
	Turbidity	142
	Station Number 6 (War Eagle Site)	143
	Alkalinity	143
	Five-Day Biochemical Oxygen Demand	143
	Chloride	144

• Table of Contents

Section

•

ion		Page
	Chlorophyll a	144
	Chlorophyll b	145
	Color	146
	Conductivity	146
	Reservoir Depth	147
	Dissolved Oxygen	147
v.	Fecal Coliform	148
•	Hardness	148
	Nitrogen	151
	рН	152
	Phosphorous	152
	Temperature	153
	Transparency	154
	Turbidity	154
S	Station Number 7 (Goshen Site)	155
	Alkalinity \ldots	155
	Five-Day Biochemical Oxygen Demand	156
	Chloride	157
	Chlorophyll a	158
	Chlorophyll b	159
	Color	159
	Conductivity \ldots \ldots \ldots \ldots \ldots	160
	Reservoir Depth	161
•	Dissolved Oxygen	161
	Fecal Coliform	162

Table of Contents

0-	_+_	: -	
se	CC	TO	n

ł

																		Page
	Hardness	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	164
	Metals .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	167
	Nitrogen	•	•	•	•	• .	•	•	•	•	•	•	•	•	•	•	•	172
	рн	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	•	•	176
	Phosphore	Jus		•	•	•	•	•	•	•	•	•	•	•	•	•	•	176
	Sulfate	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	178
	Temperati	ıre		•	•	•	•	•	•	•	•	•	•	•	•	•	•	178
	Transpare	enc	У	•	•	•	•	•	•	•	•	•	•	•	•	•	•	179
	Turbidity	Z	•	•	•	•	•	•	•	•	•	•	•	4 °	•	•	•	179
st	ation Nur	nbe	r	8	(A	vo	ca	S	it	e)		:	•	•	•	•	•	180
	Alkalini	су	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	180
	Five-Day	Bi	oc	he	mi	ca	1	0x	Уд	en	D	em	an	d	•	•	•	181
	Chloride	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	182
	Chlorophy	y11	a		•	•	•	•	•	•	•	•	•	•	•	•	•	182
	Chlorophy	y11	b		•	•	•	•	•	•	•	•	•	•	•	•	•	183
	Color .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	184
	Conductiv	vit	У	•	•	•	•	•	•	•	•	•	•	•	•	•	•	185
	Reservoi	r D	ep	th		•	•	•	•	•	•	•	•	•	•	•	•	185
	Dissolved	3 O	ху	ge	n	•	•	•	•	•	•	•	•	•	•	•	•	185
	Fecal Co	Lif	or	m	•	•	•	•	•	•	•	•	•	•	•	•	•	186
	Hardness	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	187
	Metals .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	189
	Nitrogen	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	195
	рН	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	198
	Phosphore	ous		•	•		•	•	•	•	•	•	•		•	•	•	198

• Table of Contents

Section												Page
Su	lfate	•••	••	•	• •	•••	•	•	•	•	•	199
Те	mperature	• •		•	••		•	•	•	•	•	200
Tr	ansparency	• •		•	• •	•••	•	•	•	•	•	200
Tu	rbidity .	• •	•••	•	• •	•••	•	• '	•	•	•	201
Stat	ion Number	9 (R	oge	rs S	Site).	•	•	•	•	•	201
Al	kalinity .	•••		•	• •	•••	•	•	•	•	•	201
- Fi	ve-Day Bioc	hemi	cal	0xy	ygen	. De	emar	nd	•	•	•	202
- · Ch	loride	• •		•		• •	•	•	•	•	•	203
Ch	lorophyll a	•		•	•••	•••	•	•	•	•	•	204
Ch	lorophyll b		•••	•	•••		•	•	•	•	•	205
Co	lor	• •		•		• •	., .	•	•	•	•	206
Co	nductivity	•••		•			•	•	•	•	•	207
Re	servoir Dep	th		•	•••	• •	•	•	•	•	•	208
Di	ssolved Oxy	rgen	• •	•	•••	• •	•	•	•	•	•	208
Fe	cal Colifor	m.	•••	•	•••	• •	••	•	•	•	•	210
` На	rdness	•••		•	•••	• •	••	•	•	•	•	211
Me	tals	•••	• •	•	• •	•	•••	•	•	•	•	215
Ni	trogen	•••		•	•••	•	• •	•	•	•	•	222
pH	[•••	••	•	• •	•		•	•	•	•	225
Ph	losphorous	• •		•		•	•••	•	•	•	•	226
Su	lfate			•		•	•••	•	•	•	•	227
Те	mperature			•		•	•••	•	•	•	•	228
Tr	ansparency	• •	•••	•		•	•••	•	•	•	•	228
Τι	urbidity .	• •	••	•	••	•	•••	•		•	•	229
Stat	ion Number	10	(Hig	hwa	y 68	3 S.	ite)	•	•	-	229

,

Table of Contents

Section

.

,

. 1

																Page
	Alkalinity .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	230
	Five-Day Bioc	he	mi	ca	1	0x	Уg	en	D	em	an	d	•	•	•	230
	Chlorophyll a		•	•	•	•	•	•	•	•	•	•	•	•	•	231
	Chlorophyll b		•	•	•	•	•	•	•	•	•	•	•	•	•	232
	Color	•	•	•	•	•	•	•	•	•	•	•	•	•	•	233
	Conductivity	•	•	•	•	•	•	•	•	•	•	•	•	•	•	233
	Reservoir Dept	th		•	•	•	•	•	•	•	•	•	•	•	•	234
	Dissolved Oxy	ge	n	•	•	•	•	•	•	•	•	•	•	•	•	234
-	Fecal Coliforn	n	•	•	•	•	•	•	•	•	• 4	•	•	•	•	235
	Hardness	•	•	•	•	•	•	•	• '	•	•	•	•	•	•	236
	Nitrogen	•	•	•	•	•	•	•	•	•	•	•	•	•	•	237
	рН	•	•	•	•	•	•	•	•	•	•	•	•	•	•	238
	Phosphorous	•	•	•	•	•	•	•	•	•	•	•	•	•	•	238
	Temperature	•	•	•	•	•	•	•	•	•	•	•	•	•	•	239
	Transparency	•	•	•	•	•	•	•	•	•	•	•	•	•	•	240
	Turbidity .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	240
st	ation Number 1	11	(Ri	ch	la	nd	C	re	ek	S	it	e)		•	241
	Alkalinity .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	241
	Five-Day Bioch	ne	mi	ca	1	0x	уg	en	D	em	an	d	•	•	•	242
•	Chloride	•	•	•	•	•	•	•	•	•	•	•	•	•	•	242
	Chlorophyll a		•	•	•	•	•	•	•	•	•	•	•	•	•	243
	Chlorophyll b		•	•	•	•	•	•	•	•	•	•	•	•	•	243
	Color	•	•	•	•	•	•	•	•	•	•	•	•		•	244
	Conductivity	•	•	•	•	•	•	•	•	•	•	•	•	•	•	244
	Reservoir Dept	th														245

, Table of Contents

Section																						Pa	ıge
		Dis	so	lv	ed	0	ху	ge	n	•	•	•	•	•	•	•	•	•	•	•	•	24	15
		Fec	al	С	ol	if	or	m	•	•	•	•	•	•	•	•	•	•	•	•	•	24	ł6
		Har	dn	es	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24	ł7
		Nit	ro	ge	n	•	•	•	•	•	•	•	•	•	•	•	•	• `	•	•	•	24	18
		рН	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24	18
		Pho	sp	ho	ro	us	;	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24	49
	-#-	Tem	pe	ra	tu	ire	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2!	50
•		Tra	ins	pa	re	enc	y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2!	50
		Tur	bi	.di	ty	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	51
v	APPENI	DIX	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A1
VI	APPENI	XIC	B	•	•	•	•	•	•		•	•	•	•	•	à	•	•	•	•	•	•	B1
VII	APPENI	XIC	с	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	сı
VIII	APPEN	DIX	D	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	D1
IX	APPEN	DIX	E	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	E1
х	APPEN	DIX	F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Fl
XI	APPEN	DIX	G	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Gl
XII	APPEN	DIX	н	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	нı
XIII	APPEN	DIX	I	•		•	•	•	•	•	•	•		•	•		•	•	•	•	•	-	11
XIV	APPEN	DIX	J	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	Jl
xv	APPEN	DIX	K	•		•	•	•				•	•	•		•	•				•	•	Кl

List of Figures

,

\$ Figure		Pa	ıge
A1	Graph of Total Alkalinity vs. Time for the White River Site-May	•	A1
A2	Graph of Total Alkalinity vs. Time for the White River Site-August	•	A1
A3	Graph of Total Alkalinity vs. Time for the White River Site-December	-	A1
A4	Graph Of Five-Day Biochemical oxygen Demand vs. Time for the White River Site-May	-	A2
Α5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the White River Site-August	•	A2
A6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the White River Site-December	•	A2
A7	Graph Of Chloride vs. Time for the White River Site-May	•	A3
A8	Graph of Chloride vs. Time for the White River Site-August	•	A3
Α9	Graph of Chloride vs. Time for the White River Site-December	•	A3
A10	Graph of Color vs. Time for the White River Site-May	•	A 4
A11	Graph of Color vs. Time for the White River Site-August	•	A 4
A12	Graph of Color vs. Time for the White River Site-December	•	A4
A13	Graph of Conductivity vs. Time for the White River Site-May	•	A5
A14	Graph of Conductivity vs. Time for the White River Site-August	•	A5
A15	Graph of Conductivity vs. Time for the White River Site-December	•	А5

Page

A6

A6

A6

A7

A7

A7

A8

A8

A8

Α9

A9

Α9

Figure A16 Graph of Dissolved Oxygen (mg/L) vs. Time for the White River Site-May Graph of Dissolved Oxygen (mg/L) vs. A17 Time for the White River Site-August A18 Graph of Dissolved Oxygen (mg/L) vs. Time for the White River Site-December A19 Graph of Dissolved Oxygen (%) vs. Time for the White River Site-May . . . Graph of Dissolved Oxygen (%) vs. Time A20 for the White River Site-August . . A21 Graph of Dissolved Oxygen (%) vs. Time for the White River Site-December Graph of Fecal Coliform vs. Time for A22 the White River Site-May Graph of Fecal Coliform vs. Time for A23 the White River Site-August Graph of Fecal Coliform vs. Time for A24 the White River Site-December . . . Graph of Total Hardness vs. Time for A25 the White River Site-May Graph of Total Hardness vs. Time for A26 the White River Site-August . . . Graph of Total Hardness vs. Time for A27 the White River Site-December . . . Graph of Calcium vs. Time for the A28 A10 White River Site-May Graph of Calcium vs. Time for the A29 White River Site-August A10 Graph of Calcium vs. Time for the A30 A10 White River Site-December

A31	Graph	of Dis	ssolved	Calcium	vs.	Tim	е.	fo	r					
	the	White	River	Site-May	•	• •	•	•	•	•	• `	•	•	A11

ł

Figure		Page
A32	Graph of Dissolved Calcium vs. Time for the White River Site-August	. A11
A33	Graph of Dissolved Calcium vs. Time for the White River Site-December	. A11
A34	Graph of Dissolved Magnesium vs. Time for the White River Site-May	. A12
A35	Graph of Dissolved Magnesium vs. Time for the White River Site-August	. A12
A36	Graph of Dissolved Magnesium vs. Time for the White River Site-December	. A12
A37	Graph of Noncarbonate Hardness vs. Time for the White River Site-May	. A13
A38	Graph of Noncarbonate Hardness vs. Time for the White River Site-August	. A13
A39	Graph of Noncarbonate Hardness vs. Time for the White River Site-December	. A13
A40	Graph of Aluminum vs. Time for the White River Site-May	. A14
A41	Graph of Aluminum vs. Time for the White River Site-August	. A14
A42	Graph of Aluminum vs. Time for the White River Site-December	. A14
A43	Graph of Arsenic vs. Time for the White River Site-May	. A15
A44	Graph of Arsenic vs. Time for the White River Site-August	. A15
A45	Graph of Arsenic vs. Time for the White River Site-December	. A15
A46	Graph of Chromium vs. Time for the White River Site-May	. A16
A47	Graph of Chromium vs. Time for the White River Site-August	. A16

Figure	Page
A48	Graph of Chromium vs. Time for the White River Site-December Ale
A49	Graph of Copper vs. Time for the White River Site-May
A50	Graph of Copper vs. Time for the White River Site-August
A51	Graph of Copper vs. Time for the White River Site-December
A52	Graph of Iron vs. Time for the White River Site-May
A53	Graph of Iron vs. Time for the White River Site-August
A54	Graph of Iron vs. Time for the White River Site-December
A55	Graph of Lead vs. Time for the White River Site-May
A56	Graph of Lead vs. Time for the White River Site-August
A57	Graph of Lead vs. Time for the White River Site-December
A58	Graph of Manganese vs. Time for the White River Site-May
A59	Graph of Manganese vs. Time for the White River Site-August
A60	Graph of Manganese vs. Time for the White River Site-December
A61	Graph of Mercury vs. Time for the White River Site-May
A62	Graph of Mercury vs. Time for the White River Site-August
A63	Graph of Mercury vs. Time for the White River Site-December
A64	Graph of Nickel vs. Time for the White River Site-May

.

ł

Figure		Page
A65	Graph of Nickel vs. Time for the White River Site-August	. A22
A66	Graph of Nickel vs. Time for the White River Site-December	. A22
A67	Graph of Potassium vs. Time for the White River Site-May	. A23
A68	Graph of Potassium vs. Time for the White River Site-August	. A23
A69	Graph of Potassium vs. Time for the White River Site-December	. A23
A70	Graph of Zinc vs. Time for the White River Site-May	. A24
A71	Graph of Zinc vs. Time for the White River Site-August	. A24
A72	Graph of Zinc vs. Time for the White River Site-December	. A24
A73	Graph of Un-ionized Ammonia vs. Time for the White River Site-May	. A25
A74	Graph of Un-ionized Ammonia vs. Time for the White River Site-August	A25
A75	Graph of Un-ionized Ammonia vs. Time for the White River	• 1123
	Site-December	. A25
A76	Graph of Ammonia Nitrogen vs. Time for the White River Site-May	. A26
A77	Graph of Ammonia Nitrogen vs. Time for the White River Site-August	. A26
A78	Graph of Ammonia Nitrogen vs. Time for the White River Site-December	. A26

Figure		Page
A79	Graph of Organic Nitrogen vs. Time for the White River Site-May	A27
A80	Graph of Organic Nitrogen vs. Time for the White River Site-August	A27
A81	Graph of Organic Nitrogen vs. Time for the White River Site-December	. A27
A82	Graph of Nitrate Nitrogen vs. Time for the White River Site-May	. A28
A83	Graph of Nitrate Nitrogen vs. Time for the White River Site-August	. A28
A84	Graph of Nitrate Nitrogen vs. Time for the White River Site-December	. A28
A85	Graph of Total Kjeldahl Nitrogen vs. Time for the White River Site-May	. A29
A86	Graph of Total Kjeldahl Nitrogen vs. Time for the White River Site-August	. A29
A87	Graph of Total Kjeldahl Nitrogen vs. Time for the White River Site-December	. A29
A88	Graph of Total Nitrogen vs. Time for the White River Site-May	. A30
A89	Graph of Total Nitrogen vs. Time for the White River Site-August	. A30
A90	Graph of Total Nitrogen vs. Time for the White River Site-December	. A30
A91	Graph of pH vs. Time for the White River Site-May	. A31

1

- C. S.

Figure		Page
A92	Graph of pH vs. Time for the White River Site-August	. A31
A93	Graph of pH vs. Time for the White River Site-December	. A31
A94	Graph of Total Phosphorous vs. Time for the White River Site-May	. A32
A95	Graph of Total Phosphorous vs. Time for the White River Site-August	. A32
A96	Graph of Total Phosphorous vs. Time for the White River Site-December	. A32
A97	Graph of Orthophosphate vs. Time for the White River Site-May	. A33
A98	Graph of Orthophosphate vs. Time for the White River Site-August	. A33
A99	Graph of Orthophosphate vs. Time for the White River Site-December	. A33
A100	Graph of Sulfate vs. Time for the White River Site-May	. A34
A101	Graph of Sulfate vs. Time for the White River Site-August	. A34
A102	Graph of Sulfate vs. Time for the White River Site-December	. A34
A103	Graph of Temperature vs. Time for the White River Site-May	. A35
A104	Graph of Temperature vs. Time for the White River Site-August	. A35
A105	Graph of Temperature vs. Time for the White River Site-December	. A35
A106	Graph of Turbidity vs. Time for the White River Site-May	. A36
A107	Graph of Turbidity vs. Time for the White River Site-August	. A36
A108	Graph of Turbidity vs. Time for the White River Site-December	. A36

Page Figure Dissolved Oxygen Profile for the Eureka BD1 Springs Site - December 18, 1973 BD1 Dissolved Oxygen Profile for the Eureka BD2 Springs Site - January 15, 1974 BD1 Dissolved Oxygen Profile for the Eureka BD3 Springs Site - February 20, 1974 BD1 Dissolved Oxygen Profile for the Eureka BD4 Springs Site - March 19, 1974 BD2 Dissolved Oxygen Profile for the Eureka BD5 Springs Site - April 16, 1974 BD2 Dissolved Oxygen Profile for the Eureka BD6 Dissolved Oxygen Profile for the Eureka BD7 . . BD3 Springs Site - July 8, 1974 Dissolved Oxygen Profile for the Eureka BD8 Springs Site - August 13, 1974 BD3 Dissolved Oxygen Profile for the Eureka BD9 Springs Site - September 24, 1974 BD3 Dissolved Oxygen Profile for the Eureka **BD10** Springs Site - October 22, 1974 BD4 Dissolved Oxygen Profile for the Eureka **BD11** Springs Site - November 20, 1974 BD4 Dissolved Oxygen Profile for the Eureka **BD12** Springs Site - December 16, 1974 BD4 Dissolved Oxygen Profile for the Eureka **BD13** Springs Site - January 21, 1975 BD5 Dissolved Oxygen Profile for the Eureka **BD14** Springs Site - February 18, 1975 BD5 Dissolved Oxygen Profile for the Eureka **BD15** Springs Site - March 17, 1975 BD5 Dissolved Oxygen Profile for the Eureka BD16 . . BD6 Springs Site - April 15, 1975 Dissolved Oxygen Profile for the Eureka BD17

Figure

,

;

BD18	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	June 11, 1975 BD6
BD19	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	July 8, 1975 BD7
BD20	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	August 13, 1975 BD7
BD21	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	September 17, 1975 BD7
BD22	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	October 14, 1975 BD8
BD23	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	November 18, 1975 BD8
BD24	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	December 16, 1975 BD8
BD25	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	January 20, 1976 BD9
BD26	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	February 24, 1976 BD9
BD27	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	March 23, 1976 BD9
BD28	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	April 20, 1976 BD10
BD29	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	May 25, 1976 BD10
BD30	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	June 23, 1976 BD10
BD31	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	July 23, 1976 BD11
BD32	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	August 24, 1976 BD11
BD33	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	September 22, 1976 BD11
BD60	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	October 18, 1976 BD12

Figure Page Dissolved Oxygen Profile for the Eureka BD60 Springs Site - November 16, 1976 **BD12 BD60** Dissolved Oxygen Profile for the Eureka Springs Site - December 14, 1976 **BD12 BD37** Dissolved Oxygen Profile for the Eureka Springs Site - January 26, 1977 BD13 **BD38** Dissolved Oxygen Profile for the Eureka Springs Site - February 7, 1977 . . . **BD13** Dissolved Oxygen Profile for the Eureka **BD39** Springs Site - March 8, 1977 **BD13** . . . Dissolved Oxygen Profile for the Eureka **BD60** Springs Site - April 5, 1977 BD14 BD41 Dissolved Oxygen Profile for the Eureka Springs Site - May 1, 1977 **BD14 BD42** Dissolved Oxygen Profile for the Eureka Springs Site - May 31, 1977 BD14 BD43 Dissolved Oxygen Profile for the Eureka Springs Site - June 27, 1977 BD15 **BD44** Dissolved Oxygen Profile for the Eureka Springs Site - July 26, 1977 BD15 BD45 Dissolved Oxygen Profile for the Eureka Springs Site - August 22, 1977 **BD15** Dissolved Oxygen Profile for the Eureka BD46 Springs Site - September 12, 1977 **BD16** Dissolved Oxygen Profile for the Eureka **BD47** Springs Site - October 12, 1977 **BD16** Dissolved Oxygen Profile for the Eureka **BD48** Springs Site - November 9, 1977 BD16 Dissolved Oxygen Profile for the Eureka **BD49** Springs Site - December 7, 1977 **BD17** BD60 Dissolved Oxygen Profile for the Eureka Springs Site - January 4, 1978 BD17 BD51 Dissolved Oxygen Profile for the Eureka Springs Site - March 2, 1978 BD17

i

Figure				Page
BD52	Dissolved Springs	Oxygen Site -	Profile for the Eureka April 11, 1978	BD18
BD53	Dissolved Springs	Oxygen Site -	Profile for the Eureka May 9, 1978	BD18
BD54	Dissolved Springs	Oxygen Site -	Profile for the Eureka June 15, 1978	BD18
BD55	Dissolved Springs	Oxygen Site -	Profile for the Eureka July 18, 1978	BD19
BD56	Dissolved Springs	Oxygen Site -	Profile for the Eureka August 15, 1978	BD19
BD57	Dissolved Springs	Oxygen Site -	Profile for the Eureka September 28, 1978	BD19
BD58	Dissolved Springs	Oxygen Site -	Profile for the Éureka October 10, 1978	BD20
BD59	Dissolved Springs	Oxygen Site -	Profile for the Eureka November 7, 1978	BD20
BD60	Dissolved Springs	Oxygen Site -	Profile for the Eureka December 5, 1978	BD20
BD61	Dissolved Springs	Oxygen Site -	Profile for the Eureka January 9, 1979	BD21
BD62	Dissolved Springs	Oxygen Site -	Profile for the Eureka February 14, 1979	BD21
BD63	Dissolved Springs	Oxygen Site -	Profile for the Eureka March 8, 1979	BD21
BD64	Dissolved Springs	Oxygen Site -	Profile for the Eureka April 9, 1979	BD22
BD65	Dissolved Springs	Oxygen Site -	Profile for the Eureka May 7, 1979	BD22
BD66	Dissolved Springs	Oxygen Site -	Profile for the Eureka June 6, 1979	BD22
BD67	Dissolved Springs	Oxygen Site -	Profile for the Eureka July 17, 1979	BD23
BD68	Dissolved Springs	Oxygen Site -	Profile for the Eureka August 22, 1979	BD23

Figure	I	Page
BD69	Dissolved Oxygen Profile for the Eureka Springs Site - September 15, 1979 E	3D23
BD70	Dissolved Oxygen Profile for the Eureka Springs Site - October 16, 1979	3D24
BD71	Dissolved Oxygen Profile for the Eureka Springs Site - November 6, 1979	3D24
BD72	Dissolved Oxygen Profile for the Eureka Springs Site - December 5, 1979	3D24
BD73	Dissolved Oxygen Profile for the Eureka Springs Site - January 18, 1980 I	BD25
BD74	Dissolved Oxygen Profile for the Eureka Springs Site - February 14, 1980	BD25
BD75	Dissolved Oxygen Profile for the Eureka Springs Site - March 12, 1980	BD25
BD76	Dissolved Oxygen Profile for the Eureka Springs Site - April 8, 1980	BD26
BD77	Dissolved Oxygen Profile for the Eureka Springs Site - May 7, 1980	BD26
BD78	Dissolved Oxygen Profile for the Eureka Springs Site - June 19, 1980	BD26
BD79	Dissolved Oxygen Profile for the Eureka Springs Site - July 16, 1980	BD27
BD80	Dissolved Oxygen Profile for the Eureka Springs Site - August 13, 1980	BD27
BD81	Dissolved Oxygen Profile for the Eureka Springs Site - September 16, 1980	BD27
BD82	Dissolved Oxygen Profile for the Eureka Springs Site - October 6, 1980	BD28
BD83	Dissolved Oxygen Profile for the Eureka Springs Site - November 5, 1980	BD28
BD84	Dissolved Oxygen Profile for the Eureka Springs Site - December 10, 1980	BD28
BD85	Dissolved Oxygen Profile for the Eureka Springs Site - February 3, 1981	BD29

Figure

;

BD86	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	March 3, 1981 BD29
BD87	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	April 13, 1981 BD29
BD88	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	May 13, 1981 BD30
BD89	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	June 16, 1981 BD30
BD90	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	July 14, 1981 BD30
BD91	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	August 12, 1981 BD31
BD92	Dissolved	Oxygen	Profile for the Ėureka
	Springs	Site -	September 14, 1981 BD31
BD93	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	October 20, 1981 BD31
BD94	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	November 16, 1981 BD32
BD95	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	December 9, 1981 BD32
BD96	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	January 26, 1982 BD32
BD97	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	February 16, 1982 BD33
BD98	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	March 23, 1982 BD33
BD99	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	April 20, 1982 BD33
BD100	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	May 19, 1982 BD34
BD101	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	June 22, 1982 BD34
BD102	Dissolved	Oxygen	Profile for the Eureka
	Springs	Site -	July 20, 1982 BD34

.

Figure		Page
BD103	Dissolved Oxygen Profile for the Eureka Springs Site - August 18, 1982	BD35
BD104	Dissolved Oxygen Profile for the Eureka Springs Site - September 23, 1982	BD35
BD105	Dissolved Oxygen Profile for the Eureka Springs Site - October 22, 1982	BD35
BD106	Dissolved Oxygen Profile for the Eureka Springs Site - November 24, 1982	BD36
BD107	Dissolved Oxygen Profile for the Eureka Springs Site - December 8, 1982	BD36
BD108	Dissolved Oxygen Profile for the Eureka Springs Site - January 25, 1982	BD36
BD109	Dissolved Oxygen Profile for the Eureka Springs Site - February 11, 1983	BD37
BD110	Dissolved Oxygen Profile for the Eureka Springs Site - March 23, 1983	BD37
BD111	Dissolved Oxygen Profile for the Eureka Springs Site -April 21, 1983	BD37
BD112	Dissolved Oxygen Profile for the Eureka Springs Site - May 18, 1983	BD38
BD113	Dissolved Oxygen Profile for the Eureka Springs Site - June 14, 1983	BD38
BD114	Dissolved Oxygen Profile for the Eureka Springs Site - July 12, 1983	BD38
BD115	Dissolved Oxygen Profile for the Eureka Springs Site - August 17, 1983	BD39
BD116	Dissolved Oxygen Profile for the Eureka Springs Site - September 19, 1983	BD39
BD117	Dissolved Oxygen Profile for the Eureka Springs Site - October 20, 1983	BD39
BD118	Dissolved Oxygen Profile for the Eureka Springs Site - November 14, 1983	BD40
BD119	Dissolved Oxygen Profile for the Eureka Springs Site - December 7, 1983	. BD40

,

ł

- -

Figure				Page
BD120	Dissolved Springs	Oxygen Site -	Profile for the Eureka January 25, 1984	BD40
BD121	Dissolved Springs	Oxygen Site -	Profile for the Eureka February 20, 1984	BD41
BD122	Dissolved Springs	Oxygen Site -	Profile for the Eureka March 28, 1984	BD41
BD123	Dissolved Springs	Oxygen Site -	Profile for the Eureka April 24, 1984	BD41
BD124	Dissolved Springs	Oxygen Site -	Profile for the Eureka May 21, 1984	BD42
BD125	Dissolved Springs	Oxygen Site -	Profile for the Eureka June 26, 1984	BD42
BD126	Dissolved Springs	Oxygen Site -	Profile for the Eureka July 17, 1984	BD42
BD127	Dissolved Springs	Oxygen Site -	Profile for the Eureka August 14, 1984	BD43
BD128	Dissolved Springs	Oxygen Site -	Profile for the Eureka September 18, 1984	BD43
BD129	Dissolved Springs	Oxygen Site -	Profile for the Eureka October 18, 1984	BD43
BD130	Dissolved Springs	Oxygen Site -	Profile for the Eureka November 8, 1984	BD44
BD131	Dissolved Springs	Oxygen Site -	Profile for the Eureka December 13, 1984	BD44
BD132	Dissolved Springs	Oxygen Site -	Profile for the Eureka January 11, 1985	BD44
BD133	Dissolved Springs	Oxygen Site -	Profile for the Eureka February 6, 1985	BD45
BD134	Dissolved Springs	Oxygen Site -	Profile for the Eureka March 7, 1985	BD45
BD135	Dissolved Springs	Oxygen Site -	Profile for the Eureka April 3, 1985	BD45
BD136	Dissolved Springs	Oxygen Site -	Profile for the Eureka May 8, 1985	BD46

Page Figure Dissolved Oxygen Profile for the Eureka BD137 Springs Site - June 5, 1985 **BD46** BD138 Dissolved Oxygen Profile for the Eureka Springs Site - July 11, 1985 BD46 Dissolved Oxygen Profile for the Eureka BD139 Springs Site - August 7, 1985 BD47 Dissolved Oxygen Profile for the Eureka BD140 Springs Site - September 6, 1985 **BD47** Dissolved Oxygen Profile for the Eureka BD141 Springs Site - October 10, 1985 **BD47** Dissolved Oxygen Profile for the Eureka BD142 Springs Site - November 6, 1985 **BD48** Dissolved Oxygen Profile for the Eureka BD143 Springs Site - December 19, 1985. . . . BD48 Dissolved Oxygen Profile for the Eureka BD144 Springs Site - January 8, 1986 **BD48** Dissolved Oxygen Profile for the Eureka BD145 Springs Site - February 20, 1986 **BD49** Dissolved Oxygen Profile for the Eureka BD146 Springs Site - March 6, 1986 **BD49** Dissolved Oxygen Profile for the Eureka BD147 Springs Site - April 9, 1986 **BD49** . . . Dissolved Oxygen Profile for the Eureka BD148 Springs Site - May 6, 1986 **BD50** Dissolved Oxygen Profile for the Eureka BD149 **BD50** Springs Site - June 4, 1986 Dissolved Oxygen Profile for the Eureka BD150 Springs Site - July 9, 1986 . BD50 Dissolved Oxygen Profile for the Eureka BD151 BD51 Springs Site - August 4, 1986 . . Dissolved Oxygen Profile for the Eureka BD152 Springs Site - September 4, 1986 BD51 Dissolved Oxygen Profile for the Eureka BD153 BD51 Springs Site - October 9, 1986

;

Figure								Page
BD154	Dissolved Springs	Oxygen Site -	Profile for November 5,	the Eureka 1986	•	•	•	BD52
BD155	Dissolved Springs	Oxygen Site -	Profile for December 4,	the Eureka 1986	•	•	•	BD52
BD156	Dissolved Springs	Oxygen Site -	Profile for January 13,	the Eureka 1987	•	•	•	BD52
BD157	Dissolved Springs	Oxygen Site -	Profile for February 4,	the Eureka 1987	•	•	•	BD53
BD158	Dissolved Springs	Oxygen Site -	Profile for March 11, 19	the Eureka 987	•	•	•	BD53
BD159	Dissolved Springs	Oxygen Site -	Profile for April 15, 19	the Eureka 987	•	•	•	BD53
BD160	Dissolved Springs	Oxygen Site -	Profile for May 13, 1987	the Éureka	•	•	•	BD54
BD161	Dissolved Springs	Oxygen Site -	Profile for June 10, 198	the Eureka	•	•	•	BD54
BD162	Dissolved Springs	Oxygen Site -	Profile for July 15, 198	the Eureka	•	•	•	BD54
BD163	Dissolved Springs	Oxygen Site -	Profile for August 19, 1	the Eureka 987	•	•	•	BD55
BD164	Dissolved Springs	Oxygen Site -	Profile for September 3,	the Eureka 1987	•	•	•	BD55
BD165	Dissolved Springs	Oxygen Site -	Profile for October 15,	the Eureka 1987	•	•	•	BD55
BD166	Dissolved Springs	Oxygen Site -	Profile for November 12,	the Eureka 1987	•	•	•	BD56
BD167	Dissolved Springs	Oxygen Site -	Profile for December 2,	the Eureka 1987	•	•	•	BD56
BD168	Dissolved Springs	Oxygen Site -	Profile for January 20,	the Eureka 1988	•	•	•	BD56
BD169	Dissolved Springs	Oxygen Site -	Profile for February 24,	the Eureka 1988	•	•	•	BD57
BD170	Dissolved Springs	Oxygen Site -	Profile for March 16, 19	the Eureka 88	•		•	BD57

Figure Page Dissolved Oxygen Profile for the Eureka BD171 Springs Site - April 13, 1988 **BD57** Dissolved Oxygen Profile for the Eureka BD172 Springs Site - May 10, 1988 **BD58** Dissolved Oxygen Profile for the Eureka BD173 Springs Site - June 15, 1988 . **BD58** Dissolved Oxygen Profile for the Eureka BD174 Springs Site - July 12, 1988 **BD58** Dissolved Oxygen Profile for the Eureka BD175 Springs Site - August 9, 1988 . . . **BD59** Dissolved Oxygen Profile for the Eureka BD176 Springs Site - September 21, 1988 **BD59** Dissolved Oxygen Profile for the Eureka BD177 Springs Site - November 16, 1988 **BD59** Dissolved Oxygen Profile for the Eureka BD178 Springs Site - December 14, 1988 **BD60** Dissolved Oxygen Profile for the Eureka BD179 Springs Site - January 4, 1989 **BD60** Dissolved Oxygen Profile for the Eureka BD180 Springs Site - February 15, 1989 **BD60** Dissolved Oxygen Profile for the Eureka BD181 Springs Site - March 15, 1989 . BD61 Dissolved Oxygen Profile for the Eureka BD182 Springs Site - April 11, 1989 BD61 Dissolved Oxygen Profile for the Eureka BD183 Springs Site - May 2, 1989 BD61 Dissolved Oxygen Profile for the Eureka BD184 Springs Site - June 7, 1989 **BD62** Dissolved Oxygen Profile for the Eureka BD185 **BD62** Springs Site - July 13, 1989 Dissolved Oxygen Profile for the Eureka BD186 Springs Site - August 8, 1989 **BD62** Dissolved Oxygen Profile for the Eureka BD187 BD63 Springs Site - September 11, 1989

÷ .

;

Figure					Page
BD188	Dissolved Oxygen Profile for the Eureka Springs Site - January 10, 1990	•	•	•	BD63
BD189	Dissolved Oxygen Profile for the Eureka Springs Site - May 15, 1990	•	•	•	BD63
BD190	Dissolved Oxygen Profile for the Eureka Springs Site - July 31, 1990	•	•	•	BD64
BT1	Temperature Profile for the Eureka Springs Site - December 18, 1973	•	•	•	. BT1
BT2	Temperature Profile for the Eureka Springs Site - January 15, 1974	•	•	•	. BT1
BT3	Temperature Profile for the Eureka Springs Site - February 20, 1974	•	•	•	. BT1
BT4	Temperature Profile for the Eureka Springs Site - March 19, 1974	•	•	•	. BT2
BT5	Temperature Profile for the Eureka Springs Site - April 16, 1974	•	•	•	. BT2
BT6	Temperature Profile for the Eureka Springs Site - May 14, 1974	•	•	•	. BT2
BT7	Temperature Profile for the Eureka Springs Site - July 8, 1974	•	•	•	. BT3
BT8	Temperature Profile for the Eureka Springs Site - August 13, 1974	•	•	•	. BT3
BT9	Temperature Profile for the Eureka Springs Site - September 24, 1974	•	•	•	. BT3
BT10	Temperature Profile for the Eureka Springs Site - October 22, 1974	•	•	•	. BT4
BT11	Temperature Profile for the Eureka Springs Site - November 20, 1974	•	•	•	. BT4
BT12	Temperature Profile for the Eureka Springs Site - December 16, 1974	•	•	•	. BT4
BT13	Temperature Profile for the Eureka Springs Site - January 21, 1975	•	•	•	. BT5
BT14	Temperature Profile for the Eureka Springs Site - February 18, 1975	•	•	•	. BT5

Figure							Page
BT15	Temperature Profile for the Eureka Springs Site - March 17, 1975	•	•	•	•	•	. BTS
BT16	Temperature Profile for the Eureka Springs Site - April 15, 1975	•	•	•	•	•	. BTG
BT17	Temperature Profile for the Eureka Springs Site - May 14, 1975	•	•	•	•	•	. BT6
BT18	Temperature Profile for the Eureka Springs Site - June 11, 1975	•	•	•	•	•	. BT6
BT19	Temperature Profile for the Eureka Springs Site - July 8, 1975	·	•	•	•	•	. BT7
BT20	Temperature Profile for the Eureka Springs Site - August 13, 1975 .	•	•	•	•	•	. BT7
BT21	Temperature Profile for the Eureka Springs Site - September 17, 1975	•	•	•	•	•	. BTT
BT22	Temperature Profile for the Eureka Springs Site - October 14, 1975 .	•	•	•	•	•	. BT
BT23	Temperature Profile for the Eureka Springs Site - November 18, 1975	•	•	•	•	•	. BT
BT24	Temperature Profile for the Eureka Springs Site - December 16, 1975	•	•	•	•	•	. BT
BT25	Temperature Profile for the Eureka Springs Site - January 20, 1976 .	•	•	•	•	•	. BT
BT26	Temperature Profile for the Eureka Springs Site - February 24, 1976	•	•	•	•	•	. BT
BT27	Temperature Profile for the Eureka Springs Site - March 23, 1976	•	•	•	•	•	. BT
BT28	Temperature Profile for the Eureka Springs Site - April 20, 1976	•	•	•	•	•	BT1
BT29	Temperature Profile for the Eureka Springs Site - May 25, 1976	•	•	•	•	•	BT1
BT30	Temperature Profile for the Eureka Springs Site - June 23, 1976	•	•	•	•	•	BT1
BT31	Temperature Profile for the Eureka Springs Site - July 23, 1976	•	•	•	•	•	BT1

.

Figure		Page
BT32	Temperature Profile for the Eureka Springs Site - August 24, 1976	BT11
BT33	Temperature Profile for the Eureka Springs Site - September 22, 1976	BT11
BT60	Temperature Profile for the Eureka Springs Site - October 18, 1976	BT12
BT60	Temperature Profile for the Eureka Springs Site - November 16, 1976	BT12
BT60	Temperature Profile for the Eureka Springs Site - December 14, 1976	BT12
BT37	Temperature Profile for the Eureka Springs Site - January 26, 1977	BT13
BT38	Temperature Profile for the Eureka Springs Site - February 7, 1977	BT13
BT39	Temperature Profile for the Eureka Springs Site - March 8, 1977	BT13
BT60	Temperature Profile for the Eureka Springs Site - April 5, 1977	BT14
BT41	Temperature Profile for the Eureka Springs Site - May 1, 1977	BT14
BT42	Temperature Profile for the Eureka Springs Site - May 31, 1977	BT14
BT43	Temperature Profile for the Eureka Springs Site - June 27, 1977	BT15
BT44	Temperature Profile for the Eureka Springs Site - July 26, 1977	BT15
BT45	Temperature Profile for the Eureka Springs Site - August 22, 1977	BT15
BT46	Temperature Profile for the Eureka Springs Site - September 12, 1977	BT16
BT47	Temperature Profile for the Eureka Springs Site - October 12, 1977	BT16
BT48	Temperature Profile for the Eureka Springs Site - November 9, 1977	BT16

Figure							Page
BT49	Temperature Profile for the Eureka Springs Site - December 7, 1977 .	•	•	•	•	•	BT17
BT60	Temperature Profile for the Eureka Springs Site - January 4, 1978 .	•	•	•	•	•	BT17
BT51	Temperature Profile for the Eureka Springs Site - March 2, 1978	•	•	•	•	•	BT17
BT52	Temperature Profile for the Eureka Springs Site - April 11, 1978	•	•	•	•	•	BT18
BT53	Temperature Profile for the Eureka Springs Site - May 9, 1978	·	•	•	•	•	BT18
BT54	Temperature Profile for the Eureka Springs Site - June 15, 1978	•	•	•	•	•	BT18
BT55	Temperature Profile for the Eureka Springs Site - July 18, 1978	•	•	•	•	•	BT19
BT56	Temperature Profile for the Eureka Springs Site - August 15, 1978 .	•	•	•	•	•	BT19
BT57	Temperature Profile for the Eureka Springs Site - September 28, 1978	•	•	•	•	•	BT19
BT58	Temperature Profile for the Eureka Springs Site - October 10, 1978 .	•	•	•	•	•	BT20
BT59	Temperature Profile for the Eureka Springs Site - November 7, 1978 .	•	•	•	•	•	BT20
BT60	Temperature Profile for the Eureka Springs Site - December 5, 1978 .	•	•	•	•	•	BT20
BT61	Temperature Profile for the Eureka Springs Site - January 9, 1979 .	•	•	•	•	•	BT21
BT62	Temperature Profile for the Eureka Springs Site - February 14, 1979	•	•		•	•	BT21
BT63	Temperature Profile for the Eureka Springs Site - March 8, 1979	•	•	•	•	•	BT21
BT64	Temperature Profile for the Eureka Springs Site - April 9, 1979	•	•	•	•	•	BT22
BT65	Temperature Profile for the Eureka Springs Site - May 7, 1979	•	•	•	•	•	BT22

ł

Figure		Page
BT66	Temperature Profile for the Eureka Springs Site - June 6, 1979	BT22
BT67	Temperature Profile for the Eureka Springs Site - July 17, 1979	BT23
BT68	Temperature Profile for the Eureka Springs Site - August 22, 1979	BT23
BT69	Temperature Profile for the Eureka Springs Site - September 15, 1979	BT23
BT70	Temperature Profile for the Eureka Springs Site - October 16, 1979	BT24
BT71	Temperature Profile for the Eureka Springs Site - November 6, 1979	BT24
BT72	Temperature Profile for the Eureka Springs Site - December 5, 1979	BT24
BT73	Temperature Profile for the Eureka Springs Site - January 18, 1980	BT25
BT74	Temperature Profile for the Eureka Springs Site - February 14, 1980	BT25
BT75	Temperature Profile for the Eureka Springs Site - March 12, 1980	BT25
BT76	Temperature Profile for the Eureka Springs Site - April 8, 1980	BT26
BT77	Temperature Profile for the Eureka Springs Site - May 7, 1980	BT26
BT78	Temperature Profile for the Eureka Springs Site - June 19, 1980	BT26
BT79	Temperature Profile for the Eureka Springs Site - July 16, 1980	BT27
BT80	Temperature Profile for the Eureka Springs Site - August 13, 1980	BT27
BT81	Temperature Profile for the Eureka Springs Site - September 16, 1980	BT27
BT82	Temperature Profile for the Eureka Springs Site - October 6, 1980	BT28
Figure Page **BT83** Temperature Profile for the Eureka Springs Site - November 5, 1980 . . BT28 Temperature Profile for the Eureka **BT84** Springs Site - December 10, 1980 BT28 BT85 Temperature Profile for the Eureka Springs Site - February 3, 1981 . . **BT29** Temperature Profile for the Eureka BT86 Springs Site - March 3, 1981 . . . **BT29** Temperature Profile for the Eureka **BT87** Springs Site - April 13, 1981 . . . BT29 Temperature Profile for the Eureka BT88 **BT30** Springs Site - May 13, 1981 Temperature Profile for the Eureka **BT89 BT30** Springs Site - June 16, 1981 Temperature Profile for the Eureka **BT90** BT30 Springs Site - July 14, 1981 Temperature Profile for the Eureka **BT91 BT31** Springs Site - August 12, 1981 Temperature Profile for the Eureka **BT92** BT31 Springs Site - September 14, 1981 . . Temperature Profile for the Eureka **BT93 BT31** Springs Site - October 20, 1981 . . . Temperature Profile for the Eureka **BT94** Springs Site - November 16, 1981 **BT32** Temperature Profile for the Eureka **BT95** Springs Site - December 9, 1981 . . **BT32** Temperature Profile for the Eureka **BT96 BT32** Springs Site - January 26, 1982 . . Temperature Profile for the Eureka **BT97** BT33 Springs Site - February 16, 1982 Temperature Profile for the Eureka **BT98** Springs Site - March 23, 1982 . . . BT33 BT99 Temperature Profile for the Eureka **BT33** Springs Site - April 20, 1982 . . .

ł

Figure		Page
BT100	Temperature Profile for the Eureka Springs Site - May 19, 1982	BT34
BT101	Temperature Profile for the Eureka Springs Site - June 22, 1982	BT34
BT102	Temperature Profile for the Eureka Springs Site - July 20, 1982	BT34
BT103	Temperature Profile for the Eureka Springs Site - August 18, 1982	BT35
BT104	Temperature Profile for the Eureka Springs Site - September 23, 1982	BT35
BT105	Temperature Profile for the Eureka Springs Site - October 22, 1982	BT35
BT106	Temperature Profile for the Eureka Springs Site - November 24, 1982	BT36
BT107	Temperature Profile for the Eureka Springs Site - December 8, 1982	BT36
BT108	Temperature Profile for the Eureka Springs Site - January 25, 1982	BT36
BT109	Temperature Profile for the Eureka Springs Site - February 11, 1983	BT37
BT110	Temperature Profile for the Eureka Springs Site - March 23, 1983	BT37
BT111	Temperature Profile for the Eureka Springs Site -April 21, 1983	BT37
BT112	Temperature Profile for the Eureka Springs Site - May 18, 1983	BT38
BT113	Temperature Profile for the Eureka Springs Site - June 14, 1983	BT38
BT114	Temperature Profile for the Eureka Springs Site - July 12, 1983	BT38
BT115	Temperature Profile for the Eureka Springs Site - August 17, 1983	BT39
BT116	Temperature Profile for the Eureka Springs Site - September 19, 1983	BT39

Figure							Page
BT117	Temperature Profile for the Eureka Springs Site - October 20, 1983 .	•	•	•	•	•	BT39
BT118	Temperature Profile for the Eureka Springs Site - November 14, 1983	•	•	•	•	•	BT40
BT119	Temperature Profile for the Eureka Springs Site - December 7, 1983 .	•	•	•	•	•	BT40
BT120	Temperature Profile for the Eureka Springs Site - January 25, 1984 .	•	•	•	•	•	BT40
BT121	Temperature Profile for the Eureka Springs Site - February 20, 1984	•	•	•	•	•	BT41
BT122	Temperature Profile for the Eureka Springs Site - March 28, 1984	•	•	•	•	•	BT41
BT123	Temperature Profile for the Eureka Springs Site - April 24, 1984	•	•	•	•	•	BT41
BT124	Temperature Profile for the Eureka Springs Site - May 21, 1984	•	•	•	•	•	BT42
BT125	Temperature Profile for the Eureka Springs Site - June 26, 1984	•	•	•	•	•	BT42
BT126	Temperature Profile for the Eureka Springs Site - July 17, 1984	•	•	•	•	•	BT42
BT127	Temperature Profile for the Eureka Springs Site - August 14, 1984 .	•	•	•	•	•	BT43
BT128	Temperature Profile for the Eureka Springs Site - September 18, 1984	•	•	•	•	•	BT43
BT129	Temperature Profile for the Eureka Springs Site - October 18, 1984 .	•	•	•	•	•	BT43
BT130	Temperature Profile for the Eureka Springs Site - November 8, 1984 .	•	•	•	•	•	BT44
BT131	Temperature Profile for the Eureka Springs Site - December 13, 1984	•	•		•	•	BT44
BT132	Temperature Profile for the Eureka Springs Site - January 11, 1985	•	•	•	•	•	BT44
BT133	Temperature Profile for the Eureka Springs Site - February 6, 1985 .	•	•	•	•	•	BT45

,

ł

Figure		Page
BT134	Temperature Profile for the Eureka Springs Site - March 7, 1985	BT45
BT135	Temperature Profile for the Eureka Springs Site - April 3, 1985	BT45
BT136	Temperature Profile for the Eureka Springs Site - May 8, 1985	BT46
BT137	Temperature Profile for the Eureka Springs Site - June 5, 1985	BT46
BT138	Temperature Profile for the Eureka Springs Site - July 11, 1985	BT46
BT139	Temperature Profile for the Eureka Springs Site - August 7, 1985,	BT47
BT140	Temperature Profile for the Eureka Springs Site - September 6, 1985	BT47
BT141	Temperature Profile for the Eureka Springs Site - October 10, 1985	BT47
BT142	Temperature Profile for the Eureka Springs Site - November 6, 1985	BT48
BT143	Temperature Profile for the Eureka Springs Site - December 19, 1985	BT48
BT144	Temperature Profile for the Eureka Springs Site - January 8, 1986	BT48
BT145	Temperature Profile for the Eureka Springs Site - February 20, 1986	BT49
BT146	Temperature Profile for the Eureka Springs Site - March 6, 1986	BT49
BT147	Temperature Profile for the Eureka Springs Site - April 9, 1986	BT49
BT148	Temperature Profile for the Eureka Springs Site - May 6, 1986	BT50
BT149	Temperature Profile for the Eureka Springs Site - June 4, 1986	BT50
BT150	Temperature Profile for the Eureka Springs Site - July 9, 1986	BT50

Figure		Page
BT151	Temperature Profile for the Eureka Springs Site - August 4, 1986	BT51
BT152	Temperature Profile for the Eureka Springs Site - September 4, 1986	BT51
BT153	Temperature Profile for the Eureka Springs Site - October 9, 1986	BT51
BT154	Temperature Profile for the Eureka Springs Site - November 5, 1986	BT52
BT155	Temperature Profile for the Eureka Springs Site - December 4, 1986	BT52
BT156	Temperature Profile for the Eureka Springs Site - January 13, 1987	BT52
BT157	Temperature Profile for the Eureka Springs Site - February 4, 1987	BT53
BT158	Temperature Profile for the Eureka Springs Site - March 11, 1987	BT53
BT159	Temperature Profile for the Eureka Springs Site - April 15, 1987	BT53
BT160	Temperature Profile for the Eureka Springs Site - May 13, 1987	BT54
BT161	Temperature Profile for the Eureka Springs Site - June 10, 1987	BT54
BT162	Temperature Profile for the Eureka Springs Site - July 15, 1987	BT54
BT163	Temperature Profile for the Eureka Springs Site - August 19, 1987	BT55
BT164	Temperature Profile for the Eureka Springs Site - September 3, 1987	BT55
BT165	Temperature Profile for the Eureka Springs Site - October 15, 1987	BT55
BT166	Temperature Profile for the Eureka Springs Site - November 12, 1987	BT56
BT167	Temperature Profile for the Eureka Springs Site - December 2, 1987	BT56

.

Figure		Page
BT168	Temperature Profile for the Eureka Springs Site - January 20, 1988	BT56
BT169	Temperature Profile for the Eureka Springs Site - February 24, 1988	BT57
BT170	Temperature Profile for the Eureka Springs Site - March 16, 1988	BT57
BT171	Temperature Profile for the Eureka Springs Site - April 13, 1988	BT57
BT172	Temperature Profile for the Eureka Springs Site - May 10, 1988	BT58
BT173	Temperature Profile for the Eureka Springs Site - June 15, 1988	BT58
BT174	Temperature Profile for the Eureka Springs Site - July 12, 1988	BT58
BT175	Temperature Profile for the Eureka Springs Site - August 9, 1988	BT59
BT176	Temperature Profile for the Eureka Springs Site - September 21, 1988	BT59
BT177	Temperature Profile for the Eureka Springs Site - November 16, 1988	BT59
BT178	Temperature Profile for the Eureka Springs Site - December 14, 1988	BT60
BT179	Temperature Profile for the Eureka Springs Site - January 4, 1989	BT60
BT180	Temperature Profile for the Eureka Springs Site - February 15, 1989	BT60
BT181	Temperature Profile for the Eureka Springs Site - March 15, 1989	BT61
BT182	Temperature Profile for the Eureka Springs Site - April 11, 1989	BT61
BT183	Temperature Profile for the Eureka Springs Site - May 2, 1989	BT61
BT184	Temperature Profile for the Eureka Springs Site - June 7, 1989	BT62

Figure							Page
BT185	Temperature Profile for the Eureka Springs Site - July 13, 1989	•	•	•	•	•	BT62
BT186	Temperature Profile for the Eureka Springs Site - August 8, 1989	•	•	•	•	•	BT62
BT187	Temperature Profile for the Eureka Springs Site - September 11, 1989	•	•	•	•	•	BT63
BT188	Temperature Profile for the Eureka Springs Site - January 10, 1990 .	•	•	•	•	•	BT63
BT189	Temperature Profile for the Eureka Springs Site - May 15, 1990	•	•	•	•	•	BT63
BT190	Temperature Profile for the Eureka Springs Site - July 31, 1990	•	•	•	•	•	BT64
BC1	Conductivity Profile for the Eureka Springs Site - December 18, 1973	•	•	•	•	•	. BC1
BC2	Conductivity Profile for the Eureka Springs Site - January 15, 1974 .	•	•	•	•	•	. BC1
BC3	Conductivity Profile for the Eureka Springs Site - February 20, 1974	•	•	•	•	•	. BC1
BC4	Conductivity Profile for the Eureka Springs Site - March 19, 1974	•	•	•	•	•	. BC2
BC5	Conductivity Profile for the Eureka Springs Site - April 16, 1974	•	•	•	•	•	. BC2
BC6	Conductivity Profile for the Eureka Springs Site - May 14, 1974	•	•	•	•	•	. BC2
BC7	Conductivity Profile for the Eureka Springs Site - July 8, 1974	•	•	•	•	•	. BC3
BC8	Conductivity Profile for the Eureka Springs Site - August 13, 1974 .	•	•	•	•	•	. BC3
BC9	Conductivity Profile for the Eureka Springs Site - September 24, 1974	•	•	•	•	•	. BC3
BC10	Conductivity Profile for the Eureka Springs Site - October 22, 1974 .	•	•	•	•	•	. BC4
BC11	Conductivity Profile for the Eureka Springs Site - November 20, 1974	•	•	•	•	•	. BC4

1

Figure							I	Page
BC12	Conductivity Profile for the Eureka Springs Site - December 16, 1974	••	•	•	•	•	•	BC4
BC13	Conductivity Profile for the Eureka Springs Site - January 21, 1975 .	•	•	•	•	•	•	BC5
BC14	Conductivity Profile for the Eureka Springs Site - February 18, 1975	•	•	•	•	•	•	BC5
BC15	Conductivity Profile for the Eureka Springs Site - March 17, 1975	•	•	•	•	•	•	BC5
BC16	Conductivity Profile for the Eureka Springs Site - April 15, 1975	•	•		•	•	•	BC6
BC17	Conductivity Profile for the Eureka Springs Site - May 14, 1975	• 4	•	•	•	•	•	BC6
BC18	Conductivity Profile for the Eureka Springs Site - June 11, 1975	•	•	•	•	•	•	BC6
BC19	Conductivity Profile for the Eureka Springs Site - July 8, 1975	•	•	•	•	•	•	BC7
BC20	Conductivity Profile for the Eureka Springs Site - August 13, 1975 .	•	•	•	•	•	•	BC7
BC21	Conductivity Profile for the Eureka Springs Site - September 17, 1975	•	•	•	•	•	•	BC7
BC22	Conductivity Profile for the Eureka Springs Site - October 14, 1975 .	•	•	•	•	•	•	BC8
BC23	Conductivity Profile for the Eureka Springs Site - November 18, 1975	•	•	•	•	•	•	BC8
BC24	Conductivity Profile for the Eureka Springs Site - December 16, 1975	•	•	•	•	•	•	BC8
BC25	Conductivity Profile for the Eureka Springs Site - January 20, 1976 .	•	•	•	•	•	•	BC9
BC26	Conductivity Profile for the Eureka Springs Site - February 24, 1976	•	•	•	•	•	•	BC9
BC27	Conductivity Profile for the Eureka Springs Site - March 23, 1976	•	•	•	•	•	•	BC9
BC28	Conductivity Profile for the Eureka Springs Site - April 20, 1976	•	•	•	-	•	E	BC10

Figure							Page
BC29	Conductivity Profile for the Eureka Springs Site - May 25, 1976	•	•	•	•	•	BC10
BC30	Conductivity Profile for the Eureka Springs Site - June 23, 1976	•	•	•	•	•	BC10
BC31	Conductivity Profile for the Eureka Springs Site - July 23, 1976	•	•	•	•	•	BC11
BC32	Conductivity Profile for the Eureka Springs Site - August 24, 1976 .	•	•	•	•	•	BC11
BC33	Conductivity Profile for the Eureka Springs Site - September 22, 1976	•	•	•	•	•	BC11
BC60	Conductivity Profile for the Eureka Springs Site - October 18, 1976 .	•	•	•	•	•	BC12
BC60	Conductivity Profile for the Eureka Springs Site - November 16, 1976	•	•	•	•	•	BC12
BC60	Conductivity Profile for the Eureka Springs Site - December 14, 1976	•	•	•	•	•	BC12
BC37	Conductivity Profile for the Eureka Springs Site - January 26, 1977 .	•	•	•	•	•	BC13
BC38	Conductivity Profile for the Eureka Springs Site - February 7, 1977 .	•	•	•	•	•	BC13
BC39	Conductivity Profile for the Eureka Springs Site - March 8, 1977	•	•	•	•	•	BC13
BC60	Conductivity Profile for the Eureka Springs Site - April 5, 1977		•	•	•	•	BC14
BC41	Conductivity Profile for the Eureka Springs Site - May 1, 1977	•	•	•	•	•	BC14
BC42	Conductivity Profile for the Eureka Springs Site - May 31, 1977		•		-		BC14
BC43	Conductivity Profile for the Eureka Springs Site - June 27, 1977	•	•		•		BC15
BC44	Conductivity Profile for the Eureka Springs Site - July 26, 1977	_			-	-	BC15
BC45	Conductivity Profile for the Eureka Springs Site - August 22, 1977 .	•	•	•	•	•	BC15

,

ł

Figure							Page
BC46	Conductivity Profile for the Eureka Springs Site - September 12, 1977	•	•	•		•	BC16
BC47	Conductivity Profile for the Eureka Springs Site - October 12, 1977 .	•	•	•	•	•	BC16
BC48	Conductivity Profile for the Eureka Springs Site - November 9, 1977 .	•	•		•	•	BC16
BC49	Conductivity Profile for the Eureka Springs Site - December 7, 1977 .	•	•	•	•	•	BC17
BC60	Conductivity Profile for the Eureka Springs Site - January 4, 1978 .	•	•	•	•	•	BC17
BC51	Conductivity Profile for the Eureka Springs Site - March 2, 1978	• ;	•	•	•	•	BC17
BC52	Conductivity Profile for the Eureka Springs Site - April 11, 1978	•	•	•	•	•	BC18
BC53	Conductivity Profile for the Eureka Springs Site - May 9, 1978	•	•	•	•	•	BC18
BC54	Conductivity Profile for the Eureka Springs Site - June 15, 1978	•		•	•	•	BC18
BC55	Conductivity Profile for the Eureka Springs Site - July 18, 1978	•	•	•	•	•	BC19
BC56	Conductivity Profile for the Eureka Springs Site - August 15, 1978 .	•	•	•	•	•	BC19
BC57	Conductivity Profile for the Eureka Springs Site - September 28, 1978	•	•	•	•	•	BC19
BC58	Conductivity Profile for the Eureka Springs Site - October 10, 1978 .	•	•	•	•	•	BC20
BC59	Conductivity Profile for the Eureka Springs Site - November 7, 1978 .	•	•	•	•	•	BC20
BC60	Conductivity Profile for the Eureka Springs Site - December 5, 1978 .	•	•	•	•	•	BC20
BC61	Conductivity Profile for the Eureka Springs Site - January 9, 1979 .	•	•	•	•	•	BC21
BC62	Conductivity Profile for the Eureka Springs Site - February 14, 1979	•	•	•	•	•	BC21

Figure							Page
BC63	Conductivity Profile for the Eureka Springs Site - March 8, 1979	•	•	۰.	•	•	BC21
BC64	Conductivity Profile for the Eureka Springs Site - April 9, 1979	•	•	•	•	•	BC22
BC65	Conductivity Profile for the Eureka Springs Site - May 7, 1979	•	۰ •	•	•	•	BC22
BC66	Conductivity Profile for the Eureka Springs Site - June 6, 1979	•	•	•	•	•	BC22
BC67	Conductivity Profile for the Eureka Springs Site - July 17, 1979	•	•	•	•	•	BC23
BC68	Conductivity Profile for the Eureka Springs Site - August 22, 1979 .	•	•	•	•	•	BC23
BC69	Conductivity Profile for the Eureka Springs Site - September 15, 1979	•	•	•	•	•	BC23
BC70	Conductivity Profile for the Eureka Springs Site - October 16, 1979 .	•	•	•	•	•	BC24
BC71	Conductivity Profile for the Eureka Springs Site - November 6, 1979 .	•	•	•	•	•	BC2 ⁻ 4
BC72	Conductivity Profile for the Eureka Springs Site - December 5, 1979 .	•	•	•	•	•	BC24
BC73	Conductivity Profile for the Eureka Springs Site - January 18, 1980 .	•	•	•	•	•	BC25
BC74	Conductivity Profile for the Eureka Springs Site - February 14, 1980	•	•	•	•	•	BC25
BC75	Conductivity Profile for the Eureka Springs Site - March 12, 1980	•	•	•	•	•	BC25
BC76	Conductivity Profile for the Eureka Springs Site - April 8, 1980	•	•	•	•	•	BC26
BC77	Conductivity Profile for the Eureka Springs Site - May 7, 1980	•	•	•	•	•	BC26
BC78	Conductivity Profile for the Eureka Springs Site - June 19, 1980		•	•	•	•	BC26
BC79	Conductivity Profile for the Eureka Springs Site - July 16, 1980	•	•	•	•	•	BC27

1

Figure		Page
BC80	Conductivity Profile for the Eureka Springs Site - August 13, 1980	BC27
BC81	Conductivity Profile for the Eureka Springs Site - September 16, 1980	BC27
BC82	Conductivity Profile for the Eureka Springs Site - October 6, 1980	BC28
BC83	Conductivity Profile for the Eureka Springs Site - November 5, 1980	BC28
BC84	Conductivity Profile for the Eureka Springs Site - December 10, 1980	BC28
BC85	Conductivity Profile for the Eureka Springs Site - February 3, 1981	BC29
BC86	Conductivity Profile for the Eureka Springs Site - March 3, 1981	BC29
BC87	Conductivity Profile for the Eureka Springs Site - April 13, 1981	BC29
BC88	Conductivity Profile for the Eureka Springs Site - May 13, 1981	BC30
BC89	Conductivity Profile for the Eureka Springs Site - June 16, 1981	BC30
BC90	Conductivity Profile for the Eureka Springs Site - July 14, 1981	BC30
BC91	Conductivity Profile for the Eureka Springs Site - August 12, 1981	BC31
BC92	Conductivity Profile for the Eureka Springs Site - September 14, 1981	BC31
BC93	Conductivity Profile for the Eureka Springs Site - October 20, 1981	BC31
BC94	Conductivity Profile for the Eureka Springs Site - November 16, 1981	BC32
BC95	Conductivity Profile for the Eureka Springs Site - December 9, 1981	BC32
BC96	Conductivity Profile for the Eureka Springs Site - January 26, 1982	BC32

Figure							Page
BC97	Conductivity Profile for the Eureka Springs Site - February 16, 1982	•	•	•	•	•	BC33
BC98	Conductivity Profile for the Eureka Springs Site - March 23, 1982	•	•	•	•	•	BC33
BC99	Conductivity Profile for the Eureka Springs Site - April 20, 1982	•	•	•	•	•	BC33
BC100	Conductivity Profile for the Eureka Springs Site - May 19, 1982	•	•	•	•	•	BC34
BC101	Conductivity Profile for the Eureka Springs Site - June 22, 1982	•	•	•	•	•	BC34
BC102	Conductivity Profile for the Eureka Springs Site - July 20, 1982	•	•	•	•	•	BC34
BC103	Conductivity Profile for the Eureka Springs Site - August 18, 1982 .	•	•	•	•	•	BC35
BC104	ر Conductivity Profile for the Eureka Springs Site - September 23, 1982	•	•	•	•	•	BC35
BC105	Conductivity Profile for the Eureka Springs Site - October 22, 1982 .	•	•	•	•	•	BC35
BC106	Conductivity Profile for the Eureka Springs Site - November 24, 1982	•	•	•	•	•	BC36
BC107	Conductivity Profile for the Eureka Springs Site - December 8, 1982 .	•	•	•	•	•	BC36
BC108	Conductivity Profile for the Eureka Springs Site - January 25, 1982 .	•	•	•	•	•	BC36
BC109	Conductivity Profile for the Eureka Springs Site - February 11, 1983	•	•		•	•	BC37
BC110	Conductivity Profile for the Eureka Springs Site - March 23, 1983	•	•	•	•	•	BC37
BC111	Conductivity Profile for the Eureka Springs Site -April 21, 1983	•	•	•	•	•	BC37
BC112	Conductivity Profile for the Eureka Springs Site - May 18, 1983	•	•	•	•	•	BC38
BC113	Conductivity Profile for the Eureka Springs Site - June 14, 1983	•	•	•	•	•	BC38

,

.

Figure							Page
BC114	Conductivity Profile for the Eureka Springs Site - July 12, 1983	•		•	•	•	BC38
BC115	Conductivity Profile for the Eureka Springs Site - August 17, 1983 .	•	•	•	•	•	BC39
BC116	Conductivity Profile for the Eureka Springs Site - September 19, 1983	•	•	•	•	•	BC39
BC117	Conductivity Profile for the Eureka Springs Site - October 20, 1983 .	•	•	•	•	•	BC39
BC118	Conductivity Profile for the Eureka Springs Site - November 14, 1983	•	•	•	•	•	BC40
BC119	Conductivity Profile for the Eureka Springs Site - December 7, 1983 .	• {	•	•	•	•	BC40
BC120	Conductivity Profile for the Eureka Springs Site - January 25, 1984 .	•	•	•	•	•	BC40
BC121	Conductivity Profile for the Eureka Springs Site - February 20, 1984	•	•	•	•	•	BC41
BC122	Conductivity Profile for the Eureka Springs Site - March 28, 1984	•	•	•	•	•	BC41
BC123	Conductivity Profile for the Eureka Springs Site - April 24, 1984	•	•	•	•	•	BC41
BC124	Conductivity Profile for the Eureka Springs Site - May 21, 1984	•	•	•	•	•	BC42
BC125	Conductivity Profile for the Eureka Springs Site - June 26, 1984	•	•	•	•	•	BC42
BC126	Conductivity Profile for the Eureka Springs Site - July 17, 1984	•	•	•	•	•	BC42
BC127	Conductivity Profile for the Eureka Springs Site - August 14, 1984 .	•	•	•	•	•	BC43
BC128	Conductivity Profile for the Eureka Springs Site - September 18, 1984	•	•	•	•	•	BC43
BC129	Conductivity Profile for the Eureka Springs Site - October 18, 1984 .	•	٠	•	•	•	BC43
BC130	Conductivity Profile for the Eureka Springs Site - November 8, 1984 .	•	•	•	•	•	BC44

Figure							Page
BC131	Conductivity Profile for the Eureka Springs Site - December 13, 1984	•	•	•	•	•	BC44
BC132	Conductivity Profile for the Eureka Springs Site - January 11, 1985	•	•	•	•	•	BC44
BC133	Conductivity Profile for the Eureka Springs Site - February 6, 1985 .	•	۰ •	•	•	•	BC45
BC134	Conductivity Profile for the Eureka Springs Site - March 7, 1985	•	•		•	•	BC45
BC135	Conductivity Profile for the Eureka Springs Site - April 3, 1985	•	•	•	•	•	BC45
BC136	Conductivity Profile for the Eureka Springs Site - May 8, 1985	•	•	•	•	•	BC46
BC137	Conductivity Profile for the Eureka Springs Site - June 5, 1985	•	•	•	•	•	BC46
BC138	Conductivity Profile for the Eureka Springs Site - July 11, 1985	•	•	•	•	•	BC46
BC139	Conductivity Profile for the Eureka Springs Site - August 7, 1985	•	•	•	•	•	BC47
BC140	Conductivity Profile for the Eureka Springs Site - September 6, 1985	•	•	•	•	•	BC47
BC141	Conductivity Profile for the Eureka Springs Site - October 10, 1985 .	•	•	•	•	•	BC47
BC142	Conductivity Profile for the Eureka Springs Site - November 6, 1985 .	•	•	•	•	•	BC48
BC143	Conductivity Profile for the Eureka Springs Site - December 19, 1985.	•	•	•	•	•	BC48
BC144	Conductivity Profile for the Eureka Springs Site - January 8, 1986 .	•	•	•	•	•	BC48
BC145	Conductivity Profile for the Eureka Springs Site - February 20, 1986	•			•	•	BC49
BC146	Conductivity Profile for the Eureka Springs Site - March 6, 1986	•	•	•	•	•	BC49
BC147	Conductivity Profile for the Eureka Springs Site - April 9, 1986	•	•	•	•	•	BC49

,

. |

Figure		Page
BC148	Conductivity Profile for the Eureka Springs Site - May 6, 1986	. BC50
BC149	Conductivity Profile for the Eureka Springs Site - June 4, 1986	. BC50
BC150	Conductivity Profile for the Eureka Springs Site - July 9, 1986	. BC50
BC151	Conductivity Profile for the Eureka Springs Site - August 4, 1986	. BC51
BC152	Conductivity Profile for the Eureka Springs Site - September 4, 1986	. BC51
BC153	Conductivity Profile for the Eureka Springs Site - October 9, 1986	. BC51
BC154	Conductivity Profile for the Eureka Springs Site - November 5, 1986	. BC52
BC155	Conductivity Profile for the Eureka Springs Site - December 4, 1986	. BC52
BC156	Conductivity Profile for the Eureka Springs Site - January 13, 1987	. BC52
BC157	Conductivity Profile for the Eureka Springs Site - February 4, 1987	. BC53
BC158	Conductivity Profile for the Eureka Springs Site - March 11, 1987	. BC53
BC159	Conductivity Profile for the Eureka Springs Site - April 15, 1987	. BC53
BC160	Conductivity Profile for the Eureka Springs Site - May 13, 1987	. BC54
BC161	Conductivity Profile for the Eureka Springs Site - June 10, 1987	• BC54
BC162	Conductivity Profile for the Eureka Springs Site - July 15, 1987	. BC54
BC163	Conductivity Profile for the Eureka Springs Site - August 19, 1987	. BC55
BC164	Conductivity Profile for the Eureka Springs Site - September 3, 1987	. BC55

Figure							Page
BC165	Conductivity Profile for the Eureka Springs Site - October 15, 1987 .	•	•	•	•	•	BC55
BC166	Conductivity Profile for the Eureka Springs Site - November 12, 1987	•	•	•	•	•	BC56
BC167	Conductivity Profile for the Eureka Springs Site - December 2, 1987 .	•	۰ •	•	•	•	BC56
BC168	Conductivity Profile for the Eureka Springs Site - January 20, 1988 .	•	•	•	•	•	BC56
BC169	Conductivity Profile for the Eureka Springs Site - February 24, 1988	•	•	•	•	•	BC57
BC170	Conductivity Profile for the Eureka Springs Site - March 16, 1988	•	•	•	•	•	BC57
BC171	Conductivity Profile for the Eureka Springs Site - April 13, 1988	•	•	•	•	•	BC57
BC172	Conductivity Profile for the Eureka Springs Site - May 10, 1988	•	•	•	•	•	BC58
BC173	Conductivity Profile for the Eureka Springs Site - June 15, 1988	•	•	•	•	•	BC58
BC174	Conductivity Profile for the Eureka Springs Site - July 12, 1988	•	•	•	•	•	BC58
BC175	Conductivity Profile for the Eureka Springs Site - August 9, 1988	•	•	•	•	•	BC59
BC176	Conductivity Profile for the Eureka Springs Site - September 21, 1988	•	•	•	•	•	BC59
BC177	Conductivity Profile for the Eureka Springs Site - November 16, 1988	•	•	•	•	•	BC59
BC178	Conductivity Profile for the Eureka Springs Site - December 14, 1988	•	•	•	•	•	BC60
BC179	Conductivity Profile for the Eureka Springs Site - January 4, 1989 .	•	•	•	•	•	BC60
BC180	Conductivity Profile for the Eureka Springs Site - February 15, 1989	•	•	•	•	•	BC60
BC181	Conductivity Profile for the Eureka Springs Site - March 15, 1989	•	•	•	•	•	BC61

,

1

Figure		Page
BC182	Conductivity Profile for the Eureka Springs Site - April 11, 1989	BC61
BC183	Conductivity Profile for the Eureka Springs Site - May 2, 1989	BC61
BC184	Conductivity Profile for the Eureka Springs Site - June 7, 1989	BC62
BC185	Conductivity Profile for the Eureka Springs Site - July 13, 1989	BC62
BC186	Conductivity Profile for the Eureka Springs Site - August 8, 1989	BC62
BC187	Conductivity Profile for the Eureka Springs Site - September 11, 1989	BC63
BC188	Conductivity Profile for the Eureka Springs Site - January 10, 1990	BC63
BC189	Conductivity Profile for the Eureka Springs Site - May 15, 1990	BC63
BC190	Conductivity Profile for the Eureka Springs Site - July 31, 1990	BC64
BP1	pH Profile for the Eureka Springs Site - December 18, 1973	BP1
BP2	pH Profile for the Eureka Springs Site - January 15, 1974	BP1
BP3	pH Profile for the Eureka Springs Site - February 20, 1974	BP1
BP4	pH Profile for the Eureka Springs Site - March 19, 1974	BP2
BP5	pH Profile for the Eureka Springs Site - April 16, 1974	BP2
BP6	pH Profile for the Eureka Springs Site - May 14, 1974	BP2
BP7	pH Profile for the Eureka Springs Site - July 8, 1974	BP3
BP8	pH Profile for the Eureka Springs Site - August 13, 1974	BP3

Figure	Pa	ıge
BP9	pH Profile for the Eureka Springs Site - September 24, 1974	3P3
BP10	pH Profile for the Eureka Springs Site - October 22, 1974	3P4
BP11	pH Profile for the Eureka Springs Site - November 20, 1974	3P4
BP12	pH Profile for the Eureka Springs Site - December 16, 1974 E	3P4
BP13	pH Profile for the Eureka Springs Site - January 21, 1975	3P5
BP14	pH Profile for the Eureka Springs Site - February 18, 1975	3P5
BP15	pH Profile for the Eureka Springs Site - March 17, 1975	3P5
BP16	pH Profile for the Eureka Springs Site - April 15, 1975	3P6
BP17	pH Profile for the Eureka Springs Site - May 14, 1975	3P6
BP18	pH Profile for the Eureka Springs Site - June 11, 1975	3P6
BP19	pH Profile for the Eureka Springs Site - July 8, 1975	3P7
BP20	pH Profile for the Eureka Springs Site - August 13, 1975	3P7
BP21	pH Profile for the Eureka Springs Site - September 17, 1975	3P7
BP22	pH Profile for the Eureka Springs Site - October 14, 1975	3P8
BP23	pH Profile for the Eureka Springs Site - November 18, 1975	3P8
BP24	pH Profile for the Eureka Springs Site - December 16, 1975	BP8
BP25	pH Profile for the Eureka Springs Site - January 20, 1976	BP9

,

.

Figure		Page
BP26	pH Profile for the Eureka Springs Site - February 24, 1976	. BP9
BP27	pH Profile for the Eureka Springs Site - March 23, 1976	. BP9
BP28	pH Profile for the Eureka Springs Site - April 20, 1976	BP10
BP29	pH Profile for the Eureka Springs Site - May 25, 1976	BP10
BP30	pH Profile for the Eureka Springs Site - June 23, 1976	BP10
BP31	pH Profile for the Eureka Springs Site - July 23, 1976	BP11
BP32	pH Profile for the Eureka Springs Site - August 24, 1976	BP11
BP33	pH Profile for the Eureka Springs Site - September 22, 1976	BP11
BP60	pH Profile for the Eureka Springs Site - October 18, 1976	BP12
BP60	pH Profile for the Eureka Springs Site - November 16, 1976	BP12
BP60	pH Profile for the Eureka Springs Site - December 14, 1976	BP12
BP37	pH Profile for the Eureka Springs Site - January 26, 1977	BP13
BP38	pH Profile for the Eureka Springs Site - February 7, 1977	BP13
BP39	pH Profile for the Eureka Springs Site - March 8, 1977	BP13
BP60	pH Profile for the Eureka Springs Site - April 5, 1977	BP14
BP41	pH Profile for the Eureka Springs Site - May 1, 1977	BP14
BP42	pH Profile for the Eureka Springs Site - May 31, 1977	BP14

Figure		Page
BP43	pH Profile for the Eureka Springs Site - June 27, 1977	BP15
BP44	pH Profile for the Eureka Springs Site - July 26, 1977	BP15
BP45	pH Profile for the Eureka Springs Site - August 22, 1977	BP15
BP46	pH Profile for the Eureka Springs Site - September 12, 1977	BP16
BP47	pH Profile for the Eureka Springs Site - October 12, 1977	BP16
BP48	pH Profile for the Eureka Springs Site - November 9, 1977	BP16
BP49	pH Profile for the Eureka Springs Site - December 7, 1977	BP17
BP60	pH Profile for the Eureka Springs Site - January 4, 1978	BP17
BP51	pH Profile for the Eureka Springs Site - March 2, 1978	BP17
BP52	pH Profile for the Eureka Springs Site - April 11, 1978	BP18
BP53	pH Profile for the Eureka Springs Site - May 9, 1978	BP18
BP54	pH Profile for the Eureka Springs Site - June 15, 1978	BP18
BP55	pH Profile for the Eureka Springs Site - July 18, 1978	BP19
BP56	pH Profile for the Eureka Springs Site - August 15, 1978	BP19
BP57	pH Profile for the Eureka Springs Site - September 28, 1978	BP19
BP58	pH Profile for the Eureka Springs Site - October 10, 1978	BP20
BP59	pH Profile for the Eureka Springs Site - November 7, 1978	BP20

.

÷

Figure		Page
BP60	pH Profile for the Eureka Springs Site - December 5, 1978	BP20
BP61	pH Profile for the Eureka Springs Site - January 9, 1979	BP21
BP62	pH Profile for the Eureka Springs Site - February 14, 1979	BP21
BP63	pH Profile for the Eureka Springs Site - March 8, 1979	BP21
BP64	pH Profile for the Eureka Springs Site - April 9, 1979	BP22
BP65	pH Profile for the Eureka Springs Site - May 7, 1979	BP22
BP66	pH Profile for the Eureka Springs' Site - June 6, 1979	BP22
BP67	pH Profile for the Eureka Springs Site - July 17, 1979	BP23
BP68	pH Profile for the Eureka Springs Site - August 22, 1979	BP23
BP69	pH Profile for the Eureka Springs Site - September 15, 1979	BP23
BP70	pH Profile for the Eureka Springs Site - October 16, 1979	BP24
BP71	pH Profile for the Eureka Springs Site - November 6, 1979	BP24
BP72	pH Profile for the Eureka Springs Site - December 5, 1979	BP24
BP73	pH Profile for the Eureka Springs Site - January 18, 1980	BP25
BP74	pH Profile for the Eureka Springs Site - February 14, 1980	BP25
BP75	pH Profile for the Eureka Springs Site - March 12, 1980	BP25
BP76	pH Profile for the Eureka Springs Site - April 8, 1980	BP26

41

Figure		Page
BP77	pH Profile for the Eureka Springs Site - May 7, 1980	BP26
BP78	pH Profile for the Eureka Springs Site - June 19, 1980	BP26
BP79	pH Profile for the Eureka Springs Site - July 16, 1980	BP27
BP80	pH Profile for the Eureka Springs Site - August 13, 1980	BP27
BP81	pH Profile for the Eureka Springs Site - September 16, 1980	BP27
BP82	pH Profile for the Eureka Springs Site - October 6, 1980	BP28
BP83	pH Profile for the Eureka Springs Site - November 5, 1980	BP28
BP84	pH Profile for the Eureka Springs ["] Site - December 10, 1980	BP28
BP85	pH Profile for the Eureka Springs Site - February 3, 1981	BP29
BP86	pH Profile for the Eureka Springs Site - March 3, 1981	BP29
BP87	<pre>`pH Profile for the Eureka Springs Site - April 13, 1981</pre>	BP29
BP88	pH Profile for the Eureka Springs Site - May 13, 1981	BP30
BP89	pH Profile for the Eureka Springs Site - June 16, 1981	BP30
BP90	pH Profile for the Eureka Springs Site - July 14, 1981	BP30
BP91	pH Profile for the Eureka Springs Site - August 12, 1981	BP31
BP92	pH Profile for the Eureka Springs Site - September 14, 1981	BP31
BP93	pH Profile for the Eureka Springs Site - October 20, 1981	BP31

1

•

Figure		Page
BP94	pH Profile for the Eureka Springs Site - November 16, 1981	BP32
BP95	pH Profile for the Eureka Springs Site - December 9, 1981	BP32
BP96	pH Profile for the Eureka Springs Site - January 26, 1982	BP32
BP97	pH Profile for the Eureka Springs Site - February 16, 1982	BP33
BP98	pH Profile for the Eureka Springs Site - March 23, 1982	BP33
BP99	pH Profile for the Eureka Springs Site - April 20, 1982	BP33
BP100	pH Profile for the Eureka Springs Site - May 19, 1982	BP34
BP101	pH Profile for the Eureka Springs Site - June 22, 1982	BP34
BP102	pH Profile for the Eureka Springs Site - July 20, 1982	BP34
BP103	pH Profile for the Eureka Springs Site - August 18, 1982	BP35
BP104	pH Profile for the Eureka Springs Site - September 23, 1982	BP35
BP105	pH Profile for the Eureka Springs Site - October 22, 1982	BP35
BP106	pH Profile for the Eureka Springs Site - November 24, 1982	BP36
BP107	pH Profile for the Eureka Springs Site - December 8, 1982	BP36
BP108	pH Profile for the Eureka Springs Site - January 25, 1982	BP36
BP109	pH Profile for the Eureka Springs Site - February 11, 1983	BP37
BP110	pH Profile for the Eureka Springs Site - March 23, 1983	BP37

.

Figure		Page
BP111	pH Profile for the Eureka Springs Site -April 21, 1983	BP37
BP112	pH Profile for the Eureka Springs Site - May 18, 1983	BP38
BP113	pH Profile for the Eureka Springs Site - June 14, 1983	BP38
BP114	pH Profile for the Eureka Springs Site - July 12, 1983	BP38
BP115	pH Profile for the Eureka Springs Site - August 17, 1983	BP39
BP116	pH Profile for the Eureka Springs Site - September 19, 1983	BP39
BP117	pH Profile for the Eureka Springs Site - October 20, 1983	BP39
BP118	pH Profile for the Eureka Springs Site - November 14, 1983	BP40
BP119	pH Profile for the Eureka Springs Site - December 7, 1983	BP40
BP120	pH Profile for the Eureka Springs Site - January 25, 1984	BP40
BP121	pH Profile for the Eureka Springs Site - February 20, 1984	BP41
BP122	pH Profile for the Eureka Springs Site - March 28, 1984	BP41
BP123	pH Profile for the Eureka Springs Site - April 24, 1984	BP41
BP124	pH Profile for the Eureka Springs Site - May 21, 1984	BP42
BP125	pH Profile for the Eureka Springs Site - June 26, 1984	BP42
BP126	pH Profile for the Eureka Springs Site - July 17, 1984	BP42
BP127	pH Profile for the Eureka Springs Site - August 14, 1984	BP43

,

i

Figure		Page
BP128	pH Profile for the Eureka Springs Site - September 18, 1984	BP43
BP129	pH Profile for the Eureka Springs Site - October 18, 1984	BP43
BP130	pH Profile for the Eureka Springs Site - November 8, 1984	BP44
BP131	pH Profile for the Eureka Springs Site - December 13, 1984	BP44
BP132	pH Profile for the Eureka Springs Site - January 11, 1985	BP44
BP133	pH Profile for the Eureka Springs Site - February 6, 1985	BP45
BP134	pH Profile for the Eureka Springs Site - March 7, 1985	BP45
BP135	pH Profile for the Eureka Springs Site - April 3, 1985	BP45
BP136	pH Profile for the Eureka Springs Site - May 8, 1985	BP46
BP137	pH Profile for the Eureka Springs Site - June 5, 1985	BP46
BP138	pH Profile for the Eureka Springs Site - July 11, 1985	BP46
BP139	pH Profile for the Eureka Springs Site - August 7, 1985	BP47
BP140	pH Profile for the Eureka Springs Site - September 6, 1985	BP47
BP141	pH Profile for the Eureka Springs Site - October 10, 1985	BP47
BP142	pH Profile for the Eureka Springs Site - November 6, 1985	BP48
BP143	pH Profile for the Eureka Springs Site - December 19, 1985	BP48
BP144	pH Profile for the Eureka Springs Site - January 8, 1986	BP48

.

Figure		Page
BP145	pH Profile for the Eureka Springs Site - February 20, 1986	BP49
BP146	pH Profile for the Eureka Springs Site - March 6, 1986	BP49
BP147	pH Profile for the Eureka Springs Site - April 9, 1986	BP49
BP148	pH Profile for the Eureka Springs Site - May 6, 1986	BP50
BP149	pH Profile for the Eureka Springs Site - June 4, 1986	BP50
BP150	pH Profile for the Eureka Springs Site - July 9, 1986	BP50
BP151	pH Profile for the Eureka Springs Site - August 4, 1986	BP51
BP152	pH Profile for the Eureka Springs Site - September 4, 1986	BP51
BP153	pH Profile for the Eureka Springs Site - October 9, 1986	BP51
BP154	pH Profile for the Eureka Springs Site - November 5, 1986	BP52
BP155	pH Profile for the Eureka Springs Site - December 4, 1986	BP52
BP156	pH Profile for the Eureka Springs Site - January 13, 1987	BP52
BP157	pH Profile for the Eureka Springs Site - February 4, 1987	BP53
BP158	pH Profile for the Eureka Springs Site - March 11, 1987	BP53
BP159	pH Profile for the Eureka Springs Site - April 15, 1987	BP53
BP160	pH Profile for the Eureka Springs Site - May 13, 1987	BP54
BP161	pH Profile for the Eureka Springs Site - June 10, 1987	BP54

,

1

Figure		Page
BP162	pH Profile for the Eureka Springs Site - July 15, 1987	BP54
BP163	pH Profile for the Eureka Springs Site - August 19, 1987	BP55
BP164	pH Profile for the Eureka Springs Site - September 3, 1987	BP55
BP165	pH Profile for the Eureka Springs Site - October 15, 1987	BP55
BP166	pH Profile for the Eureka Springs Site - November 12, 1987	BP56
BP167	pH Profile for the Eureka Springs Site - December 2, 1987	BP56
BP168	pH Profile for the Eureka Springs Site - January 20, 1988	BP56
BP169	pH Profile for the Eureka Springs Site - February 24, 1988	BP57
BP170	pH Profile for the Eureka Springs Site - March 16, 1988	BP57
BP171	pH Profile for the Eureka Springs Site - April 13, 1988	BP57
BP172	pH Profile for the Eureka Springs Site - May 10, 1988	BP58
BP173	pH Profile for the Eureka Springs Site - June 15, 1988	BP58
BP174	pH Profile for the Eureka Springs Site - July 12, 1988	BP58
BP175	pH Profile for the Eureka Springs Site - August 9, 1988	BP59
BP176	pH Profile for the Eureka Springs Site - September 21, 1988	BP59
BP177	pH Profile for the Eureka Springs Site - November 16, 1988	BP59
BP178	pH Profile for the Eureka Springs Site - December 14, 1988	BP60

.

.

Figure		Page
BP179	pH Profile for the Eureka Springs Site - January 4, 1989	BP60
BP180	pH Profile for the Eureka Springs Site - February 15, 1989	BP60
BP181	pH Profile for the Eureka Springs Site - March 15, 1989	BP61
BP182	pH Profile for the Eureka Springs Site - April 11, 1989	BP61
BP183	<pre>pH Profile for the Eureka Springs Site - May 2, 1989</pre>	BP61
BP184	pH Profile for the Eureka Springs Site - June 7, 1989	BP62
BP185	pH Profile for the Eureka Springs Site - July 13, 1989	BP62
BP186	pH Profile for the Eureka Springs ['] Site - August 8, 1989	BP62
BP187	pH Profile for the Eureka Springs Site - September 11, 1989	BP63
BP188	pH Profile for the Eureka Springs Site - January 10, 1990	BP63
BP189	<pre>pH Profile for the Eureka Springs Site - May 15, 1990</pre>	BP63
BP190	pH Profile for the Eureka Springs Site - July 31, 1990	BP64
C1	Graph of Total Alkalinity vs. Time for the Prairie Creek Site-May	. сі
C2	Graph of Total Alkalinity vs. Time for the Prairie Creek Site-August	. C1
С3	Graph of Total Alkalinity vs. Time for the Prairie Creek Site-December	. сі
C4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Prairie Creek Site-May	. C2

,

ł

Figure	P	age
C5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Prairie Creek Site-August	C2
C6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Prairie Creek Site-December	C2
C7	Graph of Chlorophyll a vs. Time for the Prairie Creek Site-May	С3
C8	Graph of Chlorophyll a vs. Time for the Prairie Creek Site-August	C3
С9	Graph of Chlorophyll a vs. Time for the Prairie Creek Site-December	C3
C10	Graph of Chlorophyll b vs. Time for the Prairie Creek Site-May	C4
C11	Graph of Chlorophyll b vs. Time for the Prairie Creek Site-August	C4
C12	Graph of Chlorophyll b vs. Time for the Prairie Creek Site-December	C4
C13	Graph of Color vs. Time for the Prairie Creek Site-May	C5
C14	Graph of Color vs. Time for the Prairie Creek Site-August	C5
C15	Graph of Color vs. Time for the Prairie Creek Site-December	C5
C16	Graph of Conductivity vs. Time for the Prairie Creek Site-May	C6
C17	Graph of Conductivity vs. Time for the Prairie Creek Site-August	C6
C18	Graph of Conductivity vs. Time for the Prairie Creek Site-December	C6
C19	Graph of Reservoir Depth vs. Time for the Prairie Creek Site-May	C7
C20	Graph of Reservoir Depth vs. Time for the Prairie Creek Site-August	C7

•

Figure		Page
C21	Graph of Reservoir Depth vs. Time for the Prairie Creek Site-December	. C7
C22	Graph of Dissolved Oxygen (mg/L) vs. Time for the Prairie Creek Site-May	. C8
C23	Graph of Dissolved Oxygen (mg/L) vs. Time for the Prairie Creek Site-August	. C8
C24	Graph of Dissolved Oxygen (mg/L) vs. Time for the Prairie Creek Site-December	. C8
C25	Graph of Dissolved Oxygen (%) vs. Time for the Prairie Creek Site-May	. с9
C26	Graph of Dissolved Oxygen (%) vs. Time for the Prairie Creek Site-August	. с9
C27	Graph of Dissolved Oxygen (%) vs. Time for the Prairie Creek Site-December	. с9
C28	Graph of Fecal Coliform vs. Time for the Prairie Creek Site-May	. C10
C29	Graph of Fecal Coliform vs. Time for the Prairie Creek Site-August	. C10
C30	Graph of Fecal Coliform vs. Time for the Prairie Creek Site-December	. C10
C31	Graph of Total Hardness vs. Time for the Prairie Creek Site-May	. C11
C32	Graph of Total Hardness vs. Time for the Prairie Creek Site-August	. C11
C33	Graph of Total Hardness vs. Time for the Prairie Creek Site-December	. C11
C34	Graph of Calcium vs. Time for the Prairie Creek Site-May	. C12
C35	Graph of Calcium vs. Time for the Prairie Creek Site-August	. C12
C36	Graph of Calcium vs. Time for the Prairie Creek Site-December	. C12
C37	Graph of Dissolved Calcium vs. Time for the Prairie Creek Site-May	. C13

,

ł	Figure		Page
	C38	Graph of Dissolved Calcium vs. Time for the Prairie Creek Site-August	. C13
	C39	Graph of Dissolved Calcium vs. Time for the Prairie Creek Site-December	. C13
	C40	Graph of Dissolved Magnesium vs. Time for the Prairie Creek Site-May	. C14
	C41	Graph of Dissolved Magnesium vs. Time for the Prairie Creek Site-August	. C14
	C42	Graph of Dissolved Magnesium vs. Time for the Prairie Creek Site-December	. C14
	C43	Graph of Nitrate Nitrogen vs. Time for the Prairie Creek Site-May	. C15
	C44	Graph of Nitrate Nitrogen vs. Time for the Prairie Creek Site-August	. C15
	C45	Graph of Nitrate Nitrogen vs. Time for the Prairie Creek Site-December	. C15
	C46	Graph of pH vs. Time for the Prairie Creek Site-May	. C16
	C47	Graph of pH vs. Time for the Prairie Creek Site-August	. C16
	C48	Graph of pH vs. Time for the Prairie Creek Site-December	. C16
	C49	Graph of Total Phosphorous vs. Time for the Prairie Creek Site-May	. C17
	C50	Graph of Total Phosphorous vs. Time for the Prairie Creek Site-August	. C17
	C51	Graph of Total Phosphorous vs. Time for the Prairie Creek Site-December	C17
	C52	Graph of Orthophosphate vs. Time for the Prairie Creek Site-May	. C18
	C53	Graph of Orthophosphate vs. Time for the Prairie Creek Site-August	. C18
	C54	Graph of Orthophosphate vs. Time for the Prairie Creek Site-December	. C18

Figure		Page
C55	Graph of Temperature vs. Time for the Prairie Creek Site-May	C19
C56	Graph of Temperature vs. Time for the Prairie Creek Site-August	C19
C57	Graph of Temperature vs. Time for the Prairie Creek Site-December	C19
C58	Graph of Transparency vs. Time for the Prairie Creek Site-May	C20
C59	Graph of Transparency vs. Time for the Prairie Creek Site-August	C20
C60	Graph of Transparency vs. Time for the Prairie Creek Site-December	C20
C61	Graph of Turbidity vs. Time for the Prairie Creek Site-May	C21
C62	Graph of Turbidity vs. Time for the Prairie Creek Site-August	C21
C63	Graph of Turbidity vs. Time for the Prairie Creek Site-December	C21
D1	Graph of Total Alkalinity vs. Time for the Highway 12 Site-May	D1
D2	Graph of Total Alkalinity vs. Time for the Highway 12 Site-August	D1
D3	Graph of Total Alkalinity vs. Time for the Highway 12 Site-December	D1
D4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 12 Site-May	D2
D5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 12 Site-August	D2
D6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 12 Site-December	D2
D7	Graph of Chloride vs. Time for the Highway 12 Site-May	D3

,

;

Figure		Page
D8	Graph of Chloride vs. Time for the Highway 12 Site-August	. D3
D9	Graph of Chloride vs. Time for the Highway 12 Site-December	• D3
D10	Graph of Chlorophyll a vs. Time for the Highway 12 Site-May	• D4
D11	Graph of Chlorophyll a vs. Time for the Highway 12 Site-August	. D4
D12	Graph of Chlorophyll a vs. Time for the Highway 12 Site-December	. D4
D13	Graph of Chlorophyll b vs. Time for the Highway 12 Site-May	. D5
D14	Graph of Chlorophyll b vs. Time for the Highway 12 Site-August	. D5
D15	Graph of Chlorophyll b vs. Time for the Highway 12 Site-December	. D5
D16	Graph of Color vs. Time for the Highway 12 Site-May	. D6
D17	Graph of Color vs. Time for the Highway 12 Site-August	. D6
D18	Graph of Color vs. Time for the Highway 12 Site-December	. D6
D19	Graph of Conductivity vs. Time for the Highway 12 Site-May	. D7
D20	Graph of Conductivity vs. Time for the Highway 12 Site-August	. D7
D21	Graph of Conductivity vs. Time for the Highway 12 Site-December	D7
D22	Graph of Reservoir Depth vs. Time for the Highway 12 Site-May	. D8
D23	Graph of Reservoir Depth vs. Time for the Highway 12 Site-August	. D8
D24	Graph of Reservoir Depth vs. Time for the Highway 12 Site-December	. D8

Figure Page D25 Graph of Dissolved Oxygen (mg/L) vs. Time for the Highway 12 Site-May D9 D26 Graph of Dissolved Oxygen (mg/L) vs. Time for the Highway 12 Site-August . D9 Graph of Dissolved Oxygen (mg/L) vs. D27 Time for the Highway 12 Site-December . . D9 Graph of Dissolved Oxygen (%) vs. Time D28 for the Highway 12 Site-May D10 D29 Graph of Dissolved Oxygen (%) vs. Time for the Highway 12 Site-August D10 D30 Graph of Dissolved Oxygen (%) vs. Time for the Highway 12 Site-December D10 D31 Graph of Fecal Coliform vs. Time for the Highway 12 Site-May D11 D32 Graph of Fecal Coliform vs. Time for the Highway 12 Site-August . . D11 Graph of Fecal Coliform vs. Time D33 for the Highway 12 Site-December . . D11 D34 Graph of Total Hardness vs. Time for the Highway 12 Site-May D12 D35 Graph of Total Hardness vs. Time for the Highway 12 Site-August D12 D36 Graph of Total Hardness vs. Time for the Highway 12 Site-December D12 D37 Graph of Calcium vs. Time for the Highway 12 Site-May D13 Graph of Calcium vs. Time for the D38 Highway 12 Site-August . . D13 D39 Graph of Calcium vs. Time for the Highway 12 Site-December D13 D40 Graph of Dissolved Calcium vs. Time for the Highway 12 Site-May D14 D41 Graph of Dissolved Calcium vs. Time

for the Highway 12 Site-August D14

Figure							Page
D42	Graph of Dissolved Calcium vs. Time for the Highway 12 Site-December .	•	•	•	•	•	D14
D43	Graph of Dissolved Magnesium vs. Time for the Highway 12 Site-May	•	•	•	•	•	D15
D44	Graph of Dissolved Magnesium vs. Time for the Highway 12 Site-August	•	•	•	•	•	D15
D45	Graph of Dissolved Magnesium vs. Time for the Highway 12 Site-December .	•	•	•	•	•	D15
D46	Graph of Noncarbonate Hardness vs. Time for the Highway 12 Site-May	•	•	•	•	•	D16
D47	Graph of Noncarbonate Hardness vs. Time for the Highway 12 Site-August	•	•	•	•	•	D16
D48	Graph of Noncarbonate Hardness vs. Time for the Highway 12 Site-December	•	•	•	•	•	D16
D49	Graph of Aluminum vs. Time for the Highway 12 Site-May	•	•	•	•	•	D17
D50	Graph of Aluminum vs. Time for the Highway 12 Site-August	•	•	•	•	•	D17
D51	Graph of Aluminum vs. Time for the Highway 12 Site-December	•	•	•	•	•	D17
D52	Graph of Arsenic vs. Time for the Highway 12 Site-May	•	•	•	•	•	D18
D53	Graph of Arsenic vs. Time for the Highway 12 Site-August	•	•	•	•	•	D18
D54	Graph of Arsenic vs. Time for the Highway 12 Site-December	•	•	•	•	•	D18
D55	Graph of Chromium vs. Time for the Highway 12 Site-May	•	•	•	•	•	D19
D56	Graph of Chromium vs. Time for the Highway 12 Site-August	•	•	•	•	•	D19
D57	Graph of Chromium vs. Time for the Highway 12 Site-December	•	•	•	•	•	D19
Figure		Page					
--------	---	-------					
D58	Graph of Copper vs. Time for the Highway 12 Site-May	. D20					
D59	Graph of Copper vs. Time for the Highway 12 Site-August	D20					
D60	Graph of Copper vs. Time for the Highway 12 Site-December	D20					
D61	Graph of Iron vs. Time for the Highway 12 Site-May	D21					
D62	Graph of Iron vs. Time for the Highway 12 Site-August	D21					
D63	Graph of Iron vs. Time for the Highway 12 Site-December	D21					
D64	Graph of Lead vs. Time for the Highway 12 Site-May	D22					
D65	Graph of Lead vs. Time for the Highway 12 Site-August	D22					
D66	Graph of Lead vs. Time for the Highway 12 Site-December	D22					
D67	Graph of Manganese vs. Time for the Highway 12 Site-May	D23					
D68	Graph of Manganese vs. Time for the Highway 12 Site-August	D23					
D69	Graph of Manganese vs. Time for the Highway 12 Site-December	D23					
D70	Graph of Mercury vs. Time for the Highway 12 Site-May	D24					
D71	Graph of Mercury vs. Time for the Highway 12 Site-August	D24					
D72	Graph of Mercury vs. Time for the Highway 12 Site-December	D24					
D73	Graph of Nickel vs. Time for the Highway 12 Site-May	D25					
D74	Graph of Nickel vs. Time for the Highway 12 Site-August	D25					

Figure		Page
D75	Graph of Nickel vs. Time for the Highway 12 Site-December	. D25
D76	Graph of Potassium vs. Time for the Highway 12 Site-May	. D26
D77	Graph of Potassium vs. Time for the Highway 12 Site-August	. D26
D78	Graph of Potassium vs. Time for the Highway 12 Site-December	. D26
D79	Graph of Zinc vs. Time for the Highway 12 Site-May	. D27
D80	Graph of Zinc vs. Time for the Highway 12 Site-August	. D27
D81	Graph of Zinc vs. Time for the Highway 12 Site-December	. D27
D82	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Highway 12 Site-May	. D28
D83	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Highway 12 Site-August	. D28
D84	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Highway 12 Site-December	. D28
D85	Graph of Ammonia Nitrogen vs. Time for the Highway 12 Site-May	. D29
D86	Graph of Ammonia Nitrogen vs. Time for the Highway 12 Site-August	. D29
D87	Graph of Ammonia Nitrogen vs. Time for the Highway 12 Site-December	. D29
D88	Graph of Organic Nitrogen vs. Time for the Highway 12 Site-May	. D30
D89	Graph of Organic Nitrogen vs. Time for the Highway 12 Site-August	. D30
D90	Graph of Organic Nitrogen vs. Time for the Highway 12 Site-December	. D30

Figure	Pag	e
D91	Graph of Nitrate Nitrogen vs. Time for the Highway 12 Site-May D3	1
D92	Graph of Nitrate Nitrogen vs. Time for the Highway 12 Site-August D3	1
D93	Graph of Nitrate Nitrogen vs. Time for the Highway 12 Site-December D3	1
D94	Graph of Total Kjeldahl Nitrogen vs. Time for the Highway 12 Site-May D3	2
D95	Graph of Total Kjeldahl Nitrogen vs. Time for the Highway 12 Site-August	2
D96	Graph of Total Kjeldahl Nitrogen vs. Time for the Highway 12 Site-December D3	2
D97	Graph of Total Nitrogen vs. Time for the Highway 12 Site-May D3	3
D98	Graph of Total Nitrogen vs. Time for the Highway 12 Site-August D3	3
D99	Graph of Total Nitrogen vs. Time for the Highway 12 Site-December D3	3
D100	Graph of pH vs. Time for the Highway 12 Site-May D3	4
D101	Graph of pH vs. Time for the Highway 12 Site-August D3	\$4
D102	Graph of pH vs. Time for the Highway 12 Site-December Di	34
D103	Graph of Total Phosphorous vs. Time for the Highway 12 Site-May Di	35
D104	Graph of Total Phosphorous vs. Time for the Highway 12 Site-August Di	35
D105	Graph of Total Phosphorous vs. Time for the Highway 12 Site-December Di	35
D106	Graph of Orthophosphate vs. Time for the Highway 12 Site-May Di	36

Figure	Pa	ge
D107	Graph of Orthophosphate vs. Time for the Highway 12 Site-August D	36
D108	Graph of Orthophosphate vs. Time for the Highway 12 Site-December Di	36
D109	Graph of Sulfate vs. Time for the Highway 12 Site-May Di	37
D110	Graph of Sulfate vs. Time for the Highway 12 Site-August Di	37
D111	Graph of Sulfate vs. Time for the Highway 12 Site-December Di	37
D112	Graph of Temperature vs. Time for the Highway 12 Site-May Di	38
D113	Graph of Temperature vs. Time for the Highway 12 Site-August Di	38
D114	Graph of Temperature vs. Time for the Highway 12 Site-December Di	38
D115	Graph of Transparency vs. Time for the Highway 12 Site-May Di	39
D116	Graph of Transparency vs. Time for the Highway 12 Site-August D3	39
D117	Graph of Transparency vs. Time for the Highway 12 Site-December D3	39
D118	Graph of Turbidity vs. Time for the Highway 12 Site-May D4	10
D119	Graph of Turbidity vs. Time for the Highway 12 Site-August D4	10
D120	Graph of Turbidity vs. Time for the Highway 12 Site-December D4	10
El	Graph of Total Alkalinity vs. Time for the Monte Ne Site-May	21
E2	Graph of Total Alkalinity vs. Time for the Monte Ne Site-August	21
E3	Graph of Total Alkalinity vs. Time for the Monte Ne Site-December	21

Figure

•

Page

E4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Monte Ne Site-May
E5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Monte Ne Site-August
E6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Monte Ne Site-December
E7	Graph of Chlorophyll a vs. Time for the Monte Ne Site-May
E8	Graph of Chlorophyll a vs. Time for the Monte Ne Site-August E3
E9	Graph of Chlorophyll a vs. Time for the Monte Ne Site-December
E10	Graph of Chlorophyll b vs. Time for the Monte Ne Site-May
E11	Graph of Chlorophyll b vs. Time for the Monte Ne Site-August
E12	Graph of Chlorophyll b vs. Time for the Monte Ne Site-December
E13	Graph of Color vs. Time for the Monte Ne Site-May
E14	Graph of Color vs. Time for the Monte Ne Site-August
E15	Graph of Color vs. Time for the Monte Ne Site-December
E16	Graph of Conductivity vs. Time for the Monte Ne Site-May
E17	Graph of Conductivity vs. Time for the Monte Ne Site-August
E18	Graph of Conductivity vs. Time for the Monte Ne Site-December
E19	Graph of Reservoir Depth vs. Time for the Monte Ne Site-May

F	Figure		Page
	E20	Graph of Reservoir Depth vs. Time for the Monte Ne Site-August	. E7
	E21	Graph of Reservoir Depth vs. Time for the Monte Ne Site-December	. E7
	E22	Graph of Dissolved Oxygen (mg/L) vs. Time for the Monte Ne Site-May	E8
	E23	Graph of Dissolved Oxygen (mg/L) vs. Time for the Monte Ne Site-August	E8
	E24	Graph of Dissolved Oxygen (mg/L) vs. Time for the Monte Ne Site-December	E8
	E25	Graph of Dissolved Oxygen (%) vs. Time for the Monte Ne Site-May	E9
	E26	<pre>Graph of Dissolved Oxygen (%) vs. Time for the Monte Ne Site-August</pre>	E9
	E27	Graph of Dissolved Oxygen (%) vs. Time for the Monte Ne Site-December	E9
	E28	Graph of Fecal Coliform vs. Time for the Monte Ne Site-May	E10
	E29	Graph of Fecal Coliform vs. Time for the Monte Ne Site-August	E10
	E30	Graph of Fecal Coliform vs. Time for the Monte Ne Site-December	E10
	E31	Graph of Total Hardness vs. Time for the Monte Ne Site-May	E11
	E32	Graph of Total Hardness vs. Time for the Monte Ne Site-August	E11
	E33	Graph of Total Hardness vs. Time for the Monte Ne Site-December	E11
	E34	Graph of Calcium vs. Time for the Monte Ne Site-May	E12
	E35	Graph of Calcium vs. Time for the Monte Ne Site-August	E12
	E36	Graph of Calcium vs. Time for the Monte Ne Site-December	E12

Figure

.

E37	Graph of Dissolved Calcium vs. Time for the Monte Ne Site-May E13
E38	Graph of Dissolved Calcium vs. Time for the Monte Ne Site-August E13
E39	Graph of Dissolved Calcium vs. Time for the Monte Ne Site-December E13
E40	Graph of Dissolved Magnesium vs. Time for the Monte Ne Site-May
E41	Graph of Dissolved Magnesium vs. Time for the Monte Ne Site-August
E42	Graph of Dissolved Magnesium vs. Time for the Monte Ne Site-December E14
E43	Graph of Nitrate Nitrogen vs. Time for the Monte Ne Site-May
E44	Graph of Nitrate Nitrogen vs. Time for the Monte Ne Site-August E15
E45	Graph of Nitrate Nitrogen vs. Time for the Monte Ne Site-December E15
E46	Graph of pH vs. Time for the Monte Ne Site-May
E47	Graph of pH vs. Time for the Monte Ne Site-August
E48	Graph of pH vs. Time for the Monte Ne Site-December
E49	Graph of Total Phosphorous vs. Time for the Monte Ne Site-May
E50	Graph of Total Phosphorous vs. Time for the Monte Ne Site-August
E51	Graph of Total Phosphorous vs. Time for the Monte Ne Site-December
E52	Graph of Orthophosphate vs. Time for the Monte Ne Site-May
E53	Graph of Orthophosphate vs. Time for the Monte Ne Site-August

Figure		Page
E54	Graph of Orthophosphate vs. Time for the Monte Ne Site-December	. E18
E55	Graph of Temperature vs. Time for the Monte Ne Site-May	. E19
E56	Graph of Temperature vs. Time for the Monte Ne Site-August	. E19
E57	Graph of Temperature vs. Time for the Monte Ne Site-December	. E19
E58	Graph of Transparency vs. Time for the Monte Ne Site-May	. E20
E59	Graph of Transparency vs. Time for the Monte Ne Site-August	. E20
E60	Graph of Transparency vs. Time for the Monte Ne Site-December	. E20
E61	Graph of Turbidity vs. Time for the Monte Ne Site-May	. E21
E62	Graph of Turbidity vs. Time for the Monte Ne Site-August	. E21
E63	Graph of Turbidity vs. Time for the Monte Ne Site-December	. E21
Fl	Graph of Total Alkalinity vs. Time for the War Eagle Site-May	F1
F2	Graph of Total Alkalinity vs. Time for the War Eagle Site-August	. F1
F3	Graph of Total Alkalinity vs. Time for the War Eagle Site-December	. F1
F4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the War Eagle Site-May	. F2
F5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the War Eagle Site-August	. F2
F6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the War Eagle Site-December	. F2

Figure

F7	Graph the	of Chlorophyll a vs. Time for War Eagle Site-May	F3
F8	Graph the	of Chlorophyll a vs. Time for War Eagle Site-August	F3
F9	Graph the	of Chlorophyll a vs. Time for War Eagle Site-December	F3
F10	Graph the	of Chlorophyll b vs. Time for War Eagle Site-May	F4
F11	Graph the	of Chlorophyll b vs. Time for War Eagle Site-August	F4
F12	Graph the	of Chlorophyll b vs. Time for War Eagle Site-December	F4
F13	Graph War	of Color vs. Time for the Eagle Site-May	F5
F14	Graph War	of Color vs. Time for the Eagle Site-August	F5
F15	Graph War	of Color vs. Time for the Eagle Site-December	F5
F16	Graph the	of Conductivity vs. Time for War Eagle Site-May	F6
F17	Graph the	of Conductivity vs. Time for War Eagle Site-August	F6
F18	Graph the	of Conductivity vs. Time for War Eagle Site-December	F6
F19	Graph for	of Reservoir Depth vs. Time the War Eagle Site-May	F7
F20	Graph for	of Reservoir Depth vs. Time the War Eagle Site-August	F7
F21	Graph for	of Reservoir Depth vs. Time the War Eagle Site-December	F7
F22	Graph Time	of Dissolved Oxygen (mg/L) vs. ≥ for the War Eagle Site-May	F8
F23	Graph Time	of Dissolved Oxygen (mg/L) vs. • for the War Eagle Site-August	F8

Figure	Pa	ge
F24	Graph of Dissolved Oxygen (mg/L) vs. Time for the War Eagle Site-December	F8
F25	Graph of Dissolved Oxygen (%) vs. Time for the War Eagle Site-May	F9
F26	Graph of Dissolved Oxygen (%) vs. Time for the War Eagle Site-August	F9
F27	Graph of Dissolved Oxygen (%) vs. Time for the War Eagle Site-December	F9
F28	Graph of Fecal Coliform vs. Time for the War Eagle Site-May F	10
F29	Graph of Fecal Coliform vs. Time for the War Eagle Site-August F	10
F30	Graph of Fecal Coliform vs. Time for the War Eagle Site-December F	10
F31	Graph of Total Hardness vs. Time for the War Eagle Site-May F	11
F32	Graph of Total Hardness vs. Time for the War Eagle Site-August F	11
F33	Graph of Total Hardness vs. Time for the War Eagle Site-December F	11
F34	Graph of Calcium vs. Time for the War Eagle Site-May F	12
F35	Graph of Calcium vs. Time for the War Eagle Site-August F	12
F36	Graph of Calcium vs. Time for the War Eagle Site-December F	12
F37	Graph of Dissolved Calcium vs. Time for the War Eagle Site-May F	13
F38	Graph of Dissolved Calcium vs. Time for the War Eagle Site-August F	13
F39	Graph of Dissolved Calcium vs. Time for the War Eagle Site-December F	13
F40	Graph of Dissolved Magnesium vs. Time for the War Eagle Site-May F	14

Figure	Pac	ge
F41	Graph of Dissolved Magnesium vs. Time for the War Eagle Site-August F	14
F42	Graph of Dissolved Magnesium vs. Time for the War Eagle Site-December F	14
F43	Graph of Nitrate Nitrogen vs. Time for the War Eagle Site-May F	15
F44	Graph of Nitrate Nitrogen vs. Time for the War Eagle Site-August F	15
F45	Graph of Nitrate Nitrogen vs. Time for the War Eagle Site-December F	15
F46	Graph of pH vs. Time for the War Eagle Site-May Fi	16
F47	Graph of pH vs. Time for the War Eagle Site-August	16
F48	Graph of pH vs. Time for the War Eagle Site-December Fi	16
F49	Graph of Total Phosphorous vs. Time for the War Eagle Site-May Fi	17
F50	Graph of Total Phosphorous vs. Time for the War Eagle Site-August Fi	17
F51	Graph of Total Phosphorous vs. Time for the War Eagle Site-December Fi	17
F52	Graph of Orthophosphate vs. Time for the War Eagle Site-May	18
F53	Graph of Orthophosphate vs. Time for the War Eagle Site-August	18
F54	Graph of Orthophosphate vs. Time for the War Eagle Site-December	18
F55	Graph of Temperature vs. Time for the War Eagle Site-May	19
F56	Graph of Temperature vs. Time for the War Eagle Site-August	19
F57	Graph of Temperature vs. Time for the War Eagle Site-December	19

Figure		Page
F58	Graph of Transparency vs. Time for the War Eagle Site-May	. F20
F59	Graph of Transparency vs. Time for the War Eagle Site-August	. F20
F60	Graph of Transparency vs. Time for the War Eagle Site-December	. F20
F61	Graph of Turbidity vs. Time for the War Eagle Site-May	. F21
F62	Graph of Turbidity vs. Time for the War Eagle Site-August	. F21
F63	Graph of Turbidity vs. Time for the War Eagle Site-December	. F21
G1	Graph of Total Alkalinity vs. Time for the Goshen Site-May	. G1
G2	Graph of Total Alkalinity vs. Time for the Goshen Site-August	. G1
G3	Graph of Total Alkalinity vs. Time for the Goshen Site-December	. G1
G4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Goshen Site-May	• G2
G5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Goshen Site-August	. G2
G6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Goshen Site-December	. G2
G7	Graph of Chloride vs. Time for the Goshen Site-May	. G3
G8	Graph of Chloride vs. Time for the Goshen Site-August	. G3
G9	Graph of Chloride vs. Time for the Goshen Site-December	. G3
G10	Graph of Chlorophyll a vs. Time for the Goshen Site-May	. G4

Figure

G11	Graph of Chlorophyll a vs. Time for the Goshen Site-August
G12	Graph of Chlorophyll a vs. Time for the Goshen Site→December
G13	Graph of Chlorophyll b vs. Time for the Goshen Site-May
G14	Graph of Chlorophyll b vs. Time for the Goshen Site-August
G15	Graph of Chlorophyll b vs. Time for the Goshen Site-December G5
G16	Graph of Color vs. Time for the Goshen Site-May
G17	Graph of Color vs. Time for the Goshen Site-August
G18	Graph of Color vs. Time for the Goshen Site-December
G19	Graph of Conductivity vs. Time for the Goshen Site-May
G20	Graph of Conductivity vs. Time for the Goshen Site-August
G21	Graph of Conductivity vs. Time for the Goshen Site-December
G22	Graph of Reservoir Depth vs. Time for the Goshen Site-May
G23	Graph of Reservoir Depth vs. Time for the Goshen Site-August
G24	Graph of Reservoir Depth vs. Time for the Goshen Site-December
G25	Graph of Dissolved Oxygen (mg/L) vs. Time for the Goshen Site-May
G26	Graph of Dissolved Oxygen (mg/L) vs. Time for the Goshen Site-August G9
G27	Graph of Dissolved Oxygen (mg/L) vs. Time for the Goshen Site-December G9

Figure				Page
G28	Graph of Dissolved Oxygen (%) vs. Time for the Goshen Site-May	•	•	. G10
G29	Graph of Dissolved Oxygen (%) vs. Time for the Goshen Site-August	•	•	. G10
G30	Graph of Dissolved Oxygen (%) vs. Time for the Goshen Site-December	•	•	. G10
G31	Graph of Fecal Coliform vs. Time for the Goshen Site-May	•	•	. G11
G32	Graph of Fecal Coliform vs. Time for the Goshen Site-August	•	•	. G11
G33	Graph of Fecal Coliform vs. Time for the Goshen Site-December	•	•	. G11
G34	Graph of Total Hardness vs. Time for the Goshen Site-May	•	•	. G12
G35	Graph of Total Hardness vs. Time for the Goshen Site-August	•	•	. G12
G36	Graph of Total Hardness vs. Time for the Goshen Site-December	•	•	. G12
G37	Graph of Calcium vs. Time for the Goshen Site-May	•	•	. G13
G38	Graph of Calcium vs. Time for the Goshen Site-August	•	•	. G13
G39	Graph of Calcium vs. Time for the Goshen Site-December	•	•	. G13
G40	Graph of Dissolved Calcium vs. Time for the Goshen Site-May	•	•	. G14
G41	Graph of Dissolved Calcium vs. Time for the Goshen Site-August	•	•	. G14
G42	Graph of Dissolved Calcium vs. Time for the Goshen Site-December	•	•	. G14
G43	Graph of Dissolved Magnesium vs. Time for the Goshen Site-May	•	•	. G15
G44	Graph of Dissolved Magnesium vs. Time for the Goshen Site-August	•	•	. G15

Figure	Pag
G45	Graph of Dissolved Magnesium vs. Time for the Goshen Site-December G1
G46	Graph of Noncarbonate Hardness vs. Time for the Goshen Site-May
G47	Graph of Noncarbonate Hardness vs. Time for the Goshen Site-August
G48	Graph of Noncarbonate Hardness vs. Time for the Goshen Site-December
G49	Graph of Aluminum vs. Time for the Goshen Site-May
G50	Graph of Aluminum vs. Time for the Goshen Site-August
G51	Graph of Aluminum vs. Time for the Goshen Site-December
G52	Graph of Arsenic vs. Time for the Goshen Site-May
G53	Graph of Arsenic vs. Time for the Goshen Site-August G1
G54	Graph of Arsenic vs. Time for the Goshen Site-December
G55	Graph of Chromium vs. Time for the Goshen Site-May
G56	Graph of Chromium vs. Time for the Goshen Site-August
G57	Graph of Chromium vs. Time for the Goshen Site-December
G58	Graph of Copper vs. Time for the Goshen Site-May
G59	Graph of Copper vs. Time for the Goshen Site-August
G60	Graph of Copper vs. Time for the Goshen Site-December

Figure			Page
G61	Graph of Goshen	Iron vs. Time for the Site-May	. G21
G62	Graph of Goshen	Iron vs. Time for the Site-August	. G21
G63	Graph of Goshen	Iron vs. Time for the Site-December	. G21
G64	Graph of Goshen	Lead vs. Time for the Site-May	. G22
G65	Graph of Goshen	Lead vs. Time for the Site-August	. G22
G66	Graph of Goshen	Lead vs. Time for the Site-December	. G22
G67	Graph of Goshen	Manganese vs. Time for the Site-May	. G23
G68	Graph of Goshen	Manganese vs. Time for the Site-August	. G23
G69	Graph of Goshen	Manganese vs. Time for the Site-December	. G23
G70	Graph of Goshen	Mercury vs. Time for the Site-May	. G24
G71	Graph of Goshen	Mercury vs. Time for the Site-August	. G24
G72	Graph of Goshen	Mercury vs. Time for the Site-December	. G24
G73	Graph of Goshen	Nickel vs. Time for the Site-May	. G25
G74	Graph of Goshen	Nickel vs. Time for the Site-August	. G25
G75	Graph of Goshen	Nickel vs. Time for the Site-December	. G25
G76	Graph of Goshen	Potassium vs. Time for the Site-May	. G26
G77	Graph of Goshen	Potassium vs. Time for the Site-August	. G26

Figure	Pa	ge
G78	Graph of Potassium vs. Time for the Goshen Site-December G	26
G79	Graph of Zinc vs. Time for the Goshen Site-May G	27
G80	Graph of Zinc vs. Time for the Goshen Site-August G	27
G81	Graph of Zinc vs. Time for the Goshen Site-December G	27
G82	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Goshen Site-May	28
G83	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Goshen	20
	Site-August	28
G84	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Goshen Site-December	28
G85	Graph of Ammonia Nitrogen vs. Time for the Goshen Site-May G	29
G86	Graph of Ammonia Nitrogen vs. Time for the Goshen Site-August	29
G87	Graph of Ammonia Nitrogen vs. Time for the Goshen Site-December	29
G88	Graph of Organic Nitrogen vs. Time for the Goshen Site-May	30
G89	Graph of Organic Nitrogen vs. Time for the Goshen Site-August G	30
G90	Graph of Organic Nitrogen vs. Time for the Goshen Site-December G	30
G91	Graph of Nitrate Nitrogen vs. Time for the Goshen Site-May G	31
G92	Graph of Nitrate Nitrogen vs. Time for the Goshen Site-August G	31
G93	Graph of Nitrate Nitrogen vs. Time for the Goshen Site-December G	31

Figure		Page
G94	Graph of Total Kjeldahl Nitrogen vs. Time for the Goshen Site-May	. G32
G95	Graph of Total Kjeldahl Nitrogen vs. Time for the Goshen Site-August	. G32
G96	Graph of Total Kjeldahl Nitrogen vs. Time for the Goshen Site-December	. G32
G97	Graph of Total Nitrogen vs. Time for the Goshen Site-May	. G33
G98	Graph of Total Nitrogen vs. Time for the Goshen Site-August	• G33
G99	Graph of Total Nitrogen vs. Time for the Goshen Site-December	• G33
G100	Graph of pH vs. Time for the Goshen Site-May	. G34
G101	Graph of pH vs. Time for the Goshen Site-August	. G34
G102	Graph of pH vs. Time for the Goshen Site-December	• G34
G103	Graph of Total Phosphorous vs. Time for the Goshen Site-May	. G35
G104	Graph of Total Phosphorous vs. Time for the Goshen Site-August	. G35
G105	Graph of Total Phosphorous vs. Time for the Goshen Site-December	• G35
G106	Graph of Total Phosphate vs. Time for the Goshen Site-May	. G36
G107	Graph of Total Phosphate vs. Time for the Goshen Site-August	. G36
G108	Graph of Total Phosphate vs. Time for the Goshen Site-December	. G36
G109	Graph of Orthophosphate vs. Time for the Goshen Site-May	. G37

Figure		Page
G110	Graph of Orthophosphate vs. Time for the Goshen Site-August	• G37
G111	Graph of Orthophosphate vs. Time for the Goshen Site-December	• G37
G112	Graph of Sulfate vs. Time for the Goshen Site-May	. G38
G113	Graph of Sulfate vs. Time for the Goshen Site-August	. G38
G114	Graph of Sulfate vs. Time for the Goshen Site-December	. G38
G115	Graph of Temperature vs. Time for the Goshen Site-May	. G39
G116	Graph of Temperature vs. Time for the Goshen Site-August	. G39
G117	Graph of Temperature vs. Time for the Goshen Site-December	• G39
G118	Graph of Transparency vs. Time for the Goshen Site-May	. G40
G119	Graph of Transparency vs. Time for the Goshen Site-August	. G40
G120	Graph of Transparency vs. Time for the Goshen Site-December	. G40
G121	Graph of Turbidity vs. Time for the Goshen Site-May	. G41
G122	Graph of Turbidity vs. Time for the Goshen Site-August	. G41
G123	Graph of Turbidity vs. Time for the Goshen Site-December	. G41
Hl	Graph of Total Alkalinity vs. Time for the Avoca Site-May	. н1
H2	Graph of Total Alkalinity vs. Time for the Avoca Site-August	. н1
H3	Graph of Total Alkalinity vs. Time for the Avoca Site-December	. н1

Figure		Page
H4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Avoca Site-May	H2
Н5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Avoca Site-August	Н2
H6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Avoca Site-December	H2
H7	Graph of Chloride vs. Time for the Avoca Site-May	НЗ
H8	Graph of Chloride vs. Time for the Avoca Site-August	H3
Н9	Graph of Chloride vs. Time for the Avoca Site-December	H3
H10	Graph of Chlorophyll a vs. Time for the Avoca Site-May	H4
H11	Graph of Chlorophyll a vs. Time for the Avoca Site-August	H4
H12	Graph of Chlorophyll a vs. Time for the Avoca Site-December	H4
H13	Graph of Chlorophyll b vs. Time for the Avoca Site-May	H5
H14	Graph of Chlorophyll b vs. Time for the Avoca Site-August	H5
H15	Graph of Chlorophyll b vs. Time for the Avoca Site-December	H5
H16	Graph of Color vs. Time for the Avoca Site-May	H6
H17	Graph of Color vs. Time for the Avoca Site-August	H6
H18	Graph of Color vs. Time for the Avoca Site-December	H6
H19	Graph of Conductivity vs. Time for the Avoca Site-May	H7

Figure		Page
H20	Graph of Conductivity vs. Time for the Avoca Site-August	H7
H21	Graph of Conductivity vs. Time for the Avoca Site-December	H7
H22	Graph of Reservoir Depth vs. Time for the Avoca Site-May	H8
H23	Graph of Reservoir Depth vs. Time for the Avoca Site-August	Н8
H24	Graph of Reservoir Depth vs. Time for the Avoca Site-December	H8
H25	Graph of Dissolved Oxygen (mg/L) vs. Time for the Avoca Site-May	H9
H26	Graph of Dissolved Oxygen (mg/L) vs. Time for the Avoca Site-August	H9
H27	Graph of Dissolved Oxygen (mg/L) vs. Time for the Avoca Site-December	Н9
H28	Graph of Dissolved Oxygen (%) vs. Time for the Avoca Site-May	H10
H29	Graph of Dissolved Oxygen (%) vs. Time for the Avoca Site-August	H10
H30	Graph of Dissolved Oxygen (%) vs. Time for the Avoca Site-December	H10
H31	Graph of Fecal Coliform vs. Time for the Avoca Site-May	H11
H32	Graph of Fecal Coliform vs. Time for the Avoca Site-August	H11
H33	Graph of Fecal Coliform vs. Time for the Avoca Site-December	H11
H34	Graph of Total Hardness vs. Time for the Avoca Site-May	H12
H35	Graph of Total Hardness vs. Time for the Avoca Site-August	H12
H36	Graph of Total Hardness vs. Time for the Avoca Site-December	H12

Figure		Page
H37	Graph of Calcium vs. Time for the Avoca Site-May	. н13
H38	Graph of Calcium vs. Time for the Avoca Site-August	. H13
H39	Graph of Calcium vs. Time for the Avoca Site-December	. H13
H40	Graph of Dissolved Calcium vs. Time for the Avoca Site-May	. H14
H41	Graph of Dissolved Calcium vs. Time for the Avoca Site-August	. H14
H42	Graph of Dissolved Calcium vs. Time for the Avoca Site-December	. H14
H43	Graph of Dissolved Magnesium vs. Time for the Avoca Site-May	. H15
H44	Graph of Dissolved Magnesium vs. Time for the Avoca Site-August	. H15
H45	Graph of Dissolved Magnesium vs. Time for the Avoca Site-December	. H15
H46	Graph of Aluminum vs. Time for the Avoca Site-May	. H16
H47	Graph of Aluminum vs. Time for the Avoca Site-August	. H16
H48	Graph of Aluminum vs. Time for the Avoca Site-December	. H16
H49	Graph of Arsenic vs. Time for the Avoca Site-May	. H17
H50	Graph of Arsenic vs. Time for the Avoca Site-August	. H17
H51	Graph of Arsenic vs. Time for the Avoca Site-December	. H17
H52	Graph of Chromium vs. Time for the Avoca Site-May	. H18
H53	Graph of Chromium vs. Time for the Avoca Site-August	. H18

Figure	Page
H54	Graph of Chromium vs. Time for the Avoca Site-December
H55	Graph of Copper vs. Time for the Avoca Site-May
H56	Graph of Copper vs. Time for the Avoca Site-August
H57	Graph of Copper vs. Time for the Avoca Site-Decémber
H58	Graph of Iron vs. Time for the Avoca Site-May
H59	Graph of Iron vs. Time for the Avoca Site-August
H60	Graph of Iron vs. Time for the Avoca Site-December
H61	Graph of Lead vs. Time for the Avoca Site-May
H62	Graph of Lead vs. Time for the Avoca Site-August
H63	Graph of Lead vs. Time for the Avoca Site-December
H64	Graph of Manganese vs. Time for the Avoca Site-May
H65	Graph of Manganese vs. Time for the Avoca Site-August
H66	Graph of Manganese vs. Time for the Avoca Site-December
H67	Graph of Mercury vs. Time for the Avoca Site-May
H68	Graph of Mercury vs. Time for the Avoca Site-August
H69	Graph of Mercury vs. Time for the Avoca Site-December
H70	Graph of Nickel vs. Time for the Avoca Site-May

Figure		Page
H71	Graph of Nickel vs. Time for the Avoca Site-August	. H24
H72	Graph of Nickel vs. Time for the Avoca Site-December	. H24
H73	Graph of Potassium vs. Time for the Avoca Site-May	. H25
H74	Graph of Potassium vs. Time for the Avoca Site-August	. H25
H75	Graph of Potassium vs. Time for the Avoca Site-December	. H25
H76	Graph of Zinc vs. Time for the Avoca Site-May	. H26
H77	Graph of Zinc vs. Time for the Avoca Site-August	. H26
H78	Graph of Zinc vs. Time for the Avoca Site-December	. H26
H79	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Avoca Site-May	. H27
H80	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Avoca Site-August	. H27
H81	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Avoca Site-December	. H27
H82	Graph of Ammonia Nitrogen vs. Time for the Avoca Site-May	. H28
H83	Graph of Ammonia Nitrogen vs. Time for the Avoca Site-August	. Н28
H84	Graph of Ammonia Nitrogen vs. Time for the Avoca Site-December	. H28
H85	Graph of Organic Nitrogen vs. Time for the Avoca Site-May	. H29
H86	Graph of Organic Nitrogen vs. Time for the Avoca Site-August	. H29

Figure	Pa	ige
H87	Graph of Organic Nitrogen vs. Time for the Avoca Site-December	129
H88	Graph of Nitrate Nitrogen vs. Time for the Avoca Site-May	[30
H89	Graph of Nitrate Nitrogen vs. Time for the Avoca Site-August	[30
H90	Graph of Nitrate Nitrogen vs. Time for the Avoca Site-December H	[30
H91	Graph of Total Kjeldahl Nitrogen vs. Time for the Avoca Site-May	31
H92	Graph of Total Kjeldahl Nitrogen vs. Time for the Avoca Site-August	· • 1
H93	Graph of Total Kjeldahl Nitrogen vs. Time for the Avoca Site-December	31
H94	Graph of Total Nitrogen vs. Time for the Avoca Site-May	32
H95	Graph of Total Nitrogen vs. Time for the Avoca Site-August	32
H96	Graph of Total Nitrogen vs. Time for the Avoca Site-December H	32
H97	Graph of pH vs. Time for the Avoca Site-May	33
H98	Graph of pH vs. Time for the Avoca Site-August	33
H99	Graph of pH vs. Time for the Avoca Site-December	33
H100	Graph of Total Phosphorous vs. Time for the Avoca Site-May	34
H101	Graph of Total Phosphorous vs. Time for the Avoca Site-August H	34
H102	Graph of Total Phosphorous vs. Time for the Avoca Site-December	34

Figure		Page
H103	Graph of Orthophosphate vs. Time for the Avoca Site-May	H35
H104	Graph of Orthophosphate vs. Time for the Avoca Site-August	H35
H105	Graph of Orthophosphate vs. Time for the Avoca Site-December	H35
H106	Graph of Sulfate vs. Time for the Avoca Site-May	H36
H107	Graph of Sulfate vs. Time for the Avoca Site-August	H36
H108	Graph of Sulfate vs. Time for the Avoca Site-December	H36
H109	Graph of Temperature vs. Time for the Avoca Site-May	H37
H110	Graph of Temperature vs. Time for the Avoca Site-August	H37
H111	Graph of Temperature vs. Time for the Avoca Site-December	H37
H112	Graph of Transparency vs. Time for the Avoca Site-May	H38
H113	Graph of Transparency vs. Time for the Avoca Site-August	H38
H114	Graph of Transparency vs. Time for the Avoca Site-December	H38
H115	Graph of Turbidity vs. Time for the Avoca Site-May	H39
H116	Graph of Turbidity vs. Time for the Avoca Site-August	H39
H117	Graph of Turbidity vs. Time for the Avoca Site-December	H39
I1	Graph of Total Alkalinity vs. Time for the Rogers Site-May	11
12	Graph of Total Alkalinity vs. Time for the Rogers Site-August	11

.

Figure		Page
13	Graph of Total Alkalinity vs. Time for the Rogers Site-December	. I1
14	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Rogers Site-May	. 12
15	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Rogers Site-August	. 12
IG	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Rogers Site-December	. 12
17	Graph of Chloride vs. Time for the Rogers Site-May	. I3
18	Graph of Chloride vs. Time for the Rogers Site-August	. I3
19	Graph of Chloride vs. Time for the Rogers Site-December	. I3
I10	Graph of Chlorophyll a vs. Time for the Rögers Site-May	. I4
I11	Graph of Chlorophyll a vs. Time for the Rogers Site-August	. I4
I12	Graph of Chlorophyll a vs. Time for the Rogers Site-December	. 14
I13	Graph of Chlorophyll b vs. Time for the Rogers Site-May	. I5
I14	Graph of Chlorophyll b vs. Time for the Rogers Site-August	. 15
I15	Graph of Chlorophyll b vs. Time for the Rogers Site-December	. 15
I16	Graph of Color vs. Time for the Rogers Site-May	. 16
I17	Graph of Color vs. Time for the Rogers Site-August	. 16
I18	Graph of Color vs. Time for the Rogers Site-December	. 16

Figure		Page
I19	Graph of Conductivity vs. Time for the Rogers Site-May	. I7
I20	Graph of Conductivity vs. Time for the Rogers Site-August	. 17
I21	Graph of Conductivity vs. Time for the Rogers Site-December	. 17
122	Graph of Reservoir Depth vs. Time for the Rogers Site-May	. 18
123	Graph of Reservoir Depth vs. Time for the Rogers Site-August	. I8
I24	Graph of Reservoir Depth vs. Time for the Rogers Site-December	18
125	Graph of Dissolved Oxygen (mg/L) vs. Time for the Rogers Site-May	I9
I26	Graph of Dissolved Oxygen (mg/L) vs. Time for the Rogers Site-August	I9
127	Graph of Dissolved Oxygen (mg/L) vs. Time for the Rogers Site-December	19
128	Graph of Dissolved Oxygen (%) vs. Time for the Rogers Site-May	I10
129	Graph of Dissolved Oxygen (%) vs. Time for the Rogers Site-August	I10
I30	Graph of Dissolved Oxygen (%) vs. Time for the Rogers Site-December	I10
I31	Graph of Fecal Coliform vs. Time for the Rogers Site-May	I11
132	Graph of Fecal Coliform vs. Time for the Rogers Site-August	I11
I33	Graph of Fecal Coliform vs. Time for the Rogers Site-December	I11
I34	Graph of Total Hardness vs. Time for the Rogers Site-May	I12
135	Graph of Total Hardness vs. Time for the Rogers Site-August	I12

Figure		Page
I36	Graph of Total Hardness vs. Time for the Rogers Site-December	. I12
I37	Graph of Calcium vs. Time for the Rogers Site-May	. 113
I38	Graph of Calcium vs. Time for the Rogers Site-August	. I13
I39	Graph of Calcium vs. Time for the Rogers Site-December	. I13
I40	Graph of Dissolved Calcium vs. Time for the Rogers Site-May	. I14
I41	Graph of Dissolved Calcium vs. Time for the Rogers Site-August	. I14
I42	Graph of Dissolved Calcium vs. Time for the Rogers Site-December	. I14
I43	Graph of Dissolved Magnesium vs. Time for the Rogers Site-May	. I15
I44	Graph of Dissolved Magnesium vs. Time for the Rogers Site-August	. I15
I45	Graph of Dissolved Magnesium vs. Time for the Rogers Site-December	. I15
I46	Graph of Noncarbonate Hardness vs. Time for the Rogers Site-May	. I16
I47	Graph of Noncarbonate Hardness vs. Time for the Rogers	T1
I48	Graph of Noncarbonate Hardness vs. Time for the Rogers Site-December	. 116
I49	Graph of Aluminum vs. Time for the Rogers Site-May	. 110
150	Graph of Aluminum vs. Time for the Rogers Site-August	. 117
151	Graph of Aluminum vs. Time for the Rogers Site-December	. I17

.

Figure		Page
152	Graph of Rogers	Arsenic vs. Time for the Site-May
153	Graph of Rogers	Arsenic vs. Time for the Site-August
I54	Graph of Rogers	Arsenic vs. Time for the Site-December
155	Graph of Rogers	Chromium vs. Time for the Site-May
156	Graph of Rogers	Chromium vs. Time for the Site-August
157	Graph of Rogers	Chromium vs. Time for the Site-December
158	Graph of Rogers	Copper vs. Time for the Site-May
159	Graph of Rogers	Copper vs. Time for the Site-August
I60	Graph of Rogers	Copper vs. Time for the Site-December
161	Graph of Rogers	Iron vs. Time for the Site-May
162	Graph of Rogers	Iron vs. Time for the Site-August
163	Graph of Rogers	Iron vs. Time for the Site-December
164	Graph of Rogers	Lead vs. Time for the Site-May
165	Graph of Rogers	Lead vs. Time for the Site-August
166	Graph of Rogers	Lead vs. Time for the Site-December
I67	Graph of Rogers	Manganese vs. Time for the Site-May
168	Graph of Rogers	Manganese vs. Time for the Site-August

•

Figure	P	age
I69	Graph of Manganese vs. Time for the Rogers Site-December	123
170	Graph of Mercury vs. Time for the Rogers Site-May	124
I71	Graph of Mercury vs. Time for the Rogers Site-August	I24
172	Graph of Mercury vs. Time for the Rogers Site-December	I24
I73	Graph of Nickel vs. Time for the Rogers Site-May	125
I74	Graph of Nickel vs. Time for the Rogers Site-August	125
175	Graph of Nickel vs. Time for the Rogers Site-December	125
I76	Graph of Potassium vs. Time for the Rogers Site-May	I26
177	Graph of Potassium vs. Time for the Rogers Site-August	I26
I78	Graph of Potassium vs. Time for the Rogers Site-December	126
I79	Graph of Zinc vs. Time for the Rogers Site-May	127
180	Graph of Zinc vs. Time for the Rogers Site-August	127
I81	Graph of Zinc vs. Time for the Rogers Site-December	127
182	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Rogers	
T83	Site-May	128
100	vs. Time for the Rogers Site-August	128
184	Graph of Un-ionized Ammonia Nitrogen vs. Time for the Rogers Site-December	128

Figure	F	'age
185	Graph of Ammonia Nitrogen vs. Time for the Rogers Site-May	129
186	Graph of Ammonia Nitrogen vs. Time for the Rogers Site-August	129
I87	Graph of Ammonia Nitrogen vs. Time for the Rogers Site-December	129
I88	Graph of Organic Nitrogen vs. Time for the Rogers Site-May	I 30
I89	Graph of Organic Nitrogen vs. Time for the Rogers Site-August	130
190	Graph of Organic Nitrogen vs. Time for the Rogers Site-December	I 30
I91	Graph of Nitrate Nitrogen vs. Time for the Rogers Site-May	I31
192	Graph of Nitrate Nitrogen vs. Time for the Rogers Site-August	I31
I93	Graph of Nitrate Nitrogen vs. Time for the Rogers Site-December	I31
194	Graph of Total Kjeldahl Nitrogen vs. Time for the Rogers Site-May	132
195	Graph of Total Kjeldahl Nitrogen vs. Time for the Rogers Site-August	T 2 2
I96	Graph of Total Kjeldahl Nitrogen vs. Time for the Rogers	132
197	Graph of Total Nitrogen vs. Time	132
198	for the Rogers Site-May	I33
TOO	for the Rogers Site-August	133
ТАА	for the Rogers Site-December	I33
I100	Graph of pH vs. Time for the Rogers Site-May	I34

Figure		Page
I101	Graph of pH vs. Time for the Rogers Site-August	. I34
I102	Graph of pH vs. Time for the Rogers Site-December	. I34
I103	Graph of Total Phosphorous vs. Time for the Rogers Site-May	. 135
I104	Graph of Total Phosphorous vs. Time for the Rogers Site-August	. 135
I105	Graph of Total Phosphorous vs. Time for the Rogers Site-December	. 135
I106	Graph of Orthophosphate vs. Time for the Rogers Site-May	. I36
I107	Graph of Orthophosphate vs. Time for the Rogers Site-August	. I36
I108	Graph of Orthophosphate vs. Time for the Rogers Site-December	. I36
I109	Graph of Sulfate vs. Time for the Rogers Site-May	. I37
I110	Graph of Sulfate vs. Time for the Rogers Site-August	. I37
I111	Graph of Sulfate vs. Time for the Rogers Site-December	I37
I112	Graph of Temperature vs. Time for the Rogers Site-May	I38
I113	Graph of Temperature vs. Time for the Rogers Site-August	I38
I114	Graph of Temperature vs. Time for the Rogers Site-December	I38
I115	Graph of Transparency vs. Time for the Rogers Site-May	I39
I116	Graph of Transparency vs. Time for the Rogers Site-August	I39
I117	Graph of Transparency vs. Time for the Rogers Site-December	I39

Figure		Page
I118	Graph of Turbidity vs. Time for the Rogers Site-May	. 140
I119	Graph of Turbidity vs. Time for the Rogers Site-August	. 140
I120	Graph of Turbidity vs. Time for the Rogers Site-December	. I40
J1	Graph of Total Alkalinity vs. Time for the Highway 68 Site-May	. J1
J2	Graph of Total Alkalinity vs. Time for the Highway 68 Site-August	. J1
J3	Graph of Total Alkalinity vs. Time for the Highway 68 Site-December	. J1
J4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 68 Site-May	. J2
J5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 68 Site-August	• J2
J6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Highway 68 Site-December	• J2
J7	Graph of Chlorophyll a vs. Time for the Highway 68 Site-May	. J3
J8	Graph of Chlorophyll a vs. Time for the Highway 68 Site-August	. J3
J9	Graph of Chlorophyll a vs. Time for the Highway 68 Site-December	. ЈЗ
J10	Graph of Chlorophyll b vs. Time for the Highway 68 Site-May	. J4
J11	Graph of Chlorophyll b vs. Time for the Highway 68 Site-August	. Ј4
J12	Graph of Chlorophyll b vs. Time for the Highway 68 Site-December	. J4
J13	Graph of Color vs. Time for the Highway 68 Site-May	. J5

0

Figure		Page
J14	Graph of Color vs. Time for the Highway 68 Site-August	. J5
J15	Graph of Color vs. Time for the Highway 68 Site-December	. J5
J16	Graph of Conductivity vs. Time for the Highway 68 Site-May	. J6
J17	Graph of Conductivity vs. Time for the Highway 68 Site-August	. J6
J18	Graph of Conductivity vs. Time for the Highway 68 Site-December	. J6
J19	Graph of Reservoir Depth vs. Time for the Highway 68 Site-May	. J7
J20	Graph of Reservoir Depth vs. Time for the Highway 68 Site-August	. J7
J21	Graph of Reservoir Depth vs. Time for the Highway 68 Site-December	. J7
J22	Graph of Dissolved Oxygen (mg/L) vs. Time for the Highway 68 Site-May	. J8
J23	Graph of Dissolved Oxygen (mg/L) vs. Time for the Highway 68 Site-August	. Ј8
J24	Graph of Dissolved Oxygen (mg/L) vs. Time for the Highway 68 Site-December	. Ј8
J25	Graph of Dissolved Oxygen (%) vs. Time for the Highway 68 Site-May	. Ј9
J26	Graph of Dissolved Oxygen (%) vs. Time for the Highway 68 Site-August	. Ј9
J27	Graph of Dissolved Oxygen (%) vs. Time for the Highway 68 Site-December	. Ј9
J28	Graph of Fecal Coliform vs. Time for the Highway 68 Site-May	J10
J29	Graph of Fecal Coliform vs. Time for the Highway 68 Site-August	J10
J30	Graph of Fecal Coliform vs. Time for the Highway 68 Site-December	J10

Figure		Page
J31	Graph of Total Hardness vs. Time for the Highway 68 Site-May	. J11
J32	Graph of Total Hardness vs. Time for the Highway 68 Site-August	. J11
J33	Graph of Total Hardness vs. Time for the Highway 68 Site-December	. J11
J34	Graph of Dissolved Calcium vs. Time for the Highway 68 Site-May	. J12
J35	Graph of Dissolved Calcium vs. Time for the Highway 68 Site-December	. J12
J36	Graph of Dissolved Magnesium vs. Time for the Highway 68 Site-May	. J13
J37	Graph of Dissolved Magnesium vs. Time for the Highway 68 Site-December	. J13
J38	Graph of Nitrate Nitrogen vs. Time for the Highway 68 Site-May	. J14
J39	Graph of Nitrate Nitrogen vs. Time for the Highway 68 Site-August	. J14
J40	Graph of Nitrate Nitrogen vs. Time for the Highway 68 Site-December	. J14
J41	Graph of pH vs. Time for the Highway 68 Site-May	. J15
J42	Graph of pH vs. Time for the Highway 68 Site-August	. J15
J43	Graph of pH vs. Time for the Highway 68 Site-December	. J15
J44	Graph of Total Phosphorous vs. Time for the Highway 68 Site-May	. J16
J45	Graph of Total Phosphorous vs. Time for the Highway 68 Site-August	. J16
J46	Graph of Total Phosphorous vs. Time for the Highway 68 Site-December	. J16
J47	Graph of Orthophosphate vs. Time for the Highway 68 Site-May	. J17
List of Figures (Cont'd)

Figure		Page
J48	Graph of Orthophosphate vs. Time for the Highway 68 Site-August	. J17
J49	Graph of Orthophosphate vs. Time for the Highway 68 Site-December	. J17
J50	Graph of Temperature vs. Time for the Highway 68 Site-May	. J18
J51	Graph of Temperature vs. Time for the Highway 68 Site-August	. J18
J52	Graph of Temperature vs. Time for the Highway 68 Site-December	. J18
J53	Graph of Transparency vs. Time for the Highway 68 Site-May	. J19
J54	Graph of Transparency vs. Time for the Highway 68 Site-August	. J19
J55	Graph of Transparency vs. Time for the Highway 68 Site-December	. J19
J56	Graph of Turbidity vs. Time for the Highway 68 Site-May	. J20
J57	Graph of Turbidity vs. Time for the Highway 68 Site-August	. J20
J58	Graph of Turbidity vs. Time for the Highway 68 Site-December	. J20
K1	Graph of Total Alkalinity vs. Time for the Richland Creek Site-May	. K1
K2	Graph of Total Alkalinity vs. Time for the Richland Creek Site-August	. K1
К3	Graph of Total Alkalinity vs. Time for the Richland Creek Site-December	. K1
K4	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Richland Creek Site-May	. K2
К5	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Richland Creek Site-August	. К2

List of Figures (Cont'd)

Figure		Page
K6	Graph Of Five-Day Biochemical Oxygen Demand vs. Time for the Richland Creek Site-December	. К2
K7	Graph of Chlorophyll a vs. Time for the Richland Creek Site-May	. КЗ
K8	Graph of Chlorophyll a vs. Time for the Richland Creek Site-August	. КЗ
К9	Graph of Chlorophyll a vs. Time for the Richland Creek Site-December	. КЗ
K10	Graph of Chlorophyll b vs. Time for the Richland Creek Site-May	• K4
K11	Graph of Chlorophyll b vs. Time for the Richland Creek Site-August	. K4
K12	Graph of Chlorophyll b vs. Time for the Richland Creek Site-December	. K4
K13	Graph of Color vs. Time for the Richland Creek Site-May	. К5
K14	Graph of Color vs. Time for the Richland Creek Site-August	. К5
K15	Graph of Color vs. Time for the Richland Creek Site-December	. К5
K16	Graph of Conductivity vs. Time for the Richland Creek Site-May	. K6
K17	Graph of Conductivity vs. Time for the Richland Creek Site-August	. Кб
K18	Graph of Conductivity vs. Time for the Richland Creek Site-December	. K6
K19	Graph of Reservoir Depth vs. Time for the Richland Creek Site-May	. K7
K20	Graph of Reservoir Depth vs. Time for the Richland Creek Site-August	. K7
K21	Graph of Reservoir Depth vs. Time for the Richland Creek Site-December	. K7

List of Figures (Cont'd)

÷.

÷1

Figure	Pac	je
K22	Graph of Dissolved Oxygen (mg/L) vs. Time for the Richland Creek Site-May H	٤8
K23	Graph of Dissolved Oxygen (mg/L) vs. Time for the Richland Creek Site-August H	82
K24	Graph of Dissolved Oxygen (mg/L) vs. Time for the Richland Creek Site-December H	<u>8</u> 3
K25	Graph of Dissolved Oxygen (%) vs. Time for the Richland Creek Site-May	٢9
K26	Graph of Dissolved Oxygen (%) vs. Time for the Richland Creek Site-August	<u> 7</u> 9
K27	Graph of Dissolved Oxygen (%) vs. Time for the Richland Creek Site-December I	39
K28	Graph of Fecal Coliform vs. Time for the Richland Creek Site-May K	10
K29	Graph of Fecal Coliform vs. Time for the Richland Creek Site-August K	10
K30	Graph of Fecal Coliform vs. Time for the Richland Creek Site-December K	10
K31	Graph of Total Hardness vs. Time for the Richland Creek Site-May K	11
K32	Graph of Total Hardness vs. Time for the Richland Creek Site-August K	11
K33	Graph of Total Hardness vs. Time for the Richland Creek Site-December K	11
K34	Graph of Nitrate Nitrogen vs. Time for the Richland Creek Site-May K	12
K35	Graph of Nitrate Nitrogen vs. Time for the Richland Creek Site-August K	12
K36	Graph of Nitrate Nitrogen vs. Time for the Richland Creek Site-December K	12
K37	Graph of pH vs. Time for the Richland Creek Site-May K	13
K38	Graph of pH vs. Time for the Richland Creek Site-August	13

- cx -

Figure	Pa	.ge
K39	Graph of pH vs. Time for the Richland Creek Site-December K	13
K40	Graph of Total Phosphorous vs. Time for the Richland Creek Site-May K	14
K41	Graph of Total Phosphorous vs. Time for the Richland Creek Site-August K	14
K42	Graph of Total Phosphorous vs. Time for the Richland Creek Site-December K	14
K43	Graph of Orthophosphate vs. Time for the Richland Creek Site-May K	15
K44	Graph of Orthophosphate vs. Time for the Richland Creek Site-August K	15
K45	Graph of Orthophosphate vs. Time for the Richland Creek Site-December K	15
K46	Graph of Temperature vs. Time for the Richland Creek Site-May K	16
K47	Graph of Temperature vs. Time for the Richland Creek Site-August K	16
K48	Graph of Temperature vs. Time for the Richland Creek Site-December K	16
K49	Graph of Transparency vs. Time for the Richland Creek Site-May K	17
K50	Graph of Transparency vs. Time for the Richland Creek Site-August K	17
K51	Graph of Transparency vs. Time for the Richland Creek Site-December K	17
K52	Graph of Turbidity vs. Time for the Richland Creek Site-May K	18
K53	Graph of Turbidity vs. Time for the Richland Creek Site-August K	18
K54	Graph of Turbidity vs. Time for the Richland Creek Site-December K	18

3

• •

List of Tables

,

Table

Page

I	Maximum Allowable Temperatures From Man-Induced Causes for Waters in Arkansas
II	Maximum Allowable Turbidity Values From Man-Induced Causes for Waters in Arkansas
III	Minimum Allowable Dissolved Oxygen Concentrations for Streams, Lakes and Reservoirs in Arkansas
IV	Toxic Substances and Criteria for Waters in Arkansas
v	Maximum Allowable Limits for Chloride Sulfate and Total Dissolved Solids 38
VI	National Interim Primary Drinking Water Regulations 41
VII	National Secondary Drinking Water Regulations
VIII	Pertinent Data for Beaver and Dam
IX	Water Quality Data for the White River Site-Period of Record and Spring Season
х	Water Quality Data for the White River Site-Period of Record and Summer Season
XI	Water Quality Data for the White River Site-Period of Record and Winter Season
XII	Water Quality Data for the Eureka Springs Site-Period of Record and Spring Season
XIII	Water Quality Data for the Eureka Springs Site-Period of Record and Summer Season

Table	List of Tables_(Cont'd)	Page
14010		raye
XIV	Water Quality Data for the Eureka Springs Site-Period of Record and Winter Season	. 258
xv	Water Quality Data for the Prairie Creek Site-Period of Record and Spring Season	. 259
XVI	Water Quality Data for the Prairie Creek Site-Period of Record and Summer Season	. 260
XVII	Water Quality Data for the Prairie Creek Site-Period of Record and Winter Season	. 261
XVIII	Water Quality Data for the Highway 12 Site-Period of Record and Spring Season	. 262
XIX	Water Quality Data for the Highway 12 Site-Period of Record and Summer Season	. 263
xx	Water Quality Data for the Highway 12 Site-Period of Record and Winter Season	. 264
XXI	Water Quality Data for the Monte Ne Site-Period of Record and Spring Season	. 265
XXII	Water Quality Data for the Monte Ne Site-Period of Record and Summer Season	. 266
XXIII	Water Quality Data for the Monte Ne Site-Period of Record and Winter Season	. 267
XXIV	Water Quality Data for the War Eagle Site-Period of Record and Spring Season	. 268
xxv	Water Quality Data for the War Eagle Site-Period of Record and Summer Season	. 269
XXVI	Water Quality Data for the War Eagle Site-Period of Record and Winter Season	. 270

List of Table (Cont'd)

.

Table	•	Page
XXVII	Water Quality Data for the Goshen Site-Period of Record and Spring Season	. 271
XXVIII	Water Quality Data for the Goshen Site-Period Of Record and Summer Season	. 272
XXIX	Water Quality Data for the Goshen Site-Period of Record and Winter Season	. 273
XXX	Water Quality Data for the Avoca Site-Period of Record and Spring Season	. 274
XXXI	Water Quality Data for the Avoca Site-Period of Record and Summer Season	. 275
XXXII	Water Quality Data for the Avoca Site-Period of Record and Winter Season	. 276
XXXIII	Water Quality Data for the Rogers Site-Period of Record and Spring Season	. 277
XXXIV	Water Quality Data for the Rogers Site-Period of Record and Summer Season	. 278
XXXV	Water Quality Data for the Rogers Site-Period of Record and Winter Season	. 279
XXXVI	Water Quality Data for the Hwy 12 Site-Period of Record and Spring Season	. 280
XXXVII	Water Quality Data for the Hwy 12 Site-Period of Record and Summer Season	. 281
XXXVIII	Water Quality Data for the Hwy 12 Site-Period of Record and Winter Season	. 282
XXXIX	Water Quality Data for the Richland Creek Site-Period of Record and Spring Season	. 283

List of Tables (Cont'd)

Table		Page
XL	Water Quality Data for the Richland Creek Site-Period of Record and Summer Season	. 284
XLI	Water Quality Data for the Richland Creek Site-Period of Record and Winter Season	. 285

Section I

SUMMARY AND CONCLUSIONS

Summary

ł

This report includes a summary of the water quality information available for Beaver Lake. Beaver Lake is a multiple use project located on the White River in northwestern Arkansas. The lake is located in Benton, Carroll, Madison and Washington Counties in Arkansas. <u>White River Basin</u>. The surface water resources in the White River Basin fall into several categories. With respect to designated uses, Beaver Lake is in the Ozark Highlands Ecoregion as defined by the Arkansas Department of Pollution Control and Ecology. Streams which have watersheds with areas greater than 10 square miles are classified as suitable for primary contact recreation. Beaver Lake is also designated as suitable for primary contact recreation. All surface water resources in the basin are designated as suitable for secondary contact recreation.

All surface water resources in the basin are designated as suitable for domestic, industrial and agricultural water supply purposes. Beaver Lake is classified as suitable for fisheries. Streams in the White River Basin which have watersheds with areas of less than 10 square miles are classified as seasonal Ozark Highlands Ecoregion fisheries. Streams which have watersheds with areas of 10 square miles, or larger are designated as perennial Ozark Highlands Ecoregion fisheries. Additionally, a stream which has a dis-

- 1 -

charge of greater than one cubic foot per second is designated as a perennial Ozark Highlands Ecoregion fishery even though the watershed area may be less than ten square miles.

The applicable maximum temperatures are 29 °C (84.2 °F) and 32 °C (89.6 °F) for the streams and Beaver Lake, respectively. The White River immediately downstream from the dam is classified as suitable for trout waters. Consequently, the applicable maximum temperature for the White River is 20 degrees Celsius. The turbidity standard is 10 NTU for the streams and 25 NTU for Beaver Lake.

Beaver Lake. For most of the parameters, the quality of the water in the lake was very good. The concentrations of several of the metals were larger than usually encountered in lakes in Arkansas. In fact, some of the concentrations were very large.

The dissolved oxygen concentrations have been very good in the White River downstream from the dam at all times. The smallest concentration in the record was 6.2 mg/L.

The concentrations of fecal coliform bacteria have been very large at several of the sites. An extremely large count of 14,000 colonies per 100 mL occurred at the Goshen site. The counts at several of the sites were small.

The transparency of the water was often less than desired at some of the sites. At three of the sites, War Eagle, Goshen and Richland Creek, the average concentrations were less one-half of the of the recommended minimum of forty-eight inches for some of the seasonal periods.

- 2 -

<u>Conclusions</u>

1. The water in Beaver Lake may be characterized as being ordinarily suitable for the uses designated by the Arkansas Department of Pollution Control and Ecology. These include primary and secondary contact recreation, perennial fisheries, and as a source of agricultural, industrial and industrial water supplies.

2. Continuation and expansion of the water quality monitoring and surveillance measures is needed to protect the classified uses of water from the lake. Particular attention needs to be directed at monitoring the fecal coliform, nutrient, iron, manganese, copper, chromium, lead, chlorophyll a and chlorophyll b concentrations. The fecal coliform counts particularly need to be monitored at the War Eagle, Goshen and Richland Creek sites because of very large counts which have occurred at times at these sites. The chlorophyll a and b concentrations need to be monitored because of relatively large concentrations which have occurred at several of the sites.

3. Beaver Lake is a long, narrow lake with numerous contributing streams. Consequently, the number of sampling sites required to adequately monitor the lake is relatively large. There are currently ten sampling sites in the lake and one in the White River immediately downstream from the dam. The sampling sites include: 1) a sampling site on the receiving stream (White River) which allows monitoring of the quality of the water being discharged from the lake; 2) a site in the main part of the lake upstream from the dam

- 3 -

for which profile data for dissolved oxygen, temperature, pH and conductivity have been developed as well as data for other parameters (Eureka Springs site); 3) a sampling site in the Prairie Creek arm of the lake (Prairie Creek site); 4) a sampling site in the lake where Highway 12 crosses the lake east of Rogers (Highway 12 site); 5) a site in the lake near Monte Ne (Monte Ne site); 6) a site in the War Eagle arm of the lake (War Eagle site); 7) a site in the lake where the White River enters the lake (Goshen site); 8) a site in the lake in the Avoca Hollow arm near Avoca (Avoca site); 9) a site in the lake near the raw water intake structure for the Beaver Water District; 10) a site in the lake where Highway 68 crosses the lake east of Springdale (Highway 68 site), and; 11) a site in the lake near the confluence of Richland Creek and the White River (Richland Creek site).

The location of the existing sampling sites leaves a large portion of the lake undefined with respect to water quality. This is understandable because of access problems between the Eureka Springs site (Site Number 2) and the Highway 12 site (Site Number 4) which is closest upstream site.

It is doubtful that the number of existing sites is adequate for monitoring the quality of the lake. Consequently, the recommendation is not to eliminate any sites, but to add at least one additional site. If one site were added, it would preferably be between the Eureka Springs and Highway

- 4 -

12 sites. For example, a site could be included in the lake east of the Larue area.

ŧ

A discussion of the rationale is included in the following paragraph. The White River site (Site Number 1) needs to be retained to allow continued monitoring of the quality of water entering the stream and because it has been designated as trout water. The Beaver Lake site (Site Number 2) immediately upstream from the dam needs to be retained to allow monitoring of the water quality above and below the thermocline and to develop periodic profile data. The Prairie Creek site (Site Number 3) needs to be retained because this site allows monitoring of water where Prairie Creek enters the lake. The Highway 12 site (Site Number 4) needs to be retained because it is the nearest site in the main stem of the lake to the Eureka Springs site immediately upstream from the dam. There is perhaps as much as thirty river miles between these two sites. The Monte Ne (Site Number 5) site needs to be retained because it allows monitoring of the water quality in the arm of the lake where Phillips Creek and Monte Branch enter the lake. The War Eagle site (Site Number 6) needs to be retained because it allows monitoring of the water near where War Eagle Creek enters the lake. The Goshen (Site Number 7) site needs to be retained because it allows monitoring of the water quality near where the White River enters the lake. The Avoca site (Site Number 8) needs to be retained because it allows monitoring of water quality in the Avoca Hollow arm of the lake. The Rogers site (Site Number 9) needs to be

- 5 -

retained because is the nearest site upstream from the Highway 12 site. It is 47 river miles upstream from the Eureka Springs site with only one sampling site in between in the main part of the lake. The Highway 68 site (Site Number 10) needs to be retained because it is a uppermost main stem site. The Richland Creek site (Site Number 11) needs to be retained both because it allows monitoring of the lake near where Richland Creek enters the lake and because of the quality of water in this area of the lake.

If funding limitations absolutely require elimination of a site, there appears to be only one logical option. This would be to combine the Avoca and Prairie Creek sites by moving the site at some location downstream, from the confluence of these two streams. This is not desirable but could be done. It is important to note that the records for both sites would essentially be lost by moving the site. Consequently, several years would be required before sufficient data were again available to evaluate any trends which might be occurring. Sampling would probably be more difficult than at the existing sites.

4. With respect to the types of analyses which should be conducted, the highest priority should be assigned to: 1) monitoring fecal coliform, metals at certain sites, chlorophyll a and b, nitrogen and phosphorous because of prior events; 2) monitoring activities above and below the thermocline at the Eureka Springs site which is immediately upstream from the dam including the development of periodic profile data, and: 3) continued seasonal sampling for dis-

- 6 -

solved oxygen, transparency, turbidity, color, five-day biochemical oxygen demand and pH. Only infrequent monitoring for chloride and sulfate, except at the Goshen site, is required because of the small concentrations for these two parameters.

Although monitoring water quality three times per year is adequate for most parameters, more frequent monitoring of the fecal coliform counts needs to be conducted at the site which have had large counts in the past.

5. Although providing background information, the frequency of sampling for several parameters which have small and/or relatively consistent concentrations could be reduced or eliminated. Conductivity, calcium and total hardness and total alkalinity analyses could be conducted on an annual basis.

Although they have not all been conducted on a continuous basis at all sites, analyses for carbon dioxide, dissolved calcium, dissolved magnesium, potassium, un-ionized ammonia nitrogen and Total Kjeldahl Nitrogen could be discontinued. Analyses for conductivity and pH for the profile data (Beaver Site) could be discontinued.

6. Priority should also be given to maintaining a complete record of the water quality at the White River site downstream from the dam as this site provides information about the quality of the water being discharged to the river. At this site, particular emphasis should be maintained with respect to temperature and dissolved oxygen, five-day biochemical oxygen demand, color, pH, nitrogen,

- 7 -

phosphorous, arsenic, chromium, copper, iron, lead, manganese, mercury, nickel and zinc and fecal coliform bacteria. The existing heavy metals concentrations at this site were small. However, continued monitoring is required to determine if any changes occur, particularly during the August period.

7. Several metals, including iron and manganese were present in unusually large concentrations at some of the sites. These need to be e monitored to determine long term trends. Manganese concentrations were unusually large on occasion at some of the sites.

The total alkalinity concentrations were moderate in 8. Beaver Lake. The patterns for the total alkalinity concentrations as a function of the season of the year vary considerably among the eleven sampling sites. At some sites, the average concentrations were about the same for the three seasonal periods. For example, at the Eureka Springs site, the average seasonal concentrations were all 56 mg/L for the May, August and December periods. At other sites, there were substantial seasonal influences on the total alkalinity concentrations. For example, the average seasonal concentrations were 48, 55 and 113 mg/L, respectively, for the May, August and December periods at the Prairie Creek site. There were also variations in the patterns with respect to the season of the year which have the largest and smallest average total alkalinity concentrations. As indicated, the average total alkalinity concentrations were much larger in the December period at the Prairie Creek site. The average

- 8 -

total alkalinity concentrations were the largest during the August period at the War Eagle site. The average concentrations at this site were 70, 93 and 74 mg/L for the May, August and December periods. At the Goshen site, the average total alkalinity concentrations were the smallest in the December period. At most sites, the average concentrations were the smallest in the May period.

The total alkalinity concentrations also vary considerably from year to year at some of the sites'. More variation in the May period was noted than in the August and December periods at some of the sites.

Although the total alkalinity concentrations were moderate in Beaver Lake, there was no indication of substantially increasing concentrations with the passage of time. Consequently, there were no indications of trouble spots in the lake with respect to total alkalinity.

9. The five-day biochemical oxygen demand concentrations varied considerably among the eleven sites. At some sites, such as the Eureka Springs site, the five-day biochemical oxygen demand concentrations were in the low end of the range usually encountered in lakes in Arkansas. At other sites, the concentrations were unusually large. For example, the average five-day biochemical oxygen demand concentration for the August period at the Goshen site was 4.6 mg/L which was large for a lake in Arkansas. There were also variations in the patterns with respect to which season of the year had the largest and smallest five-day biochemical oxygen demand concentrations. As an example, the aver-

- 9 -

age concentrations'were the largest in the May period at the Avoca and the Eureka Springs sites. They were the largest in the August period at the War Eagle, Richland Creek and Goshen sites.

The five-day biochemical oxygen demand concentrations also varied as a function of time at the several sites. The variations were larger at some sites than at other sites.

Careful monitoring of the five-day biochemical oxygen demand concentrations at the Richland Creek site needs to be conducted because of the magnitudes of the concentrations at this site. The quality of water at several of the sites was very good to excellent at several sites. As examples, the average five-day biochemical oxygen demand concentrations were small at the Highway 68 and Eureka Springs sites.

10. The chloride concentrations at the White River site and the ten sampling sites in the lake were usually very small. However, the average chloride concentration for the August period at the Goshen site exceeds the stream standard of 20 mg/L for the White River.

The trends were mixed varying from site to site and among the seasons of the year. The chloride data were usually characterized by small and relatively uniform chloride concentrations as a function of time.

With the exception of the Goshen site, the quality of the water was excellent in Beaver Lake and in the White River with respect to chloride. Close monitoring of the chloride concentrations at the Goshen site is suggested.

- 10 -

11. Chlorophyll a is an algal biomass indicator which can be used to provide an indication of the relative populations of algae. The parameter does not distinguish between desirable and undesirable species of algae. Consequently, it does not provide an absolute scale by which water quality is either good or bad. However, the parameter can provide an indication that troublesome conditions may be developing or may not developing. Consequently, it is a useful parameter for surface water supplies.

The chlorophyll a concentrations varied considerably among the sites, as a function of time and as a function of the season of the year. There were alarming tendencies at several of the sites. For example, the average chlorophyll a concentration at the Rogers site was 10.3 micrograms per liter in the May period. This was a relatively large chlorophyll a concentration. The average concentration at the Goshen site was 13.9 micrograms per liter for the August period. The chlorophyll a concentrations were unusually large at the Avoca and War Eagle sites at least part of the time.

There were significant differences in the chlorophyll a concentrations among the sites. In the August period, for example, the average chlorophyll a concentrations ranged from 1.92 micrograms per liter at the Eureka Springs site to 13.9 micrograms per liter at the Goshen site.

The chlorophyll a concentrations also varied considerably as a function of the season of the year which would be expected. As an example, at the Rogers site, the average

- 11 -

concentrations were 10.3 and 3.46 micrograms per liter in the May and August periods.

There were alarming patterns of relatively large chlorophyll a concentrations at several of the sites. These were not always in the most recent samples. However, the fact that microbiological events at the scale encountered on several occasions points out the need for continued and expanded monitoring of the water quality in the lake.

12. The chlorophyll b concentrations also varied as a function of the season of the year, among the ten sites in the lake, and as a function of time. The general tendency was for the chlorophyll b data to parallel the chlorophyll a data. This tendency was not always exerted, however. The chlorophyll b concentrations were alarming at some of the sites. At the Goshen site, the average chlorophyll b concentration was 2.05 micrograms per liter for the August period which was a large concentration for large lakes in Arkansas.

13. The color concentrations varied considerably as a function of the season of the year, as a function of time and as a function of the location of the site. At some sites, the color concentrations were small. As an example, the maximum color concentration in any sample at the White River site was 20 units which was considerably less than the rule of thumb maximum of 50 units for the protection of certain types of phytoplankton and the benthos. The color concentrations were also relatively small at the Eureka Springs site. The maximum concentration was 30 units at this site.

- 12 -

On the other hand, the maximum concentrations were 180, 240, 240, 400 and 450 units at the Highway 12, Monte Ne, Goshen, Rogers and Highway 68 sites. These were large color concentrations in a large lake such as Beaver Lake.

14. The conductivity values for the eleven sampling sites were moderate. There were considerable differences in the patterns with respect to season of the year. At some sites including the Eureka Springs, Highway 12, War Eagle, Goshen and Richland Creek sites, the largest average seasonal values occurred in the August period. At others including the White River, Prairie Creek, Monte Ne, Avoca and Highway 68 sites, the largest average seasonal values occurred in the December period. The largest conductivity values occurred at the Goshen site.

There were often significant differences as a function of the site location within each season. For example, the average seasonal conductivity values for the December period ranged from 120 micromhos per centimeter at the Richland Creek site to 215 micromhos per centimeter at the Prairie Creek site.

15. In general, the dissolved oxygen concentrations were usually very good at the White River sampling site. Surprisingly, the occasions in which the dissolved oxygen concentrations were less than 6 mg/L were usually in the December period. The minimum seasonal concentrations were 8.4, 5.6 and 3.9 mg/L for the May, August and December periods. The dissolved oxygen concentrations were very good in

- 13 -

the May period and almost always very good in the August period.

The dissolved oxygen concentrations were not good at the Highway 68 site in the August period. The average concentration for this period was 2.1 mg/L. The dissolved oxygen concentrations were less than 1 mg/L in each of the last three years of record. They were usually larger in the May period but still below 6 mg/L. In fact, the average concentration was only 5.6 mg/L. The dissolved oxygen concentrations were less than 6 mg/L in five of the seven years which were in the record.

The dissolved oxygen concentrations were also less than desirable at the Goshen site. The average concentration for the August period was 5.2 mg/L. As would be indicated by the average concentration, the dissolved oxygen concentrations were often less than 6 mg/L in the August period and on occasion in the December period.

As would be expected, the dissolved oxygen concentrations were often small in the samples collected at 0.8 depth at the deep sites in the main stem of the lake in the August period. However, they were generally good in the samples collected at 0.2 depth.

16. Since Beaver Lake and the White River are designated as suitable for primary contact recreation, the fecal coliform counts are of considerable importance. In general, the fecal coliform counts were small and well within the standard of 200 colonies per 100 mL at most of the sites. There were exceptions, however. The fecal coliform count at

- 14 -

the Richland site in the May, 1987 seasonal period was 14,000 colonies per 100 mL. This count was dangerously large for water used in primary contact recreational activities. The maximum count in the December period was 5,100 colonies per 100 mL at the Richland Creek site in 1984. The maximum count in the August period at the Richland Creek site was only 91 colonies per 100 mL.

The fecal coliform counts have also been large on occasion at the Goshen site. The count was 5,200 colonies per 100 mL in 1985 at this site in the August period. The maximum count was 1,400 colonies per 100 mL in the May period in 1979 at this site.

The fecal coliform counts have been large on occasion at the War Eagle site. The maximum counts were 400 colonies per 100 mL in the May period in 1983 and 1,500 colonies per 100 mL in the August period in 1981.

The fecal coliform counts were always less than the limit primary contact recreation in the May and August periods at the White River, Prairie Creek, Highway 12, Monte Ne, Avoca, Rogers and Highway 68 sites. The were nearly always less at the Eureka Springs site.

An expanded monitoring program needs to be implemented at, and around, the sites which had the extremely large fecal coliform counts. The count of 14,000 colonies per 100 mL was seventy times the maximum allowable count for primary contact recreation in the warmer months of the year.

17. The total hardness concentrations in the samples collected at the eight sites in and below Beaver Lake were

- 15 -

moderate. The patterns varied considerably from site to site with respect to the season of the year. For example, the average seasonal concentrations at the White River site were 64, 63 and 67 mg/L indicating little seasonal dependency. They were 42, 91 and 51 mg/L at the Goshen site indicating substantial seasonal dependency. At some sites, the average total hardness concentrations were the largest in the August period and at others they were the largest in the December period. There were also considerable variations as a function of site location within each seasonal period. As an example, the total hardness concentrations for the December period ranged from 51 mg/L at the Goshen site to 92 mg/L at the Prairie Creek site.

The calcium concentrations also varied as a function of the season of the year, as a function of the location of the site within and below the lake and as a function of time. As would be expected, the dissolved calcium concentrations also varied.

The average seasonal concentrations for dissolved magnesium were generally more consistent as a function of time, as a function of the season of the year and as a function of the location of the site than the dissolved calcium, calcium and total hardness concentrations. All of the average seasonal dissolved magnesium concentrations were between 1.44 and 3.58 mg/L. There was only a relatively small amount of magnesium in the water in Beaver Lake.

18. Metals analyses were conducted at seven of the eleven sampling sites for Beaver Lake. The metals concen-

- 16 -

trations varied considerably.

Considerable variation existed among the sites with respect to the aluminum concentrations. The concentrations ranged from small to very large. The maximum concentrations ranged from 160 micrograms per liter in the May period at the Eureka Springs site to 4,400 micrograms per liter in the May period at the Rogers site. The maximum aluminum concentrations were 4,200 micrograms per liter at the Highway 12 and Highway 68 sites in the December period'. These were unusually large aluminum concentrations in a lake. The aluminum concentrations were usually small at the White River and Eureka Springs sites and were frequently large at the Rogers, Highway 68 and Highway 12 sites. There were significant seasonal dependencies in the average aluminum concentrations.

The arsenic concentrations were usually small at all seven sites at which samples were collected. The maximum concentration reported was 14 microgram per liter. This concentration was much less than the maximum contaminant level of 50 micrograms per liter for drinking water. For the protection of aquatic life, arsenic concentrations should be less than 20 micrograms per liter. Consequently, the quality of the water was good concerning this parameter.

The chromium concentrations were often larger than usually found in lakes in Arkansas. The maximum concentration reported was 100 micrograms per liter. Samples collected at both the White River and Eureka Springs sites had chromium concentrations of 100 micrograms per liter. For the protec-

- 17 -

tion of aquatic life, the chromium concentrations should be less than 10 to 15 micrograms per liter. The maximum concentrations were usually less than 60 micrograms per liter. The chromium concentrations varied as a function of the location of the sampling site, as a function of time and as a function of the season of the year.

The copper concentrations were somewhat larger than usual for lakes in Arkansas. The maximum concentration was 150 micrograms per liter which occurred at the Avoca site in 'the August period. Copper concentrations of 110 micrograms per liter also were reported for the White River and Eureka Springs sites. The copper concentrations should not be larger than 20 to 30 micrograms per liter for water in lakes which have hardness concentrations in the range of those in Beaver Lake. The peak copper concentrations occurred at the White River, Eureka Springs and Avoca sites.

The iron concentrations varied as a function of time, as a function of the season of the year and as a function of site location. At times, very large iron concentrations were reported for some of the sites. For comparison purposes, the recommended maximum contaminant level for drinking water is 300 micrograms per liter. For example, an iron concentration of 9,000 micrograms per liter occurred at the Rogers site. Iron concentrations of 4,100, 4000 and 4,000 micrograms per liter were reported at the Goshen, Highway 68 and Highway 12 sites. There were differences among the sites concerning the season of the year during which the largest average iron concentrations occurred. As an

- 18 -

example, the average iron concentrations were the largest in the May period at the Avoca and Rogers sites. They were the largest in the August period at the White River site. The average iron concentrations were the largest in the December period at the Eureka Springs, Highway 12, Goshen and Highway 68 sites.

ł

At times, the lead concentrations were somewhat larger than usual for lakes in Arkansas. The maximum concentration reported was 50 micrograms per liter in the May period at the Rogers site. The lead concentrations exceeded the action level of 15 micrograms per liter at some time for each of the seven sites. However, the lead concentrations were usually fairly small. The average concentrations were usually less than 6.5 micrograms per liter. The lead concentrations also varied as a function of time, as a function of site location and as a function of the season of the year.

There were surprisingly large concentrations of manganese at some of the sites. The maximum manganese concentrations were 4,100, 4,000, 4,000 and 2,800 micrograms per liter at the Goshen, Highway 68, Highway 12 and Rogers sites. The average manganese concentration in the August period at the Rogers site was greater than 1,000 micrograms per liter. The average concentrations exceeded 600 micrograms per liter at the Highway 12, Goshen, Rogers and Highway 68 sites. The manganese concentrations varied with the location of the site, with the season of the year and as a function of time.

- 19 -

The maximum mercury concentration in the record was 1.3 microgram per liter which was relatively small. The maximum contaminant level of 2 micrograms per liter for drinking water. The average mercury concentrations were all less than 0.3 micrograms per liter.

The maximum nickel concentration reported was 50 micrograms per liter which was somewhat larger than usual for lakes in Arkansas. However, it would be considered to be acceptably small.

The potassium concentrations were all small and relatively consistent. There were variations as a function of time, as a function of the season of the year and as a function of site location. However, there variations were relatively small.

The maximum zinc concentration was 870 micrograms per liter which was large. This zinc concentration occurred at the Highway 68 and Highway 12 sites. The zinc concentrations were 200 micrograms per liter or larger at the White River, Eureka Springs, Highway 12, Goshen and Highway 68 sites. The zinc concentrations should be less than about 100 micrograms per liter for the protection of aquatic life. The zinc concentrations were variable as a function of site location, as a function of time and as a function of the season of the year.

19. The un-ionized ammonia concentrations were unusually large in the August period at the Goshen site. The average concentration for the August period was 0.0200 mg/L. The maximum concentration was 0.11 mg/L. These were both

- 20 -

unusually large. The un-ionized ammonia concentrations varied as a function of the season of the year, as a function of time and as a function of site location.

The ammonia concentrations were relatively large for all three seasonal periods at the Goshen site. The average concentrations were 0.21, 0.94 and 0.51 mg/L, respectively, for the May, August and December periods. The ammonia concentrations were small at the White River, Eureka Springs, Highway 12 and Highway 68 sites. The ammon'ia concentrations also were variable from site to site, as a function of time and as a function of the season of the year.

Nitrate nitrogen measurements were made at all eleven sites. The maximum concentration was 2.20 mg/L at the Goshen site in the August period. This was an unusually large concentration. The nitrate concentrations were larger in the May and December periods than in the August period.

20. The pH values were usually well within the limits established by the Arkansas Department of Pollution Control and Ecology. These limits are from 6.0 to 9.0. There were occasions at the Eureka Springs and Avoca sites in which the pH values were larger than 9.0.

21. The total phosphorous concentrations were usually relatively small. The average seasonal concentrations were 0.05 mg/L or less at the White River, Eureka Springs, Prairie Creek, Highway 12, Monte Ne, Avoca, Rogers and Highway 68 sites. The average total phosphorous concentrations were unusually large at the Goshen site. They were 0.28, 1.13 and 0.33 mg/L, respectively, for the May, August and

- 21 -

December periods at this site. There were occasions, however, when relatively large total phosphorous concentrations were measured at other sites. The maximum total phosphorous concentrations were 0.44, 0.61, 0.61 and 0.32 mg/L at the White River, Highway 12, Highway 68 and Richland Creek sites, respectively. The total phosphorous concentrations varied among the sites, among the seasons of the year and as a function of time.

The orthophosphate concentrations were usually relatively small. However, one very large concentration of 2.20 mg/L was reported at the Goshen site. Larger than usual concentrations were also reported at the Richland Creek, Rogers, Avoca and War Eagle sites on occasion.

22. The sulfate concentrations were less than the stream standard of 20 mg/L for the White River at all of the sites except the Goshen site. The sulfate concentrations were as large as 51 mg/L at this site. The average concentration for the August period was 19 mg/L at this site. There were significant seasonal variations at some of the sites.

23. The transparency values were smaller than desired for several of the sites at times. Most notable were the War Eagle, Goshen and Richland Creek sites. The average transparency values were less than two feet for some of the seasonal periods at these sites. Conversely, the transparency values were excellent at the Eureka Springs site and were very good at the Highway 12 and Highway 68 sites. The

- 22 -

desired minimum transparency value is forty-eight inches for water used in primary contact recreation.

Ł

24. The turbidity values in the water at the White River site were usually very small. The stream standard at this site is 10 NTU. On one occasion the turbidity value was 14 FTU. Usually, however, the turbidity values were much less than 10 FTU. The turbidity values were very large at the Goshen site on occasion. The maximum values were 90, 60 and 120 FTU, respectively, for the May, August and December periods. They also exceeded the lake standard of 25 NTU on occasions at the Highway 12, Monte Ne, War Eagle, Avoca, Rogers, Highway 68 and Richland Creek sites.

」)。 し首 定義

Section II BACKGROUND

Water Quality

Water quality requirements are basically determined by the use, or proposed use, of the water. Consequently, there are a variety of scales by which the quality of a water can be measured. The single most applicable scale for Beaver Lake is Regulation No. 2 issued by the Arkansas Department of Pollution Control and Ecology. Regulation No. 2 established water quality standards for surface waters in the State of Arkansas. It contains both guidelines and standards for a variety of parameters. A second scale includes the drinking water regulations promulgated by the Environmental Protection Agency. These contain both mandatory and recommended maximum contaminant levels for a variety of parameters.

Water Quality Standards for Surface Waters in Arkansas

Regulation No. 2 contains provisions for both streams and lakes. Since the water quality monitoring program for Beaver Lake includes stations both in the lake and downstream from the lake, a brief discussion of each is appropriate. The provisions included in Regulation No. 2 include both general and specific standards. The specific standards applicable for a particular stream are a function of the designated waterbody use for that stream.

<u>Waterbody Uses</u>. The designated waterbody uses are defined in Regulation No. 2 as follows:

- 24 -

Extraordinary Resource Waters-This beneficial use is a combination of the chemical, physical and biological characteristics of a waterbody and its watershed which is characterized by scenic beauty, aesthetics, scientific values, broad scope recreation potential and intangible social values.

ł.

<u>Ecologically Sensitive Waterbody</u>-This beneficial use identifies segments known to provide habitat for threatened, endangered or endemic species of aquatic or semiaquatic life forms.

<u>Natural and Scenic Waterways</u>-This beneficial use identifies segments which have been legislatively adopted into a state or federal system.

<u>Primary Contact Recreation</u>-This beneficial use designates waters where full body contact is involved. Any streams with watersheds of greater than 10 square miles are designated for full body contact. All streams with watersheds less than 10 square miles may be designated for primary contact recreation after site verification.

<u>Secondary Contact Recreation</u>-This beneficial use designated waters where secondary activities like boating, fishing or wading are involved.

<u>Fisheries</u>-This beneficial use provides for the protection and propagation of fish, shellfish and other forms of aquatic life. It is further subdivided into the following subcategories:

- 1) <u>Trout</u> water which is suitable for the growth and survival of trout (Family: Salmonidae).
- 2) Lakes and Reservoirs water which is suitable for the protection and propagation of fish and other forms of aquatic life adapted to impounded waters. Generally characterized by a dominance of sunfishes such as bluegill or similar species, black basses and crappie. May include substantial populations of catfishes such as channel, blue and flathead catfish and commercial fishes including carp, buffalo and suckers. Forage fishes are normally shad or various species of minnows. Unique populations of walleye, striped bass and/or trout may also exist.
- 3) <u>Streams</u> water which is suitable for the protection and propagation of fish and other forms of aquatic life adapted to flowing water systems whether or not the flow is perennial.
 - a) <u>Ozark Highlands Ecoregion</u> Streams supporting diverse communities of indigenous or adapted

species of fish and other forms of aquatic life. Fish communities are characterized by a preponderance of sensitive species and normally dominated by a diverse minnow community followed by sunfishes and darters. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Duskystripe shiner Northern hogsucker Slender madtom "Rock" basses Rainbow and/or Orangethroat darters Ozark minnow Smallmouth bass

Banded sculpin Ozark madtom Southern redbelly dace White tail

b) Boston Mountains Ecoregion - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by a major proportion of sensitive species; a diverse, often darter-dominated community exists but with nearly equal proportions of minnows and sunfishes. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Bigeye shiner Black redhorse Slender madtom Longear sunfish Greenside darter Smallmouth bass

Shadow bass Wedgespot shiner Longnose darter Fantail darter

c) Arkansas River Valley Ecoregion - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by a substantial proportion of sensitive species; a sunfish- and minnow-dominated community exists but with substantial proportions of darters and catfishes (particularly madtoms). The community may be generally characterized by the following fishes:

<u>Key Species</u>

ł

Bluntnose minnow Golden redhorse Yellow bullhead Longear sunfish Redfin darter Spotted bass Indicator Species

Orangespotted sunfish Blackside darter Madtoms

d) <u>Ouachita Mountains Ecoregion</u> - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. The fish community is characterized by a major proportion of sensitive species; a sunfish-and minnow-dominated community exists but with substantial proportions of darters and catfishes (particularly madtoms). The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Bigeye shiner Northern hogsucker Freckled madtom Longear sunfish Orangebelly darter Smallmouth bass

Shadow bass Gravel chub Northern studfish

e) <u>Typical Gulf Coastal Ecoregion</u> - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by a limited proportion of sensitive species; sunfishes are distinctly dominant followed by darters and minnows. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Redfin shiner Spotted sucker Yellow bullhead Flier Slough darter Grass pickerel Indicator Species

Pirate perch Warmouth Spotted sunfish Dusky darter Creek chubsucker Banded pygmy sunfish

f) <u>Springwater-influenced Gulf Coastal Ecoregion</u> -Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by a substantial proportion of sensitive species; sunfishes normally dominate the community and are followed by darters and minnows. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Redfin shiner	Pirate perch
Blacktail redhorse	Golden redhorse
Freckled madtom	Spotted bass
Longear sunfish	Scalv sand darter
Creole darter	Striped shiper
Grass pickerel	Banded nyomy sunfish
-	

g) Least-altered Delta Ecoregion - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by an insignificant proportion of sensitive species; sunfishes are distinctly dominant followed by minnows. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Ribbon shiner Smallmouth buffalo Yellow bullhead Bluegill Bluntnose darter Largemouth bass

Pugnose minnow Mosquitofish Pirate perch Tadpole madtom Banded pygmy sunfish

h) <u>Channel-altered Delta Ecoregion</u> - Streams supporting diverse communities of indigenous or adapted species of fish and other forms of aquatic life. Fish communities are characterized by an absence of sensitive species; sunfishes and minnows dominate the population followed by catfishes. The community may be generally characterized by the following fishes:

<u>Key Species</u>

Indicator Species

Blacktail shiner Drum Carp Channel catfish Green sunfish Spotted gar

Mosquitofish Gizzard shad Emerald shiner

Domestic Water Supply-This beneficial use designates water which will be protected for use in public and private water supplies. Conditioning or treatment may be necessary prior to use.
<u>Industrial Water Supply</u>-This beneficial use designates water which will be protected for use as process or cooling water. Quality criteria may vary with the specific type of process involved and the water supply may require prior treatment or conditioning.

ł

<u>Agricultural Water Supply</u>-This beneficial use designates waters which will be protected for irrigation of crops and/or consumption by livestock.

<u>Other Uses</u>-This category of beneficial use is generally used to designate uses not dependent on water quality, such as hydroelectric power generation and navigation.

General Standards. The general standards are applicable to all surface waters of the State at all times. They are specifically applicable to substances attributed to discharges, nonpoint sources of instream activities rather than natural occurrences. The criteria do not apply to waters which have natural background levels of certain substances which exceed the limits. The general standards include the provision that all waters shall be free from substances attributed to man-caused point or nonpoint source discharges in concentrations that produce undesirable aquatic life or result in the dominance of nuisance species. Included also in the provision that true color shall not be increased in any waters to the extent that it will interfere with present or projected future uses of these waters. A third provision is that taste and odor producing substances shall be limited in receiving waters to concentrations that will not interfere with the production of potable water by reasonable water treatment processes, or impart unpalatable flavor to food, fish or result in offensive odors arising from the waters or

- 29 -

otherwise interfere with the reasonable use of the water. A fourth provision is that receiving waters shall have no distinctly visible solids, scum or foam of a persistent nature, nor shall there be any formation of slime, bottom deposits or sludge banks.

<u>Specific Standards</u>. Regulation No. 2 requires that the following specific standards shall apply at all times except during periods when flows are less than the average minimum 7-day flow which occurs once in ten years (Q7-10). Streams -with regulated flow will be addressed on a case-by-case basis to maintain designated instream uses. These standards apply outside the mixing zone to conditions resulting in frequent, persistent or long-term modification of the water quality and are not applicable to naturally-occurring excursions outside the standards.

<u>Temperature</u>-Heat shall not be added to any waterbody in excess of the amount that will elevate the natural temperature, outside the mixing zone, by more than 5 $^{\circ}F$ (2.8 $^{\circ}C$) based upon the monthly average of the maximum daily temperatures measured at mid-depth or three feet (whichever is less) in streams, lakes or reservoirs. Maximum allowable temperatures from man-induced causes in the following waters are shown in Table I. Temperature requirements shall not apply to off-stream privatelyowned reservoirs constructed primarily for industrial cooling purposes and financed in whole or in part by the entity or successor entity using the lake for cooling purposes.

<u>Turbidity</u> - There shall be no distinctly visible increase in turbidity of receiving waters attributable to municipal, industrial, agricultural, other waste discharges or instream activities. Specifically, in no case shall any such waste discharge or instream activity cause turbidity values to exceed those shown in Table II.

Table I

Maximum Allowable Temperatures From Man-Induced Causes For Waters in Arkansas

<u>Waterbodies</u>

Limit ^oC (^oF)

Streams

ł

Ozark Highlands	29 (84.2)
Boston Mountains	31 (87.8)
Arkansas River Valley	31 (87.8)
Ouachita Mountains	30 (86.0)
Gulf Coastal	30 (86.0)
Least-Altered Delta	30 (86.0)
Channel-Altered Delta	32 (89.6)
White River (Dam #1 to mouth)	32 (89.6)
St. Francis River	32 (89.6)
Mississippi River	32 (89.6)
Arkansas River	32 (89.6)
Ouachita River (L. Missouri R.	, <i>/</i>
to state line)	32 (89.6)
Red River	32 (89.6)
Lakes and Reservoirs	32 (89.6)
Trout waters	20 (68.0)
Lakes and Reservoirs Trout waters	32 (89.6) 20 (68.0)

Table II

Maximum Allowable Turbidity Values From Man-Induced Causes For Waters in Arkansas

<u>Waterbodies</u>

Limit (NTU)

25

Streams

Ozark Highlands		10
Boston Mountains		10
Arkansas River Valley		21
Ouachita Mountains		10
Gulf Coastal		21
Least-Altered Delta		45
Channel-Altered Delta		75
Arkansas River		50
Mississippi River		50
Red River		50
St. Francis River	1 N P	75
Trout		10

Lakes and Reservoirs

<u>pH</u> - As a result of waste discharges, the pH of water in streams or lakes must not fluctuate in excess of 1.0 unit over a period of 24 hours and pH values shall not be below 6.0 or above 9.0.

Dissolved Oxygen - In streams with watersheds of less than 10 mi², it is assumed that insufficient water exists to support a fishery during the critical season. During this time, a D.O. standard of 2 mg/L will apply to prevent nuisance conditions. However, field verification is required in areas suspected of having significant groundwater flows which may support unique aquatic biota. A11 streams with watersheds of less than 10 mi² are expected to support a fishery during the primary season when stream flows, including discharges, equal or exceed 1 cubic foot per second (CFS); however, when site verification indicates that a fishery exists at flows below 1 CFS such fishery will be protected by the appropriate standard. During the period when a fishery exists in these streams with watersheds of less than 10 mi², the primary season D.O. standard will apply. Also, in these streams where waste discharges are 1 CFS or more, they are assumed to provide sufficient water to support a perennial fishery and, therefore, must meet the dissolved oxygen standards of the next size category of streams.

For purposes of determining effluent discharge limits, the following conditions shall apply:

- 1) The primary season dissolved oxygen standard is to be met at a water temperature of 22 $^{\circ}C$ (71.5 $^{\circ}F$) and at the minimum stream flow for that season. At water temperatures of 10 $^{\circ}C$ (50 $^{\circ}F$), the dissolved oxygen standard is 6.5 mg/L.
- 2) During March, April and May, when background stream flows are 15 CFS or higher, the D.O. standard is 6.5 mg/L in all areas except the Delta Ecoregion, where the primary season D.O. standard will remain at 5 mg/L.
- 3) The critical season dissolved oxygen standard is to be met at maximum allowable water temperatures and at Q7-10 flows. However, when water temperatures exceed 22 $^{\circ}$ C (71.6 $^{\circ}$ F), a 1 mg/L diurnal depression will be allowed below the applicable critical standard for no more than 8 hours during any 24-hour period.

The dissolved oxygen standards shown in Table III must be met.

Table III

ł

1.11

Minimum Allowable Dissolved Oxygen Concentrations for Streams, Lakes and Reservoirs in Arkansas

<u>Waterbodies</u>	<u>Limit</u>	<u>Limit (mg/L)</u>		
Streams	Primary	Critical		
Ozark Highlands <10 mi ² watershed 10 to 100 mi ² >100 mi ² watershed	7 6 6 6	2 5 6		
Boston Mountains <10 mi ² watershed >10 mi ² watershed	, 6 6	2 6		
Arkansas River Valley <10 mi ² watershed 10 to 150 mi ² 151 mi ² to 400 mi ² >400 mi ² watershed	5 5 5 5	2 3 4 5		
Ouachita Mountains <10 mi ² watershed >10 mi ² watershed	6 6	2 6		
Typical Gulf Coastal <10 mi ² watershed 10 to 500 mi ² >500 mi ² watershed	5 5 5	2 3 5		
Spring-influenced Gulf All size watersheds	Coastal 6	5		
Delta <10 mi ² watershed 10 to 100 mi ² >100 mi ² watershed	5 5 5	2 2 3 5		
Trout Waters All size watersheds	6	6		

经重货

Υ,

- 33 -

Lakes and Reservoirs: Specific dissolved oxygen standards for lakes and reservoirs shall be 5 mg/L. Effluent limits for oxygen-demanding discharges into impounded waters are developed by the Effluent Policy contained in the "State of Arkansas Continuing Planning Process". However, the Commission may after full satisfaction of the intergovernmental coordination and public participation provisions of the state's continuing planning process, establish alternative limits for dissolved oxygen in lakes and reservoirs where studies and other relevant information can demonstrate that predominant ecosystem conditions may be more accurately reflected by such alternate limits; provided that theses limits shall be compatible with all designated beneficial uses of named lakes and reservoirs.

<u>Radioactivity</u> - The Rules and Regulations for the Control of Sources of Ionizing Radiation of the Division of Radiological Health, Arkansas Department of Health, limits the maximum permissible levels of radiation that may be present in effluents to surface waters in uncontrollable areas. These limits shall apply for the purposes of these standards, except that in no case shall the levels of dissolved radium-226 and strontium-90 exceed 3 and 10 picocuries/liter, in the receiving water after mixing, nor shall the gross beta concentration exceed 1000 picocuries/liter.

<u>Bacteria</u> - The Arkansas Department of Health has the responsibility of approving or disapproving surface waters for public water supply and of approving or disapproving the suitability of specifically delineated outdoor bathing places for body contact recreation, and it has issued rules and regulations pertaining to such uses.

For the purposes of this regulation, all streams with watersheds less than 10 mi² shall not be designated for primary contact unless and until site verification indicates that such use is attainable. The determination of fecal coliform levels for the following waters shall be based on a minimum of not less than five samples taken over not more than a 30-day period.

- Extraordinary Resource Waters and Natural and Scenic Waterways - At no time shall the fecal coliform content exceed a geometric mean of 200/100 mL in any size of watersheds.
- 2) Primary Contact Waters Between April 1 and September 30, the fecal coliform shall not exceed a geometric mean of 200/100 mL nor shall more than 10 percent of the total samples during any 30-day period exceed

400/100 mL. During the remainder of the calendar year, these criteria may be exceeded, but at no time shall the fecal coliform content exceed the level necessary to support secondary contact recreation.

.

ł

3) Secondary Contact Waters - The fecal coliform content shall not exceed a geometric mean of 1000/100 mL, nor equal or exceed 2000/100 mL in more than 10 percent of the samples taken in any 30-day period.

Toxic Substances - Toxic materials shall not be present in receiving waters, after mixing, in such quantities as to be toxic to human, animal, plant or aquatic life or to interfere with the normal propagation, growth and survival of the indigenous aguatic biota. Within the mixing zone there may be a zone of initial dilution which exceeds the acute toxicity. In no instance shall the entire mixing zone be acutely toxic. Compounds known to be persistent, cumulative, carcinogenic or to exhibit synergism with other waste or stream components shall be addressed on a case by case basis. Permitting of all toxic materials shall be in accordance with the toxic implementation strategy found in the Continuing Planning The substances and criteria are listed in Table Process. Discharge limits based on the numeric criteria IV. listed in Table IV may be modified in consideration of the following factors:

- Analytical Detectability concentration limits for specific toxic materials in discharge permits will not be required to be less than practical quantitative limits.
- 2) Bioavailability of specific toxics in the effluent.
- 3) Persistence and degradation rate of specific toxics in the mixing zone.
- 4) Synergistic or antagonistic interactions with other materials.
- 5) Technological or economic limits of treatability for specific criteria, in accordance with Section 302(b)(2)(B) of the Clean Water Act, as amended.

The permittee shall also have the option to develop specific numerical limits for toxic substances using EPA approved bioassay methodology and guidance contained in "Water Quality Standards Handbook", "Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms", "Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms".

Table IV

.

Toxic Substances and Criteria for Waters in Arkansas

Substance	Chronic [*] <u>Toxicity</u>	Acute ^{**} <u>Toxicity</u>
PCBs	0.014	2.0
Aldrin		3.0
Dieldrin	0.0019	2.5
DDT (& metabolites)	0.0010	1.1
Endrin	0.0023	0.18
Toxaphene	0.00021	0.73 ²
Chlordane	0.0043	2.4
Endosulfan	0.056	0.22
Heptachlor	0.0038	0.52
Hexachlorocyclohexa	ne 0.080	2.0
Pentachlorophenol	$e[1.005(pH)-5.290]^{1}$	e[1.005(pH)-4.830]
Chloropyrifos	0.0411	0.0832
Selenium ³	35	260
Silver ³	0.12	* * *

*24 hour average (micrograms per liter) *
**never to exceed (micrograms per liter)
*** e[1.72{ln(hardness)}-6.52]
1 - Four-day average
2 - One-hour average

³ - Total recoverable

4 - Total of all isomers

<u>Nutrients</u> Materials stimulating algal growth shall not be present in concentrations sufficient to cause objectionable algal densities or other nuisance aquatic vegetation. As a guideline, total phosphorus shall not exceed 100 micrograms per liter in waters highly laden with natural silts or color which reduce the penetration of sunlight needed for plant photosynthesis, or in other waters where it can be demonstrated that algal production will not interfere with or adversely affect designated uses and/or fish and wildlife propagation.

The Commission may establish alternative nutrient limitations for lakes, reservoirs and streams, and appropriate water quality management plans. <u>Oil and Grease</u> - Oil, grease or petrochemical substances shall not be present in receiving waters to the extent that they produce globules or other residue or any visible, colored film on the surface, or coat the banks and/or bottoms of the watercourses or adversely affect any of the associated biota. As a guideline, oil and grease shall not exceed 10 mg/L average or 15 mg/L maximum when discharging to surface waters.

<u>Mineral Quality</u> - Existing mineral quality shall not be altered by municipal, industrial, other waste discharges or instream activities so as to interfere with designated uses. The following limits apply to the streams indicated, and represent concentrations of chloride (Cl⁻), sulfate ($SO_4^{=}$) and total dissolved solids (TDS) not to be exceeded in more than one (1) in ten (10) samples collected over a period of not less than 30' days or more than 360 days.

As a guideline for tributary streams not listed in Table V, an increase up to 15 mg/L chlorides and 15 mg/L sulfates or an increase of 1/3 over naturally occurring levels, whichever is greater, may be permitted. In no cases shall discharges cause concentrations in the tributary stream to exceed 250, 250 and 500 mg/L of chlorides, sulfates and total dissolved solids, respectively, or cause concentrations to exceed the applicable criteria in the streams to which they are tributary.

Modification of these standards on a site-specific stream segment must be made in accordance with the Antidegradation Policy Implementation Procedure. In no case shall discharges cause concentrations of Cl⁻, $SO_4^{=}$ and TDS to exceed 250, 250 and 500 mg/L.

Drinking Water Regulations

ŧ

In conformance with the Safe Drinking Water Act of 1974, the Environmental Protection Agency has established regulations for drinking water quality for public supplies in the United States. These include both primary and secondary drinking water quality requirements. The primary regulations represent maximum contaminant levels (not-to-exceed concentrations) for the various parameters included. The secondary regulations represent recommended standards, or guidelines. It is important to realize that both the pri• Table V

Maximum Allowable Limits for Chloride, Sulfate And Total Dissolved Solids

	Concentration		
<u>Stream</u>	<u>C1</u> -	<u>so</u> 4	TDS
Arkansas River Basin			
Arkansas River (Mouth to L&D #7)	250	100	500
Arkansas River (L&D #7 to L&D #10)	250	100	500
Cadron Creek	20	20	100
line including Dandenalla Day			
James Fork	250	120	500
Illinois River	.20	100	275
IIIINOIS KIVEI	20	20	300
White River Basin			
White River (Mouth to Dam $#3$)	20	60	430
Big Creek	20	30	270
Cache River	20	30	270
Bayou DeView	20	30	270
Little Red River (including Greers			
Ferry Reservoir)	20	30	100
Black River	20	30	270
Strawberry River	20	30	270
Spring River	20	30	270
Eleven Point River	20	30	270
South Fork Spring River	20	30	270
Myatt Creek	20	30	270
White Diver (Dem #2 to Mission) !	20	30	270
including Bull Shoold Decomposity			
Buffalo Pivor	20	20	180
Crocked Crock	20	20	200
White Biver (Missouri line to head	20	20	200
Waters, including Beaver Poservoir)	20	2.0	1.60
Kings River	20	20	160
West Fork White River	20	20	150
	20	20	120
St. Francis River Basin			
St. Francis River (Mouth to 36 $^{\circ}$			
N. Lat.)	10	30	330
L'Anguille River	20	30	235
Tyronza River	20	30	350
Little River	20	30	365
Pemiscot Bayou	20	30	380
St. Francis River (36 ^O N. Lat. to			
36 ° 30' N. Lat.)	10	20	180

.

Table V (Cont'd)

ł

Maximum Allowable Limits for Chloride, Sulfate And Total Dissolved Solids

	Concentration		
		mg/L	
<u>Stream</u>	<u>C1</u> -	$\underline{so_4}^=$	TDS
Quachita Divor Pagin			
Bayou Bartholomow	20	20	
Chemin-A-Haut Crook	30	30	220
Overflow Crock	50	20	500
Bayon Macon	20	30	170
Boouf Diver	50	40	330
Big Cornia Crook	· 90	30	460
Little Cornie Crook	230	30	500
Three Creeks	200	10	400
Little Cornie Bayon	250	10	500
Bayon D(Loutro	200	20	500
Ouachita River (Louigiana line to	250	90	500
Conden)	. 100	4.0	
Camberny Calina Diver	160	40	350
Hurrigano Crook	20	40	120
Lost Crock	20	250	500
Holly Crock	20	250	500
More Creek	20	250	500
Molo cleek	30	20	260
Smackover Creek	250	30	500
Quachila River (Camden to	5.0	4.0	1 5 0
Carpenter Dam)	50	40	150
Little Missouri River	10	10	90
Garland Creek	250	250	500
Quachita River (Carpenter Dam to			
Headwaters, including Lake Quachita			
tributaries)	10	10	100
Red_River_Basin			
Bayou Dorcheat	100	10	250
Cypress Creek	250	70	500
Crooked Creek	250	10	500
Bodcau Creek	250	70	500
Poston Bayou	120	40	500
Kelly Bayou	90	40	<i>_</i> 500
Red River	250	200	500
Sulphur River	120	100	500
Days Creek	250	250	500
McKinney Bayou	180	60	480
Little River	20	20	200
Saline River	20	10	90
Cossatot River	10	15	70
Rolling Fork	20	20	100
Mountain Fork	20	20	110

Table V (Cont'd)

Maximum Allowable Limits for Chloride, Sulfate And Total Dissolved Solids

	Concentration mg/L		Lon
Stream	<u></u>	<u>so</u> 4=	TDS
Mississippi River (Louisiana line to Arkansas River)	60	150	425
Mississippi River (Arkansas River to Missouri River)	60	175	450

mary and secondary drinking water regulations are for water following treatment, rather than for untreated (raw) water. The maximum contaminant levels for the National Interim Primary Drinking Water Regulations are shown in Table VI.

The National Secondary Drinking Water Regulations are shown in Table VII. As indicated, the secondary drinking water regulations are recommended (not mandatory) standards.

In addition to these standards, maximum contaminant levels have been established for trihalomethanes and for eight volatile organic chemicals. Standards for several other parameters have either recently been established or are under consideration. However, the primary and secondary drinking water regulations shown in Tables VI and VII provide a good basis for evaluating a potential water supply source.

Table VI

National Interim Primary Drinking Water Regulations

ł

	Maximum*
Constituent	<u>Contaminant Level</u>
Inorganic Chemicals	
Arsenic	0.05
Barium	1
Cadmium	0.010
Chromium (total)	0.05
Fluoride	1.4-2.4**
Lead	0.05
Mercury	1 0,002
Nitrate (as N)	10
Selenium	0.01
Silver	0.05
Organic Chemicals	· · · · · · · · · · · · · · · · · · ·
Chloringtod budrogsphong	•
Endrin	0 0003
Lindano	0.0002
Linuane	0.004
Methoxychior	0.1
Toxaphene	0.05
Chlorophenoxys	
2.4-D	0.1
2.4.5-TP Silvex	0.01
-,-,-	
Physical Parameters	
Turbidity	1
Radioactivity	
Gross alpha (pCi/L)	15
Radium-226 and 228 (pCi/L)	5
Tritium (pCi/L)	20.000
Strontium-90 (pCi/L)	20,000
	_
Bacteriological factors	•
Coliform bacteria (per 100 mL)	1
* All concentrations in mg/L cated	unless otherwise indi-
** Temperature dependent	

Table VII

National Secondary Drinking Water Regulations

<u>Constituent</u>

Maximum <u>Contaminant Level</u>

C	Chloride
C	Color
C	Copper
C	Corrosivity
F	Foaming Agents
]	Iron
M	langanese
C	Ddor
F	рН
S	Sulfate
l	Total Dissolved Solids
2	linc

250 mg/L 15 units 1 mg/L Noncorrosive 0.5 mg/L 0.3 mg/L 0.05 mg/L 3 TON* 6.5-8.5 250 mg/L 500 mg/L 5 mg/L

* Threshold Odor Number

Section III

BEAVER LAKE BASIN DESCRIPTION

Project Description

Location. Beaver Lake is a multipurpose project located on the White River in northwestern Arkansas. Beaver Dam is located at river mile 609.0 on the White River. The reservoir is located in Benton, Carroll, Madison and Washington Counties in Arkansas. The dam is about nine miles northwest of Eureka Springs, Arkansas.

General Description. Beaver Lake is one of four multiplepurpose projects constructed in the upper White River Basin for the control of floods and the generation of hydroelectric power. Recreational opportunities are also available in and around the lake. Construction of the dam and appurtenant works began in November, 1960. Construction of the powerhouse and switchyard began in April, 1963. Commercial power generation began in May, 1965. The overall project was completed in May of 1965.

The upper levels of the lake are reserved for storage of flood water. At the top of the flood control pool, the lake will cover 31,700 surface acres and will contain 300,000 acre-feet of flood control storage. At the top of the conservation-water supply pool level, the lake stores 1,652,000 acre-feet of water. At the top of the conservation-water supply pool the lake covers 28,220 surface acres. There is

- 43 -

one 5.67'x10' outlet conduit. There are seven 40'x37' spillway crest gates.

Tributary streams to Beaver Lake include Richland Creek, Roberts Creek, Friendship Creek, Hickory Creek, Nelson Hollow, Phillips Creek, Monte Branch, Esculapia Hollow, Falls Hollow, Sugar Hollow, Prairie Creek, Avoca Hollow, Coose Creek, Ventris Hollow, Fords Creek, Cedar Creek, Molder Hollow, Hoot Hollow, Ford Hollow, Horn Hollow, Honey Creek, Henry Hollow, North Fork and Big Clifty Creek. The tributary streams also include Penitentiary Hollow, Hogscald Hollow, Pemberton Hollow, Woods Hollow, Kirk Hollow, Devils Gap, Van Hollow, Rocky Branch, Shaddox Branch, Blackburn Creek, Joe Creek, Pine Creek, War Eagle Creek, Hickory Flat Hollow, Whitener Branch, Brush Creek, Mill Hollow, Mill Branch and the White River.

Facilities and Operations

<u>Dam</u>. Beaver Dam extends a distance of 2,575 feet across the White River valley. It rises to a height of 228 feet above the streambed. The spillway is 328 feet long.

<u>Flood Control</u>. Pertinent data concerning Beaver Lake and Dam are included in Table VIII.

<u>Pool Fluctuation and Streamflow</u>. The project was designed and constructed to provide for the top of the flood control pool to be at an elevation of 1,130 feet above mean sea level. The top of the conservation pool is 1,120 feet above mean sea level.

Lake Basin Characteristics.

ł

<u>General</u>. Beaver Lake lies within the boundaries of Benton, Carroll, Madison and Washington Counties in Arkansas. The larger communities in the area include Bentonville, Eureka Springs, Fayetteville, Lowell, Rogers and Springdale. <u>Fish and Wildlife</u>. Almost all of the varieties of fresh water game fish are found in Beaver Lake. These include smallmouth bass, largemouth bass, white bass, crappie, bream, channel catfish, northern pike, and Walleye.

Hunting is popular in this general area. Species include deer, squirrels, rabbits, wild turkey and bobwhite quail.

Public Use Areas. There are eleven public use areas around the lake. These are the Big Clifty, Dam Site, Hickory Creek, Horseshoe Bend, Indian Creek, Lost Bridge, Prairie Creek, Rocky Branch, Starkey, Ventris and War Eagle areas. Available facilities include boat launching ramps, picnic areas, campgrounds, swimming beaches, playground, potable water supply and sanitary facilities. Swimming areas are at the Dam Site, Hickory Creek, Horseshoe Bend, Indian Creek, Lost Bridge, Prairie Creek, Rocky Branch and War Eagle sites.

- 45 -

Table VIII

Pertinent Data for Beaver Lake and Dam

<u>Dam</u>

	Length of Dam, feet Concrete Section, feet Earth Embankment, feet Maximum height above streambed, feet	2,575 1,333 1,242 228
<u>Spi</u>	llway	
	Length of spillway section, feet	328
Lake	<u>e</u>	
	Top of flood control pool	
	Elevation, feet above mean sea level Surface Area, acres Storage capacity of lake, acre-feet	1,130 31,700 300,000
	Top of Conservation Pool	
	Elevation, feet above mean sea level Surface area, acres Storage capacity of lake, acre-feet Lergth of shoreline miles	1,120 28,220 1,642,000
	Top of flood control pool Top of conservation pool	483 449