

COMPLETION REPORT: ARKANSAS STATE PESTICIDES IN GROUND WATER MONITORING PROJECT PHASE IV: EASTERN ARKANSAS (PULASKI, LEE AND JACKSON COUNTIES)

Publication No. MSC-202

1995

T. Nichols¹, P. Vendrell^{1,2,3}, K. Steele^{1,2}, H.D. Scott³ and C. Armstrong⁴

¹ Arkansas Water Resources Center, 113 Ozark Hall, University of Arkansas, Fayetteville, Arkansas 72701

² Department of Geology, 118 Ozark Hall, University of Arkansas, Fayetteville, Arkansas 72701

³ Department of Agronomy, 115 Plant Sciences University of Arkansas, Fayetteville, Arkansas 72701

⁴Arkansas State Plant Board, 1 Natural Resources Drive, Little Rock, Arkansas 72209

COMPLETION REPORT: ARKANSAS STATE PESTICIDES IN GROUND WATER MONITORING PROJECT PHASE IV: EASTERN ARKANSAS (PULASKI, LEE AND JACKSON COUNTIES)

T. Nichols, P. Vendrell, K. Steele¹, H. D. Scott², C. Armstrong³

I. Summary

In 1995, fifty-two water samples were drawn from 49 new wells and 2 wells that had been previously sampled during earlier phases. These included twenty samples from 19 wells in eastern Pulaski County, thirteen wells in Lee County, 16 wells in Jackson County, two wells in Lonoke County, one well in Crittenden County and resamples of two wells in Woodruff County. Figure 1 shows the locations of the 3 counties where the majority of the samples were taken and Figures 2-4 show the monitoring locations withing these counties. The wells were tested for nitrate and 13 pesticides listed in Table 3. The data and associated quality control information for all the wells tested are included in Section 2: Phase IV Quality Assurance Report.

Of the 51 wells tested, three showed trace levels of pesticides. These included resamples of two contaminated wells in Woodruff County. Woodruff #7 continued to have bentazon contamination, 38 ug/L, and Woodruff #9 was found to still have detectable levels of acifluorfen (4 ug/L) and bentazon (26 ug/L). These pesticides have persisted for 18 months. The new detections were from Pulaski County, well #14. It was found to be contaminated with trace levels of four pesticides, acifluorfen (27 ug/L), bentazon (135 ug/L), fluometuron (24 ug/L) and metribuzin (4 ug/L). The detections in this well were confirmed and verified.

Samples for nitrate analysis were taken from all 51 wells. Thirty-seven of the wells had nitrate levels less than 1 mg/L, NO₃-N Thirteen wells had concentrations between 1 and 10 mg/L. The maximum contaminant level (MCL) for drinking water is 10 mg/L. Only Jackson #7 exceeded the MCL with 17.7 mg/L.

II. Background

In 1990 the U. S. Environmental Protection Agency (EPA) released the first report on its National Pesticide Survey. The report made it clear that ground water contamination by pesticides is a wide-spread problem in the U. S. In response, the EPA initiated its "Pesticides in Ground-Water Strategy" which included the State Management Plan (SMP) concept (EPA, 1991). Arkansas completed its generic SMP--The Arkansas Agricultural

¹Arkansas Water Resources Center, University of Arkansas, ²Department of Agronomy, University of Arkansas, ³Arkansas State Plant Board.

Figure 1 Counties Monitored During Phase IV. (Star indicates Little Rock)

Figure 2. Monitoring Locations in Pulaski County.

Figure 3. Monitoring Locations in Lee County.

Figure 4. Monitoring Locations in Jackson County.

Chemical Ground-Water Management Plan--in 1992. This SMP called for monitoring of ground water for pesticides in those areas of the state thought to be most vulnerable.

With the Arkansas State Plant Board (ASPB) as lead agency, monitoring under the SMP began in September, 1992. Three phases of monitoring were carried out before this phase. Table 1 shows the counties and the number of wells tested during the first 3 phases of monitoring. With the completion of Phase IV, the number of wells tested has now risen to 169 with a total of 191 samples analyzed

County	Number of Wells	Number of Samples	
Ashley Chicot Drew Mississippi Craighead Poinsett Woodruff	16 6 1 15 12 10 60	21 6 2 16 13 11 70	
Tot	al 120	139	

Table 1. Areas Monitored During Phases I, II, and III.

Table 2 contains a summary of pesticide detections to date. Out of 120 wells sampled prior to Phase IV, 12 were contaminated, at least temporarily, with one or more pesticides. With the exception of three wells in Woodruff County, all the detections were small, less than 5 parts per billion. Bentazon (sold under the name 'Basagran') was the most frequently detected chemical and was found in the highest concentrations. It is used extensively for soybean production.

III. The Study Area

Phase IV of the monitoring program covered a broader area of the state than any of the previous phases. In the first three phases one county or an area consisting of parts of several counties was chosen for monitoring. Samples were then taken from both vulnerable and non-vulnerable parts of the designated area. In Phase IV a decision was made to concentrate on the most vulnerable areas of eastern Arkansas.

To identify areas where the ground water is vulnerable to pesticide contamination, a vulnerability map for the Arkansas Delta was developed using a combination of pesticide DRASTIC and pesticide use information. DRASTIC (Aller, et al., 1987) is a method for determining areas sensitive to ground-water contamination developed for EPA.

Well	ID#	Date Sampl	(s) Led			Chemical	Conc. (µg/L)
Drew	#1	Apr.	22,	1993		Metolachlor	0.7
		May	20,	1993		no detect	ion
Miss	#4	Nov.	2,	1993		Bentazon	2.5
Miss	#5	Nov.	2,	1993		Bentazon	0.3
		Mar.	29,	1994		no detect	ion
CH #4	1	Nov.	22,	1993		Fluometuron	0.5
		Mar.	29,	1994		no detect	ion
Poin	#1	Dec.	6,	1993		Bentazon	0.2
		Mar.	29,	1994		no detect	ion
Wood	# 7	May	23,	1994		Bentazon	55
		June	29,	1994		Bentazon	66
						Fluometuron	0.4
		July	27,	1994			
			ins	ide		Bentazon	78
			out	side		Bentazon	69
		May	15,	1995		Bentazon	21
		Oct.	12,	1995		Bentazon	38
Wood	#9	May	24,	1994		Bentazon	25
		-	-			Acifluorfen	1.7
						Fluometuron	$\overline{0}$
		June	29,	1994		Bentazon	88
						Acifluorfen	8.6
						Fluometuron	0.8
			15,	1995		Bentazon	37
						Acifluorfen	6.8
						Fluometuron	0.4
			12,	1995		Bentazon	26
			•			Acifluorfen	4
Wood	#11	Jul.	26,	1994		Metolachlor	13
		Feb.	20,	1995		Metolachlor	11.5
Wood	#25	Sep.	15,	1994		Bentazon	4.4
		Feb.	20,	1995		Bentazon	1.9
Wood	#26	Sep.	15,	1994		Bentazon	1.5
		Feb.	20,	1995		Bentazon	0.9
Wood	#29	Sep.	29,	1994		Metribuzin	0.4
_		Feb.	20,	1995		Metribuzin	0.4
Wood	#34(PB)	Feb.	20.	1995		Alachlor	1.5
•		Mav	15.	1995		Bentazon	1.5
		1	,			Acifluorfen	0.5
Phas	se IV detec	ctions	s sho	own in	bold	face type.	

Table 2. Pesticide Detections during Phases I-IV.*

Chemical Conc. Well ID# Date(s) $(\mu g/L)$ Sampled 27 Acifluorfen Pulaski #14 Jun. 19, 1995 135 Bentazon Fluometuron 24 Metribuzin 4 11 Sep. 28, 1995 Acifluorfen 57 Bentazon 19 Fluometuron 2 Metribuzin

Table 2. Pesticide Detections during Phases I-IV (continued).

*Phase IV detections shown in bold face type

DRASTIC determines ground-water sensitivity to contamination based on seven factors:

Depth to Ground Water net Recharge Aquifer media Soil media Topography Impact of the vadose zone, and hydraulic Conductivity

The Arkansas Soil and Water Conservation Commission (ASWCC) coordinated development of the vulnerability map for Arkansas (Fugitt, 1992). For this purpose estimates of pesticide use in the various counties was provided by the Arkansas Cooperative Extension Service (CES).

The vulnerability map of the Arkansas Delta indicates that the alluvial aquifers underlying the major river basins are highly vulnerable to contamination. These rivers wander in and out of various counties. For example, Woodruff County is bisected by the Cache River which then continues southward through Monroe County before joining the White River. North of Woodruff County the Cache runs through part of Jackson County where it parallels the Black River, another tributary of the White River. Based on the model, the alluvium underlying the Black and Cache Rivers is highly vulnerable.

East of Crowley's Ridge, the St. Francis River basin is also underlain by highly vulnerable alluvial deposits. Phase II monitoring in Mississippi, Craighead and Poinsett Counties was mainly in the St. Francis basin. Another major river basin is the Arkansas River Basin. The alluvial deposits of the Arkansas River stretch from eastern Pulaski County southeastward through Lonoke, Jefferson, Lincoln and Desha Counties.

Prior to beginning Phase IV, it was decided to evaluate the remainder of these basins as quickly as possible. Phase IV monitoring was conducted in Pulaski (Arkansas River Basin), Lee (lower St. Francis) and Jackson (Cache and Black Rivers) Counties.

The alluvium in the Arkansas River basin is highly vulnerable to pesticide contamination along much of its length, including eastern Pulaski County. Here the meandering of the river has created a wide, fertile valley, dotted with oxbow lakes and cypress swamps. Traditionally the area has been heavily farmed with soybeans, rice, wheat and truck gardens predominating. Some cotton is also grown. Now, however, urban sprawl from Little Rock is replacing some of the farmlands.

In eastern Pulaski County, depths to water in the alluvium range from 10 to 40 feet. Annual fluctuations around 10 feet are common, with the highest water levels occurring in the spring and lowest levels occurring in late summer or early fall. Much of this fluctuation is due to heavy pumping for irrigation (Hines, 1967). This is not an area where heavy pumping is permanently lowering ground water levels.

Monitoring in Lee County was conducted in a highly vulnerable section of the alluvium underlying the St. Francis River basin just north of the St. Francis National Forest where the river joins the Mississippi. Cotton, soybeans and winter wheat are the most common crops. Shallow ground water is available for irrigation in almost limitless supplies.

Jackson County is underlain by alluvial deposits from the interior highlands on the northwest to the Cache River on the southeast. The Black River cuts a diagonal across this area from northeast to southwest where it joins the White River at Newport. Water in the alluvial aquifer generally follows the ground surface and runs from north to south (Broom, 1981). Water levels average about 20 feet below the land surface and fluctuate about 10 feet. Fluctuations are due to changes in pumping and recharge as the seasons change (Albin, 1967). The principal crops are wheat, soybeans, cotton, grain sorghum and rice.

IV. Monitoring Results

The counties described were monitored for nitrate and 13 commonly used pesticides that have high potential to migrate to ground water. Table 3 gives a list of the pesticides analyzed in this study and the methods used. Estimated detection limits for each pesticide are also shown. These pesticides were chosen because of their extensive use in Eastern Arkansas, their high leaching potential and their long half-life in soil. Solubility, half-life, adsorption coefficient (K_{oc}) , and leaching potential were taken from the Arkansas State Plant Board (Nichols and Wilkes, 1992) which is based on data from CES.

Ten liters of water were collected from each well, providing enough water to have a sample and a field fortified sample for each of the three methods, as well as extra water for duplicate analysis or confirmation of hits.

Compound	Source/Method	Matrix	<u>Units</u>	EDL*
Metolachlor Alachlor Molinate Atrazine Metribuzin Norflurazon Linuron Flumeturon Cyanazine Diuron 2,4-D Bentazon Acifluorfen	EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 NPS/4 NPS/4 NPS/4 NPS/4 EPA/515.2 EPA/515.2 EPA/515.2	groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.75 0.38 0.15 0.13 0.50 0.25 0.10 0.58 0.070 0.20 0.20 0.20 0.096

Table 3. Phase IV Analytes.

*Estimated Detection Limit (published with method,

Table 2 shows a listing of all the contaminated wells including those sampled during Phase IV. Two of the detections from Phase IV are from wells in Woodruff County. They were resampled during Phase IV because of the high concentrations previously detected. Woodruff #7 has been tested 5 times in 17 months. Initially fluometuron, 0.4 ug/L, was detected along with bentazon, 55 ug/L. In subsequent analyses fluometuron was never detected again but bentazon has persisted in the well. There is no steady trend in the data, but the current level, 38 ug/L, is about 50% of the highest concentration, 78 ug/L, reported in July, 1994.

Woodruff #9 again tested positive for bentazon, 26 ug/L, and aciflurofen, 4 ug/L. These concentrations are down since the well was last sampled in May, 1995. Aciflurofen which persisted in the well for a year has now disappeared completely

Of the new wells monitored during Phase IV, only one was contaminated with pesticides. However, this well, Pulaski #14, is contaminated with 4 pesticides (acifluorfen, 27 ug/L, bentazon, 135 ug/L, fluometuron, 24 ug/L, and metribuzin, 4 ug/L) and the concentration of bentazon is the highest pesticide concentration found in Arkansas ground water to date. After the original detections were confirmed, the well was retested to verify that the contamination had not been a transitory phenomenon. The second analysis showed that all the pesticide concentrations had gone down but were still detectable. At the same time a second well, located less than 100 yards west of the contaminated well, was also tested. No pesticides were detected in the second well. The well is scheduled for retesting during Phase V of the monitoring. It is also a candidate for a pumping study to determine if a long period of pumping will significantly reduce pesticide concentrations in samples taken immediately thereafter.

Table 5. Nitrate Distribution.

Concentration $(mg/L, NO_3-N)$	Number of Wells
less than 0.01 (below detection limit)	13
0.1 to 0.99	22
1.0 to 4.99	8
5.0 to 9.99	5
10.0* or more	1
Total	49

The MCL for NO_3 -N in drinking water is 10.0 mg/L.

Table 5 shows the distribution of nitrate in the 49 new wells tested. Thirteen had undetectable levels of nitrate. Twenty-two had detectable levels of nitrate-nitrogen below 1 mg/L. Eight were between 1 and 5 mg/L and five were between 5 and 10 mg/L. One of the wells was above the MCL for nitrate with a concentration of 17.7 mg/L. If a concentration greater than 1 is considered elevated then 14 of the 49 wells, or 29%, are contaminated. This is consistent with results from previous phases where 33% of the wells were above 1 mg/L.

V. Conclusions

During Phase IV monitoring 49 new wells were tested in 5 counties. There is no indication of wide-spread pesticide contamination of ground water in the areas studied. Only one well was found to be contaminated with pesticides. As another well nearby was not contaminated, it is probable that this contamination incident is point-source. That is, no evidence of aquifer contamination was found.

In total, 13 of 169 wells, or 7.7%, have been found to be contaminated with detectable levels of one or more pesticides. One well could not be retested due to a broken pump. Four other wells were free of pesticides when resampled. In most of the other wells concentrations were declining when retested. There have not been any cases of multiple wells with pesticide contamination located together in a small geographical area. These results show no evidence pointing to aquifer-wide contamination.

However, Phase IV results and overall results both indicate about 30% of wells have levels of nitrate-nitrogen above 1 mg/L. Nitrate contamination is much more common than pesticide contamination. Though these data are not positive proof, it seems likely that this contamination is not the result of spills or other accidents at the wellheads. Rather, septic tanks and the normal use of commercial fertilizers are the most likely sources of this contamination. By chemical analysis, it is not possible to distinguish between these two sources and the locations of most of the shallow wells relative to septic tanks is unknown. Determining the relative contributions of each of these sources is beyond the scope of this project.

REFERENCES

Albin, D. R., M. S. Hines and J. W. Stephens. 1967. Water Resources of Jackson and Independence Counties, Arkansas. U. S. Geological Survey. Geological Survey Water-Supply Paper 1839-G.

Aller, L., T. Bennett, J. Lehr, and R. J. Petty. 1987. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings. Report No. EPA/600/2-87/035. U. S. Environmental Protection Agency.

Broom, M. E., and F. P. Lyford. 1981. Alluvial Aquifer of the Cache and St. Francis River Basins, Northeastern Arkansas. U. S. Geological Survey.

Fugitt, Todd. 1992. Development of Hydrogeologic Data for Eastern Arkansas and Ground-Water Vulnerability Identification in Woodruff County, Arkansas. Arkansas Soil and Water Conservation commission, Little, Rock, AR.

Nichols, T. and S. Wilkes (eds). 1992 Arkansas Agricultural Chemical Ground-Water Management Plan. Arkansas Water Resources Center, University of Arkansas, Fayetteville, AR.

Plebuch, R. O. and M. S. Hines. 1967. Water Resources of Pulaski and Saline Counties, Arkansas. U. S. Geological Survey. Geological Survey Water-Supply Paper 1839-B.

U. S. Environmental Protection Agency. 1990. National Survey of Pesticides in Drinking Water Wells: Phase 1 Report. EPA-570/9-90-015. Washington D. C.

U. S. Environmental Protection Agency. 1991. Pesticides and Ground-Water Strategy. Washington D. C.

QUALITY ASSURANCE REPORT

ARKANSAS STATE

PESTICIDES IN GROUND WATER

MONITORING PROJECT

PHASE IV: EASTERN ARKANSAS (PULASKI, LEE AND JACKSON COUNTIES)

QUALITY ASSURANCE REPORT: ARKANSAS STATE PESTICIDES IN GROUND WATER MONITORING PROJECT PHASE IV: EASTERN ARKANSAS (PULASKI, LEE AND JACKSON COUNTIES)

T. Nichols, P. Vendrell, K. Steele

I Introduction

In 1995, fifty-two water samples were drawn from fifty-one wells in various Arkansas counties. Twenty samples were drawn from 19 wells in eastern Pulaski County. Thirteen wells in Lee County and 16 wells in Jackson County were also tested. In addition, samples from two wells in Lonoke County, one well in Crittenden County and two in Woodruff County were analyzed. Ten liters of water were collected from each well, providing enough water to have a sample and a field fortified sample for each of the three methods, as well as extra water for duplicate analysis. Table 1 shows a list of the pesticides analyzed in these samples including the methods used and their estimated detection limits.

Compound	Source/Method	Matrix	Units	EDL*
Metolachlor Alachlor Molinate Atrazine Metribuzin Norflurazon Linuron Flumeturon Cyanazine Diuron 2,4-D Bentazon Acifluorfen	EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 EPA/507.1 NPS/4 NPS/4 NPS/4 NPS/4 EPA/515.2 EPA/515.2	groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.75 0.38 0.15 0.13 0.50 0.25 0.10 0.58 0.070 0.20 0.20 0.20 0.096

Table 1. Phase III Analytes.

*Estimated Detection Limit

Of the 51 wells tested, three showed trace levels of pesticides. These included resamples of two wells from Woodruff County known to be contaminated and a well in Pulaski County which was sampled twice. Table 2 shows a listing of the contaminated wells including the concentrations detected in samples taken at different times.

¹Arkansas Water Resources Center, University of Arkansas.

Well ID	Date Sampled	Chemical	Conc. (µg/L)
PULASKI#14	JUNE 19	ACIFLUORFEN BENTAZON FLUOMETURON METRIBUZIN	27 135 24 4
	SEPTEMBER 28	ACIFLUORFEN BENTAZON FLUOMETURON METRIBUZIN	11 57 19 2
WOODRUFF#7R4	OCTOBER 12	BENTAZON	38
WOODRUFF#9R3	OCTOBER 12	ACIFLUORFEN BENTAZON	4 26

Table 2. Wells Contaminated with Pesticides.

II. Interpretation of QC data.

During the project, six trips were made to collect water. The samples collected on each trip were extracted and analyzed as a batch, with each batch being subdivided into the three methods of analysis indicated in Table 1. The tabulated quality control data follow this format. Thus, for each sampling trip the reported analysis results are accompanied by three QC reports, one for each method. The following paragraphs are intended as an aid in interpreting the QC data.

The major QA/QC concern of this study is to demonstrate an ongoing ability to detect small amounts of pesticides in various ground waters. Primary to this purpose are the three (one for each method) field fortified samples collected from each well-except Lonoke#1 where the spikes were inadvertently omitted--and spiked with low levels of the appropriate pesticides. Table 3 shows the concentrations of these pesticides in the "field Extraction and analysis of these field spikes were spikes." done for every well and for every method, far exceeding EPA's recommendation that water from one source in every ten be field fortified. Consistent recoveries of the pesticides spiked into the various ground waters indicate that sample extraction and analysis are acceptable; nothing in the ground waters is preventing the detection of pesticides in the non-fortified samples and sample handling procedures are adequate to avoid pesticide degradation.

As a further check that small amounts of pesticide will not go unnoticed, 2X standards (containing pesticide concentrations at about two times the estimated detection limit for the Table 3. Spiking Levels.

METHOD	IETHOD PESTICIDE		RATION (ug/L)
		FIELD SPIKE	2X STANDARD
507 [`]	Molinate	2.00	0.40
	Atrazine	2.06	0.41
	Metribuzin	2.10	0.42
	Alachlor	4.08	0.81
	Metolachlor	13.72	2.74
	Norflurazon	5.90	1.18
515.2	2,4-D	3.00	0.60
	Bentazon	7.21	1.44
	Aciflurofen	3.15	0.63
NPS4	Cyanazine	6.42	1.28
	Fluometuron	1.10	0.22
	Diuron	0.99	0.20
	Linuron	3.03	0.60

pesticide) were analyzed with most batches. Concentrations for the 2X standards are also included in Table 3. In most of the QC reports, peak areas for a 2X standard are reported to demonstrate instrument capability to detect very small amounts of pesticides. EPA holding times for samples and extracts were met without exception and samples and extracts were held at or below 4°C at all times.

Recovery of a spiked pesticide from any field spike should be within the normal range of recovery for the laboratory doing the work. This laboratory has a history of successful analyses from which to determine a "normal" range of recovery for each analyte. Table 4 shows the mean recoveries and associated standard deviations for the pesticides in this study. These were derived from field spikes collected previously in studies of ground water in six Arkansas counties.

The acceptable range of recovery is defined as the mean plus/minus 3 standard deviations. For example the mean recovery for molinate, for 132 spikes analyzed, was 88.2% with a standard deviation of 114.1% yielding an acceptable range of 45.9 -130.5%. If the recovery of a particular analyte from a field spike is outside the acceptable range then the result for that analyte for that well is reported as suspect. In addition, surrogate recovery for the non-fortified samples must also fall in the normal range of surrogate recoveries which are defined in the same way. A surrogate is a pure compound not expected to be in the sample. A known amount of surrogate is added to the sample water before extraction as a check on the sample preparation and Table 4. Summary of Spike Recoveries for EPA Methods 507, 515 and National Pesticide Survey Method 4 - Mean, Standard Deviation and Range.

Chemical	N	Mean (M) १	Std. Dev.(s) %	Acceptable Range(M±3s) %
EPA METHO	D 507			
Molinate	132	88.2	14.1	45.9 - 130.5
Atrazine	137	94.9	14.7	50.8 - 138.9
Metribuzin	137	93.9	15.2	48.3 - 139.4
Alachlor	137	93.7	14.6	49.9 - 137.5
Metolachlor	137	97.5	12.9	58.7 - 136.3
Norflurazon	137	98.6	16.0	50.6 - 146.6
EPA507				
surrogate	345	91.0	18.7	34.9 - 147.1
NPS METHO	54 [°]			· ·
Cvanazine	136	88.8	14.9	44.1 - 133.5
Fluometuron	136	85.2	13.8	43.8 - 126.5
Diuron	135	88.1	11.6	53.2 - 123.0
Linuron	136	83 0	10.8	50.7 - 115.4
NPS4	100	00.0	10.0	50.7 115.4
surrogate	337	83.9	14.8	39.6 - 128.2
EPA METHO	515			
2.4-D	106	84.1	18.4	28 9 - 139 4
Bentazon	100	82.2	16 9	31 4 - 133 1
Aciflurofen	106	81 7	18 5	$26 \ 3 \ - \ 137 \ 1$
EPA515	~~~		T0.0	
surrogate	242	89.6	20.6	27.8 - 151.3

extraction procedures. The normal ranges for surrogate recoveries are also given in Table 4.

Results are reported as suspect due to matrix effects if the spike recovery or the surrogate recovery was not in the specified range. In actuality, none of the recoveries in this study was so low as to cause suspicion of false negatives.

Nitrate-nitrogen was also analyzed and reported for Phase IV. QC data were collected on one sample from each sampling trip. For this, a duplicate analysis was performed with a percent relative standard deviation (%RSD) less than 10% being satisfactory. A spike was also analyzed with a percent recovery from 90 to 110% required to pass.

III.QA/QC Summary.

Sampling procedures set out in the QAPP for this project were followed on all sample collection trips. Samples were iced immediately and kept iced until delivered to the lab. Sample custody forms were maintained through sample delivery and are on file with the records of this project. EPA holding times for samples and extracts were met without exception and samples and extracts were held in the lab at 4°C, or below, at all times. No detectable levels of pesticide were in any of the laboratory "blanks."

Appendix A contains analysis results and spike recovery information for six sampling trips during Phase IV. (QC data related to additional Phase IV sampling done in Woodruff County were reported previously in the Woodruff County QC report.) For the fifty-two samples there were a total of 676 data points (52 times 13 pesticides) of which 12, or 1.8%, have been reported as suspect. Suspect results have been highlighted with grey shading on the analysis reports.

An exception to the above mentioned practice should be noted. Two spike recoveries for the 14th well sampled in Pulaski County were out of range, but the corresponding results were not reported as suspect. These were spike recoveries associated with pesticide detections. In both cases the detections were confirmed by ASPB and the concentrations assigned by the ASPB laboratory were close to those determined in our laboratory.

Being able to recover the minimum acceptable amount, or more, of the pesticides in all but one of the field spikes assures the researchers that no significant amounts of pesticide have gone undetected. The authors feel the QC data for these analysis results are adequate for the stated purposes of the study.

All the QC data for nitrate-nitrogen were satisfactory. However, there was no %RSD calculated for the duplicate analysis from both trips to Pulaski County and trip #2 to Lee County as at least one of the duplicate measurements was below the detection limit making computation of this statistic impossible.

APPENDIX A

ANALYSIS RESULTS

AND

SPIKE RECOVERY DATA

RESULTS OF PESTICIDE MONITORING : TRIP #1 TO PULASKI COUNTY-JUNE, 1995. Page 1.

	(unk = unknown, NC = not collected, ND) = not detected)	(
		1	2	3	4	5
	WELL ID:	PUL#01	PUL#02	PUL#03	PUL#04	PUL#05
	DATE SAMPLED:	5-Jun-95	5-Jun-95	5-Jun-95	5-Jun-95	5-Jun-95
	LATITUDE:	34° 37' 49"	34° 40' 32"	34° 38' 28"	34° 37' 04"	34° 40' 12"
	LONGITUDE:	92° 07' 48"	92° 06' 36"	92° 06' 34"	92° 07' 55"	92° 07' 49"
	DEPTH OF WELL, ft:	<20	50	85	70	shallow
	pH, standard units:	7.1	6.9	7.2	6.8	6.7
	CONDUCTIVITY AT 25° C , umhos/cm:	575	1023	384	414	864
	TEMPERATURE, ° C :	19	19	20	19	18.5
2	NITRATE, mg/L:	<0.01	0.02	< 0.01	0.01	<0.01
μ	ACIFLUORFEN, ug/L	ND	ND	ND	ND	ND
	ALACHLOR, ug/L:	ND	ND	ND	ND	ND
	ATRAZINE,ug/L:	ND	ND	ND	ND	ND
	BENTAZON, ug/L	ND	ND	ND	ND	ND
	CYANAZINE, ug/L:	ND	ND	ND	ND	ND
	DIURON, ug/L:	ND	ND	ND	ND	ND
	FLUOMETURON, ug/L:	ND	ND	ND	ND	ND
	LINURON, ug/L:	ND	ND	ND	ND	ND
	METOLACHLOR, ug/L:	ND	ND	ND	ND	ND
	METRIBUZIN, ug/L:	ND	ND	ND	ND	ND
	MOLINATE, ug/L:	ND	ND	ND	ND	ND
	NORFLURAZON, ug/L	ND	ND	ND	ND	ND
	2,4-D, ug/L	ND	ND	ND	ND	ND

•

(unk ≖ unknown, NC ≖ not collected, ND	TU PULASKI (
	6	7	8	9	10
WELL ID:	PUL#06	PUL#07	PUL#08	PUL#09	LON#01
DATE SAMPLED:	5-Jun-95	6-Jun-95	6-Jun-95	6-Jun-95	6-Jun-95
LATITUDE:	34° 38' 16"	34° 40' 30"	34° 39' 38"	34° 36' 26"	34° 40' 38"
LONGITUDE:	92° 07' 32"	92° 07' 07*	92° 05' 55"	92° 03' 25"	92° 04' 51"
DEPTH OF WELL, ft:	30	50-80	< 60	37	shallow
pH, standard units:	7	6.8	6.7	6	6.7
CONDUCTIVITY AT 25° C , umhos/cm:	437	501 ,	357	281	603
TEMPERATURE, ° C :	18	18	19	20	19
NITRATE, mg/L:	0.01	0.68	0.02	5.94	0.02
ACIFLUORFEN, ug/L	ND	ND	ND	ND	ND
ALACHLOR, ug/L:	ND	ND	ND	ND	ND
ĄTRAZINE,ug/L:	ND	ND	ND	ND	ND
BENTAZON, ug/L	ND	ND	ND	ND	ND
CYANAZINE, ug/L:	ND	ND	ND	ND	ND
DIURON, ug/L:	ND	ND	ND	ND	ND
FLUOMETURON, ug/L:	ND	ND	ND	ND	ND
LINURON, ug/L:	ND	ND	ND	ND	ND
METOLACHLOR, ug/L:	ND	ND	ND	ND	ND
METRIBUZIN, ug/L:	ND	ND	ND	ND	ND
MOLINATE, ug/L:	ND	ND	ND	ND	ND
NORFLURAZON, ug/L	ND	ND	ND	ND	ND
2,4-D, ug/L	ND	ND	ND	ND	ND

22

RESULTS OF PESTICIDE MONITORING : TRIP #1 TO PULASKI COUNTY-JUNE, 1995. Page 2

•

• •

à

EPA METHOD 507 - PAGE 1

		PERCENT	RECOVERIES	6				
	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD
FIELD FORTIFIED SAMPLES								
PUL#01	58	75	88	100	92	89	98	90
PUL#02	58	74	87	101	87	89	96	88
PUL#03	81	86	98	114	97	98	115	79
PUL#04	73	84	95	114	97	94	105	89
PUL#05	38	59 🖍	84	98	85	84	96	79
PUL#06	62	85	102	116	108	100	118	80
PUL#07	69	85	95	113	94	99	131	81
PUL#08	64	79	92	100	96	95	109	74
D111 #00	75	88	99	97	95	100	108	81

NON-FORTIFIED SAMPLES

PUI #01	69	75
PUL#02	75	70
PUL#03	60	71
PUL#04	66	69
PUL#05	66	67
PUL#06	78	69
PUL #07	73	66
	/ C	68
PUL#08	03	69
PUL#09	84	80
LON#01	74	03

EPA METHOD 507 - PAGE 2

PERCENT RECOVERIES

LAB BLANKS

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
2186bi 2188bi	84 65							72 66

CONCENTRATIONS FOR LAB BLANKS

2186bl	4	0	0	. о	· 0	0	0
2188bl		0	0	0	0	0	0

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
P2203	P2205	%RSD
116366	119021	2.28
	MACHINE DUPLICATE - SURROGATE AREA COMPARISON	
1ST RUN	2ND RUN	%RSD
139103	148196	6.33

24

EPA METHOD 515 - PAGE 1

.

PERCENT RECOVERIES

		SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
FIELD FORTH	FIED SAMPLES					
	PUL#01	84	51 -	105	57	53 -
	PUL#02	69	69	104	69	72
	PUL#03	188	55	104	57	58
	PUL#04	88	73	103	74	73
	PUL#05	84	59	112	66	63
	PUL#06	129	74	111	80	78
	PUL#07	82	75	102	73	72
	PUL#08	67	67	116	70	67
	PUL#09	71	67	113	71	68
NON-FORTIFI	ED SAMPLES					
	PUL#01	75		114		
	PUL#02	74		113		
	PUL#03	109		110		
	PUL#04	73		107		
	PUL#05	140		108		
	PUL#06	96		108		
	PUL#07	74		109		
	PUL#08	149		107		
	PUL#09	59		105		
	LON#01	288		112		

EPA METHOD 515 - PAGE 2

.

PERCENT RECOVERIES

		SURROGATE	2,4-D	INT. STD.	BENTAZON	ACIFLUROFEN	
LAB BLANKS							
	2192BL	78		112			
	2194BL	65		113			
			CONC	ENTRATIONS FOR L	AB BLANKS		
	2192BL		0		o	0	
	2194BL		0		0	0	
		ĩ	PEAK AREAS	FOR A 2X* STAN	DARD		
			2,4-D		BENTAZON	ACIFLUROFEN	
	2X STANDARD		82811		1009/5	475705	

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
2259	2250	%RSD
467833	491005	4.83

NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
PUL#01	92	89	90	90	93	114
PUL#02	92	95	94	95	99	113
PUL#04	90	84	90	81	84	114
PUL#05	80	79	80	77	82	117
PUL#06	94	90	94	90	90	113
PUL#07	94	90	93	77	94	109
PUL#08	90	87	93	75	96	108
PUL#09	91	78	89	64 🗸	78	111

N NON-FORTIFIED SAMPLES

PUI #01		85	116
		94	105
R1U #02		87	115
		85	113
		94	115
		90	117
POL#06		80	116
PUL#07	2	05	122
PUL#08		95	115
PUL#09		91	119
LON#01		80	113

NPS METHOD 4 - PAGE 2

PERCENT RECOVERIES

LAB BLANKS			,			
	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
2189Ы 2191Ы					92 91	116 121
		CONCENTRATIONS	S FOR LAB BLAI	NKS		
218951	C	0	0	0		
21915	c	0	0	0	1	
3						
22						
ω .		PEAK AREAS FOR	A 2X* STAND	ARD		
	CYANAZINE 2759	FLUOMETURON 844	DIURON 2905	LINURON 7527		
		NALYSIS				
	FIELD DUPLICATE	SURROGATE AREA CO	MPARISON			
P2214		P2215		%RSD		
150422		165956		9.82		,
	MACHINE DUPLICA	TE - SURROGATE AREA				
1ST RUN		2ND RUN		%RSD		
158922		161229		1.44		

*ANALYTE CONCENTRATIONS ARE ABOUT 2 TIMES THE EPA ESTIMATED DETECTION LIMIT

SPIKE RECOVERY

WELL NUMBER% RECOVERYPUL #296%

DUPLICATE ANALYSIS

1ST MEASUREMENT	2ND MEASUREMENT	% RSD
<0.01 mg/L	0.01 mg/l	NC

29

NITRATE

(unk = unknown, NC = not collected, ND = not detected)		(
• •	1	2	3	4	5	
WELL ID:	PUL#10	PUL#11	PUL#12	PUL#13	PUL#14	
DATE SAMPLED:	19-Jun-95	19-Jun-95	19-Jun-95	19-Jun-95	19-Jun-95	
LATITUDE:	34° 45' 41"	34° 46' 56"	34° 46' 52"	34° 46' 18"	34° 45' 56"	
LONGITUDE:	92° 07' 14"	92° Ò8' 06"	92° 08' 59"	92° 07' 07"	92° 05' 42"	
DEPTH OF WELL, ft:	95	shallow	18	18	20-30	
pH, standard units:	6.8	6.1	6.1	6.6	6.9	
CONDUCTIVITY AT 25° C, umhos/cm:	257	243	349	471	455	
TEMPERATURE, ° C :	18	18	18	18	21	
$\overset{\omega}{O}$ NITRATE, mg/L:	<0.01	6.4	0.95	1.73	3.62	
ACIFLUORFEN, ug/L	ND	ND	ND	ND	27	
ALACHLOR, ug/L:	ND	ND	ND	ND	ND	
ATRAZINE,ug/L:	ND	ND	ND	ND	ND	
BENTAZON, ug/L	ND	ND	ND	ND	135	
CYANAZINE, ug/L:	ND	ND	ND	ND	ND	
DIURON, ug/L:	ND	ND	ND	ND	ND	
FLUOMETURON, ug/L:	ND	ND	ND	ND	24	
LINURON, ug/L:	ND	ND	ND	ND	ND	
METOLACHLOR, ug/L:	ND	ND	ND	ND	ND	
METRIBUZIN, ug/L:	ND	ND	ND	ND	4	
MOLINATE, ug/L:	ND	ND	ND	ND	ND	
NORFLURAZON, ug/L	ND	ND	ND	ND	ND	
2.4-D. ug/	ND	ND	ND	ND	ND	

RESULTS OF PESTICIDE MONITORING : TRIP #2 TO PULASKI COUNTY-JUNE, 1995. Page 1.

	RESULTS OF PESTICIDE MONITO (unk = unknown, NC = not collected, ND	ULTS OF PESTICIDE MONITORING : TRIP #2 TO PULASKI COUNTY-JUNE, 1995. Page 2 ik = unknown, NC = not collected, ND = not detected) (### unknown, NC = not collected, ND = not detected)							
		6	7	8	9	10			
	WELL ID:	LON #2	PUL #15	PUL #16	PUL #17	PUL #18			
	DATE SAMPLED:	19-Jun-95	19-Jun-95	19-Jun-95	19-Jun-95	19-Jun-95			
	LATITUDE:	34° 45' 49"	34° 46' 32"	34° 45' 05"	34° 44' 43"	34° 44' 22°			
	LONGITUDE:	92° 03' 58"	92° 09' 27"	92 • 05' 09*	92° 08' 05"	92° 06' 27"			
	DEPTH OF WELL, ft:	65	shallow	52	28	32			
	pH, standard units:	7	6.8	7.3	6.8	6.8			
	CONDUCTIVITY AT 25° C , umhos/cm:	442	927	560	250	209			
	TEMPERATURE, ° C :	21	18	20	20.5	19			
	NITRATE, mg/L:	0.01	0.01	0.01	2.77	2.48			
μ	ACIFLUORFEN, ug/L	ND	ND	ND	ND	ND			
	ALACHLOR, ug/L:	ND	ND	ND	ND	ND			
	ATRAZINE,ug/L:	ND	ND	ND	ND	ND			
	BENTAZON, ug/L	ND	ND	ND	ND	ND			
	CYANAZINE, ug/L:	ND	ND	ND	ND	ND			
	DIURON, ug/L:	ND	ND	ND	ND	ND			
	FLUOMETURON, ug/L:	ND	ND	ND	ND	ND			
	LINURON, ug/L:	ND	ND	ND	ND	ND			
	METOLACHLOR, ug/L:	ND	ND	ND	ND	ND			
	METRIBUŻIN, ug/L:	ND	ND	ND	ND	ND			
	MOLINATE, ug/L:	ND	ND	ND	ND	ND			
	NORFLURAZON, ug/L	ND	ND	ND	ND	ND			
	2,4-D, ug/L	ND	ND	ND	ND	ND			

•

.

. .

•

EPA METHOD 507 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
FIELD FORTIFIED SAMPLES								
PUL#10	83	90	104	104	97	99	77	91
PUL#11	79	90	98	95	107	95	118	102
PUL#12	69	77	94	86	85	88	107	95
PUL#13	73	86	101	95	105	97	114	99
PUL#14	77	82	91	60	94	91	108	92
LON #2	93	94	102	96	102	96	114	96
PUL #15	77	93	112	108	102	101	118	101
PUL #16	94	109	118	114	121	114	135	102
PUL #17	106	107	114	112	109	110	127	97
PUL #18	84	94	104	100	96	98	121	93

$\omega^{\text{NON-FORTIFIED SAMPLES}}$

N

PUL#01	66	100
PUL#02	66	102
PUL#03	74	108
PUL#04	68	103
PUL#05	81	100
PUL#06	98	102
PUL#07	69	108
PUL#08	67	103
PUL#09	87	113
LON#01	96	108

.

EPA METHOD 507 - PAGE 2

.

INT. STD.

88 99

1

a

,

LAB BLANKS	i							
		SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON
	2410 2412	87 89						
		CONCENTRATI	ONS FOR LAB	BLANKS				
	2410		0	ο	0	0	0	0
	2412		0	0	0	0	0	O
			PEAK AREAS	FOR A 2X* S	STANDARD			
2X S	TANDARD		MOLINATE 21162	ATRAZINE 18957	METRIBUZIN 12239	ALACHLOR 6262	METOLACHLOR 25550	NORFLURAZON 85548
			DUPLICAT	E ANALYSIS				
			FIELD DUPLICA	TE - SURROGATE		ı		
		2313	2315			%RSD		
		86602		112157		25.71		
			MACHINE DUPL	ICATE - SURROG	ATE AREA COMPAR	ISON		
		1ST RUN		2ND RUN		%RSD		
		136156		115424		16.48		

.

EPA METHOD 515 - PAGE 1

.

PERCENT RECOVERIES

	·	SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
FIELD FORTIFIE	D SAMPLES					
	PUL#10	98	97	121	109	99
	PUL#11	75	71	103	80	69
	PUL#12	77	72	106	77	73
	PUL#13	109	100	96	111	105
	PUL#14	78	59	133	. 29	61
	LON #2	91	79	98	102	78
	PUL #15	62	62	111	53	92
	PUL #16	65	60	81	58	102
	PUL #17	100	85	102	85	83
	PUL #18	84	85	95	86	83
ω						
NON-FORTIFIED	SAMPLES					
	PUL#10	103		102		
	PUL#11	124		103		
	PUL#12	98		95		
	PUL#13	85		118		
	PUL#14	82		140		
	LON #2	119		103		
	PUL #15	92		110		
	PUL #16	108		109		
	PUL #17	99		122		
	PUL #18	53		96		

18018

EPA METHOD 515 - PAGE 2

7.37

LAB BLANKS

	SURROGATE	2,4-D	INT. STD.	BENTAZON	ACIFLUROFEN	
2416bi 2418bi	95 82		non e 90			
		CONCE	NTRATIONS FOR	LAB BLANKS		
2416bi 2418bi		0 0		0 0	0 0	
			DUPLICATI	E ANALYSIS		
		2349	FIELD DUPLICAT	E - SURROGATE AREA (2340	COMPARISON	%RSD

19396
NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
PUL#10	81	72	82	70	73	107
PUL#11	88	88	86	84	94	109
PUL#12	83	84	90	84	95	107
PUL#13	87	93 • 1	83	85	97	109
PUL#14	84	247 ht	98	95	105	95
LON #2	87	92	87	83	92	106
PUL #15	97	108	96	77	91	103
PUL #16	94	103	95	92	97	100
PUL #17	94	101 .	94	92	102	104
PUL #18	99	91	97	95	102	105

36

NON-FORTIFIED SAMPLES

PUL#10	87	108
PUL#11	76	107
PUL#12	85	102
PUL#13	97	107
PUL#14	89	107
LON #2	91	101
PUL #15	73	103
PUL #16	89	103
PUI #17	83	104
PUL #18	97	104

.

NPS METHOD 4 - PAGE 2

LAB BLANKS

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.	
2407					103	105	
2409					91	95	
		CONCENTRATION	S FOR LAB BLA	NKS			
	(o 0	0	()		

0	0	0	0

PEAK AREAS FOR A 2X* STANDARD

CYANAZINE	FLUOMETURON	DIURON	LINURON
2268	810	3055	7564

DUPLICATE ANALYSIS

2305	%RSD
169391	8.85
	2305 169391

MACHINE DUPLICATE - SURROGATE AREA COMPARISON

1ST RUN	2ND RUN	%RSD
168093	168609	0.31

*ANALYTE CONCENTRATIONS ARE ABOUT 2 TIMES THE EPA ESTIMATED DETECTION LIMIT

SPIKE RECOVERY		
WELL NUMBER	% RECOVERY	

NITRATE

PUL #11 95%

DUPLICATE ANALYSIS

1ST MEASUREMENT	2ND MEASUREMENT	%	RSD
<0.01 mg/L	<0.01 mg/L		NC

38 8

RESULTS OF PESTICIDE MONIT (unk = unknown, NC = not collected, ND	ORING : TRIP #1	TO LEE COU (NTY-SEPTEMBER,	1995. Page	: 1.)
	1	2	3	4	
WELL ID:	LEE # 01	LEE # 02	LEE # 03	LEE # 04	
DATE SAMPLED:	27-Sep-95	27-Sep-95	27-Sep-95	27-Sep-95	
LATITUDE:	34° 45' 28"	34°45'04"	34°44'41"	34°43'04"	
LONGITUDE:	90° 36' 55"	90°37'04 "	90°37'30 "	90°37'19"	
DEPTH OF WELL, ft:	50-80	60	60	110	
pH, standard units:	7.4	7.2	7	7.1	
CONDUCTIVITY AT 25°C, umhos/cm:	589	654	642	785	
TEMPERATURE, º C :	20	19	18	17	
NITRATE, mg/L:	1.44	3.17	0.02	0.01	
ACIFLUORFEN, ug/L	ND	ND	ND	ND	
ALACHLOR, ug/L:	ND	ND	ND	ND	
ATRAZINE,ug/L:	ND	ND	ND	ND	
BENTAZON, ug/L	ND	ND	ND	ND	
CYANAZINE, ug/L:	ND	ND	ND	ND	
DIURON, ug/L:	ND	, ND	ND	ND	
FLUOMETURON, ug/L:	ND	ND	ND	ND	
LINURON, ug/L:	ND	ND	ND	ND	
METOLACHLOR, ug/L:	ND	ND	ND	ND	
METRIBUZIN, ug/L:	ND	ND	ND	ND	
MOLINATE, ug/L:	ND	ND	ND	ND	
NORFLURAZON, ug/L	ND	ND	ND	ND	
2.4-D. ua/L	ND	ND	ND	ND	

β

•

٠

RESULTS OF PESTICIDE MON (unk = unknown, NC = not collected,	ITORING : TRIP #1 ND = not detected)		ITY-SEPTEMBE	R, 1995. Page	2
	5	6	7	8	
WELL ID:	LEE # 05	CRIT #01	PUL #14R	PUL # 19	
DATE SAMPLED:	27-Sep-95	28-Sep-95	28-Sep-95	28-Sep-95	
LATITUDE:	34°46'50"	34°52'37"	34° 45' 56"	34° 45' 56°	
LONGITUDE:	90°37'22"	90°21'30"	92° 05' 42"	92° 05' 42"	
DEPTH OF WELL, ft:	UNK	100	20-30	SHALLOW	
pH, standard units:	7.1	7.4	6.9	6.9	
CONDUCTIVITY AT 25° C , umhos/cm:	802	668	640	655	
TEMPERATURE, º C :	18	18	20	18	
NITRATE, mg/L:	1.44	<0.01	3.05	0.01	
O ACIFLUORFEN, ug/L	ND	ND	11	ND	
ALACHLOR, ug/L:	ND	ND	ND	ND	
ATRAZINE,ug/L:	ND	ND	ND	ND	
BENTAZON, ug/L	ND	ND	57	ND	
CYANAZINE, ug/L:	ND	ND	ND	ND	
DIURON, ug/L:	ND	ND	ND	ND	
FLUOMETURON, ug/L:	ND	ND	19	ND	
LINURON, ug/L:	ND	ND	ND	ND	
METOLACHLOR, ug/L:	ND	ND	ND	ND	
MÉTRIBUZIN, ug/L:	ND	ND	2	ND	
MOLINATE, ug/L:	ND	ND	ND	ND	
NORFLURAZON, ug/L	ND	ND	ND	ND	
2,4-D, ug/L	ND	ND	ND	ND	

EPA METHOD 507 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
FIELD FORTIFIED SAMPLES								
LEE # 01	omitted	62 1	88	83	80	90	108	112
LEE # 02	omitted	76	91	85	91	102	85	108
LEE # 03	omitted	62 1	84~	60 1	56 🗸	90	76	103
LEE # 04	omitted	66	76	60´	73	91	77	115
LEE # 05	65	64 /	83	81	90	90	72	105
CRIT #01	76	70	53 ×	61 · ´	33/	81	89	114
PUL #14R	88	76	102	88	87	100	85	112
PUL # 19	69	69	91	84	88	99	108	100

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

LEE # 01	105	11	10
LEE # 02	83	10	23
LEE # 03	59	10	57
LEE # 04	60	10	22
LEE # 05	75	10	23
CRIT #01	78	10	20
PUL #148	70	9	8
PUL # 19	98	9	5

EPA METHOD 507 - PAGE 2

LAB	BL	-AN	IKS
-----	----	-----	-----

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
2587BL 2588BL	55 45							111 102
	CONCENTRAT	IONS FOR LAB	BLANKS					
2587BL		· 0	Ó	0	0	0	0	
2588BL		0	0	0	0	0	0	
		PEAK AREAS	FOR A 2X* ST	ANDARD				
2X STANDARD		MOLINATE 22433	ATRAZINE 20515	METRIBUZIN 11807	ALACHLOR 8602	METOLACHLOR 22839	NORFLURAZON 67788	
		DUPLICATE	ANALYSIS					
		FIELD DUPLICAT	E - SURROGATE A	AREA COMPARISON				
	P2503 200144		P2504 121455		%RSD 48.94			
			CATE - SURROGA	TE AREA COMPARIS	ON			
	1ST RUN 2ND RUN omitted omitted				%RSD #VALUE!			

42

EPA METHOD 515 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
	110	125	89	130	125
LEE # 01	104	120	100 101	120 142	118 141
LEE # 03 LEE # 04	63	74	91	54	73
LEE # 05 CRIT #01	101 91	114 99	97	97	95
PUL #14R	72 109	95 121	122 94	57 121	96 123

$\overset{{}_{\scriptstyle \leftarrow}}{\overset{\scriptstyle \omega}{\overset{\scriptstyle \leftarrow}}}$ NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

1 FF # 01	118	92
	121	96
1 FF # 03	113	93
LEE # 04	111	94
LEE # 05	omitted	96
CRIT #01	62	95
PUL #14R	94	116
PUL # 19	100	101

EPA METHOD 515 - PAGE 2

NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
LEE # 01	88	69	83	79	67	109
LEE # 02	86	83	85	90	85	108
LEE # O3	77	73	76	78	77	107
LEE # 04	91	58×	80	93	90	99
LEE # 05	92	99 /	89	82	71	94
CRIT #01	78	63 -	80	74	75	101
PUL #14R	93	117	77	83	77	108
PUL # 19	96	75	88	83	75	98

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

45

LEE # 01	78	98
LEE # 02	88	96
LEE # 03	87	105
LEE # 04	- 75	105
LEE # 05	88	99
CRIT #01	89	106
PUL #14R	82	108
PUL # 19	60	113

.

NPS METHOD 4 - PAGE 2

LAB BLANKS

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
2587BL 2588BL 2590BL					106 89 77	81 109 113
		CONCENTRATIONS	S FOR LAB BLAN	NKS		
2587BL 2588BL 2590BL			0 0 0		0 0 0	
46		PEAK AREAS FOR	A 2X* STAND	ARD		
	CYANAZINE 2977	FLUOMETURON 1011	DIURON 2918	LINURON 7129		
	DUPLICATE	ANALYSIS				
P2514 147232	FIELD DUPLICATE	- SURROGATE AREA CO P2515 138884	OMPARISON	%RSD 5.84		
1ST RUN 158922		ATE - SURROGATE ARE 2ND RUN 161229	A COMPARISON	%RSD 1.44		

ANALYTE CONCENTRATIONS ARE ABOUT 2 TIMES THE EPA ESTIMATED DETECTION LIMIT

NITRATE

1.45 mg/L

47

1.44 mg/L

(unk = unknown, NC = not collected, ND	= not detected)	(=suspect, see text)
	1	2	3	4
WELL ID:	WOOD #7R4	WOOD #9R3	LEE # 06	LEE # 07
DATE SAMPLED:	10/12/95	10/12/95	12-Oct-95	12-Oct-95
LATITUDE:	35° 19' 27"	35° 17' 09"	34° 44' 56"	34° 44' 30"
LONGITUDE:	91 ° 18' 20"	91° 18' 29"	90° 32' 54"	90° 34' 28"
DEPTH OF WELL, ft:	UNK	60	50-100	SHALLOW
pH, standard units:	6.5	6.5	6.7	6.6
CONDUCTIVITY AT 25°C, umhos/cm:	193 .	286	714	1071
TEMPERATURE, º C :	17	17	20	22
NITRATE, mg/L:	<0.01	0.2	< 0.01	0.01
CO ACIFLUORFEN, ug/L	ND	4	ND	ND
ALACHLOR, ug/L:	ND	ND .	ND	ND
ATRAZINE,ug/L:	ND	ND	ND	ND
BENTAZON, ug/L	38	26	ND	ND
CYANAZINE, ug/L:	ND	ND	ND	ND
DIURON, ug/L:	ND	ND	ND	ND
FLUOMETURON, ug/L:	ND	ND	ND	ND
LINURON, ug/L:	ND	ND	ND	ND
METOLACHLOR, ug/L:	ND	ND	ND	ND
METRIBUZIN, ug/L:	ND	ND	ND	ND
MOLINATE, ug/L:	ND	ND	ND	ND
NORFLURAZON, ug/L	ND	ND .	ND	ND
2,4-D, ug/L	ND	ND	ND	ND

PESULTS OF PESTICIDE MONITORING : TRIP #2 TO LEE COUNTY-OCTOBER, 1995. Page 1.

.

RESULTS OF PESTICIDE MONITO (unk = unknown, NC = not collected, ND)RING: I RIP #2 = not detected)	2 TO LEE COUN	TY-UCTOBER,	= suspect, see text)
	5	6	7	8
WELL ID:	LEE # 08	LEE # 09	LEE # 10	LEE # 11
DATE SAMPLED:	12-Oct-95	12-Oct-95	13-Oct-95	13-Oct-95
LATITUDE:	34° 49' 53"	34° 53' 30"	34° 50' 33"	34° 48' 54"
LONGITUDE:	90° 32' 01"	90° 27' 09"	90° 37' 29"	90° 37' 06"
DEPTH OF WELL, ft:	UNK	25	60	75
pH, standard units:	6.7	6.7	6.7	6.7
CONDUCTIVITY AT 25° C , umhos/cm:	1367	719	775	699
TEMPERATURE, ° C :	18	18	19	18
NITRATE, mg/L:	0.02	0.02	0.05	< 0.01
ACIFLUORFEN, ug/L	ND	ND	ND	ND
ALACHLOR, ug/L:	ND	ND	ND	ND
ATRAZINE,ug/L:	ND	ND	ND	ND
BENTAZON, ug/L	ND	ND	ND	ND
CYANAZINE, ug/L:	ND	ND	ND	ND
DIURON, ug/L:	ND	ND	ND	ND
FLUOMETURON, ug/L:	ND	ND	ND	ND
LINURON, ug/L:	ND	ND	ND	ND
METOLACHLOR, ug/L:	ND	ND	ND	ND
METRIBUZIN, ug/L:	ND	ND	ND	ND
MOLINATE, ug/L:	ND	ND	ND	ND
NORFLURAZON, ug/L	ND	ND	ND	ND
2,4-D, ug/L	ND	ND	ND	ND

EPA METHOD 507 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
FIELD FORTIFIED SAMPLES								
W00D #7R4	68	67	81	80	78	97	83	97
WOOD #9R3	80	71	88	84	88	100	140	98
LEE # 06	62 /	68	88	83	82	100	103	98
LEE # 07	67	70	88	83	76	95	102	110
LEE # 08	59	67	93	89	80	102	100	101
LEE # 09	65	67	102	90	74	96	127	101
LEE # 10	78	75	96	96	85	105	119	102
LEE # 11	70	70	94	93	83	103	127	108

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

WOOD #784	78	103
WOOD #983	57	99
	55	97
LEE # 07	72	105
LEE # 08	83	108
LEE # 09	83	110
155 # 10	84	107
	70	105
	70	

•

LAB BLANKS								
	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
2591BL 2592BL	59 64							103 102
	CONCENTRATI	ONS FOR LAB	BLANKS					
2501RI		o	0	0	ο	0	0	
2592BL		0	0	0	0.	0	0	
		PEAK AREAS	FOR A 2X* ST	TANDARD				
2X STANDARD		MOLINATE 27775	ATRAZINE 38507	METRIBUZIN 27714	ALACHLOR 9927	METOLACHLOR 30801	NORFLURAZON 24202	
		DUPLICAT	EANALYSIS					
		FIELD DUPLICAT	E - SURROGATE	AREA COMPARISON				
	P2613 100282		P2615 145874		%RSD 37.04			
		MACHINE DUPL	ICATE - SURROGA	ATE AREA COMPARIS	ON			
	1ST RUN 131893		2ND RUN 135871		%RSD 2.97			

EPA METHOD 507 - PAGE 2

EPA METHOD 515 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
FIELD FORTIFIED SAMPLES					
WOOD #7R4	105	111	68	98	117
WOOD #9R3	94	96	72	88	76
LEE # 06	109	108	98	135	121
LEE # 07	115	113	97	111	127
LEE # 08	111	111	101	118	123
LEE # 09	87	93	116	97	103
LEE # 10	103	100	119	114	120
LEE # 11	103	97	124	109	113

•

52

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

WOOD #7R4	103	123
WOOD #9R3	101 -	123
LEE # 06	103	116
LEE # 07	109	113
LEE # 08	111	114
LEE # 09	108	107
LEE # 10	112	109
LEE # 11	56	112

EPA METHOD 515 - PAGE 2

LAB BLANKS

	SURROGATE	2,4-D	INT. STD.	BENTAZON	ACIFLUROFEN
2680BI	129		93		
269281	111		111		
200206					

CONCENTRATIONS FOR LAB BLANKS

2680BL	0	0	0
2682BL	0	0	0

ω

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
2619	2610	%RSD
193908	192629	0.66

MACHINE DUPLICATE - SURROGATE AREA COMPARISON 1ST RUN 2ND RUN %RSD 98188 96223 2.02

NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
WOOD #7R4	94	65	88	92	94	108
WOOD #9R3	77	78	74	68	73	117
LEE # 06	80	80	82	110	73	109
LEE # 07	89	87	86	86	86	113
LEE # 08	92	91	93	92	92	101
LEE # 09	92	87	91	88	90	101
LEE # 10	84	72	82	105	73	102
LEE # 11	88	81	85	81	84	106

$\overset{(J)}{\underset{\Delta}{}}$ NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD RECOVERIES

WOOD #7R4	106	106
WOOD #9R3	93	100
LEE # 06	86	105
LEE # 07	97	96
LEE # 08	87	100
LEE # 09	79	108
LEE # 10	88	107
LEE # 11	89	99

NPS METHOD 4 - PAGE 2

LAB BLANKS

		CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
	2595BL 2597BL 2598BL					92 73 84	105 105 104
			CONCENTRATION	S FOR LAB BLA	NKS		
	2595BL	0	0	0	0		
	2597BL	0	0	0	0		
	2598BL	0	0	0	0		
	•						
ភភ ភ			PEAK AREAS FOR	A 2X* STAND	ARD		
		CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT.STD.
		DUPLICATE A	NALYSIS				
		FIELD DUPLICATE -	SURROGATE AREA CO	MPARISON			
	P2604		P2605		%RSD		
	150359		157654		4./4		
			TE - SUBBOGATE AREA				
	1ST RUN		2ND RUN		%RSD		
	129409		124070		4,21	·	
							١

*ANALYTE CONCENTRATIONS ARE ABOUT 2 TIMES THE EPA ESTIMATED DETECTION LIMIT

NITRATE

SPIKE RECOVERY

WELL NUMBER	% RECOVERY	
WOOD 9	98%	

DUPLICATE ANALYSIS

1ST MEASUREMENT	2ND MEASUREMENT	% RSD
<0.01 mg/L	<0.01 mg/L	NC

RESULTS OF PESTICIDE MONITORING : TRIP #1 TO JACKSON COUNTY-NOVEMBER, 1995. Page1

(unk = unknown, NC = not collected, ND = not detected)		(= suspect, see text)		
	1	2	3	4	
WELL ID:	JACK #1	JACK #2	JACK #3	JACK #4	
DATE SAMPLED:	11/8/95	11/8/95	11/8/95	11/8/95	
LATITUDE:	35° 34' 46"	35° 32' 43"	35° 30' 16"	35° 29' 50"	
LONGITUDE:	91° 15' 55"	91° 15' 57"	91° 16'00"	91° 14' 29"	
DEPTH OF WELL, ft:	38	90	shallow	unk	
· pH, standard units:	5.4	5.6	6.3	5.8	
CONDUCTIVITY AT 25° C , umhos/cm:	169	177	372	280	
TEMPERATURE, º C :	16	16	17.5	15.5	
NITRATE, mg/L:	6.04	0.02	<.01	2.65	
ACIFLUORFEN, ug/L	ND	ND	ND	ND	
ALACHLOR, ug/L:	ND	ND	ND	ND	
ATRAZINE,ug/L:	ND	ND	ND	ND	
BENTAZON, ug/L	ND	ND	ND	ND	
CYANAZINE, ug/L:	ND	ND	ND	ND	
DIURON, ug/L:	ND	ND	ND	ND	
FLUOMETURON, ug/L:	ND	ND	ND	ND	
LINURON, ug/L:	ND	ND	ND	ND	
METOLACHLOR, ug/L:	ND	ND	ND	ND	
METRIBUZIN, ug/L:	ND	ND	ND	ND	
MOLINATE, ug/L:	ND	ND	ND	ND	
NORFLURAZON, ug/L	ND	ND	ND	ND	
2,4-D, ug/L	ND	ND	ND	ND	

•

57

RESULTS OF PESTICIDE MONITORING : TRIP #1 TO JACKSON COUNTY-NOVEMBER, 1995. Page 2

	(unk = unknown, NC = not collected, ND	= unknown, NC = not collected, ND = not detected)		(= suspect, se			
		5	6	7	8		
	WELL ID:	JACK #5	JACK #6	JACK #7	JACK #8		
	DATE SAMPLED:	11/8/95	11/8/95	11/9/95	11/9/95		
	LATITUDE:	35° 24'07"	35° 30' 15"	35° 35' 22"	35° 31'26"		
	LONGITUDE:	91° 13' 15"	91° 15' 41"	91° 15' 41"	91° 09'48"		
	DEPTH OF WELL, ft:	shallow	35	unk	50		
	pH, standard units:	5.5	6.3	5.2	6.6		
	CONDUCTIVITY AT 25° C , umhos/cm:	361	316	437	924		
	TEMPERATURE, º C :	17	17	17	16		
	NITRATE, mg/L:	5.13	<.01	17.7	0.01		
58	ACIFLUORFEN, ug/L	ND	ND	ND	ND		
ω	ALACHLOR, ug/L:	ND	ND .	ND	ND		
	ATRAZINE,ug/L:	ND	ND	ND	ND		
	BENTAZON, ug/L	ND	ND .	ND	ND		
	CYANAZINE, ug/L:	ND	ND	ND	ND		
	DIURON, ug/L:	ND	ND	ND	ND		
	FLUOMETURON, ug/L:	ND	ND	ND	ND		
	LINURON, ug/L:	ND	ND	ND	ND		
	METOLACHLOR, ug/L:	ND	ND	ND	ND		
	METRIBUZIN, ug/L:	ND	ND	ND	ND		
	MOLINATE, ug/L:	ND	ND	ND	ND		
	NORFLURAZON, ug/L	ND	ND	ND	ND		
	2,4-D, ug/L	ND	ND	ND	ND		

EPA METHOD 507 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
FIELD FORTIFIED SAMPLES								
JACK #1	74	80	92	99	74	86	113	100
JACK #2	91	94	106	109	82	94	109	104
JACK #3	101	98	108	109	81	92	96	101
JACK #4	75	84	97	104	76	88	92	103
. JACK #5	72	77	91	60	71	82	87	101
JACK #6	73	78	92	98	73	85	88	102
JACK #7	63	74	89	94	69	82	84	101
JACK #8	64	78	91	97	71	83	85	104

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD

108		103
83		103
74		105
70		100
67		99
50		101
94		101
70		99
	108 83 74 70 67 50 94 70	108 83 74 70 67 50 94 70

EPA METHOD 507 - PAGE 2

LAB BLANKS

SURROGATE AND INTERNAL STANDARD RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
2693BL 2695BL	70 67							101 102
	CONCENTRATION	S FOR LAB BLAN	NKS					
2186bi 2188bi		0 0	0 0	0 0	0 0	0 0	0 0	

.

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
2703	2705	%RSD
195532	126702	42.72

MACHINE DUPLICATE - SURROGATE AREA COMPARISON

1ST RUN	2ND RUN	%RSD
112550	107302	4.77

EPA METHOD 515 - PAGE 1

.

PERCENT RECOVERIES

	SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
FIELD FORTIFIED SAMPLES					
JACK #1	86	91	NOT USED	93	86
JACK #2	98	107	NOT USED	109	108
JACK #3	108	99	NOT USED	97	96
JACK #4	140	124	NOT USED	134	121
JACK #5	114	123	NOT USED	121	122
JACK #6	97	112	NOT USED	110	106
JACK #7	110	125	NOT USED	122	120
JACK #8	119	122	NOT USED	121	116

61

NON-FORTIFIED SAMPLES-SURROGATE AND INTERNAL STANDARD

JACK #1	139	75
JACK #2	68	112
JACK #3	89	102
JACK #4	91	102
JACK #5	91	106
JACK #6	82	99
JACK #7	93	102
JACK #8	76	98

EPA METHOD 515 - PAGE 2

LAB BLANKS

SURROGATE AND INTERNAL STANDARD RECOVERIES

PEAK AREAS FOR A 2X* STANDARD

 SURROGATE
 2,4-D
 INT. STD.
 BENTAZON
 ACIFLUROFEN

 186092
 110511
 NOT USED
 549557
 691762

DUPLICATE ANALYSIS

	MACHINE DUPLICATE - SURROGATE AREA COMPARISON	
1ST RUN	2ND RUN	%RSD
196020	197947	0.98

NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
JACK #1	78	79	79	52	83	110
JACK #2	75	82	78	53	85	107
JACK #3	75	80	80	79	82	115
JACK #4	78	84	83	82	86	105
JACK #5	85	90	98	89	91	101
JACK #6	90	90	88	87	105	96
JACK #7	88	99	89	90	96	99
JACK #8	83	88	91	88	92	105

$\stackrel{0}{\omega}$ \quad Non-fortified samples-surrogate and internal standard

.

JACK #1	94	102
JACK #2	82	111
JACK #3	84	106
JACK #4	86	106
JACK #5	75	109
JACK #6	89	105
JACK #7	84	108
JACK #8	78	108

NPS METHOD 4 - PAGE 2

LAB BLANKS

SURROGATE AND INTERNAL STANDARD RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
2898BI					91	102
2697BL					84	107
	CONCENTRATIONS	FOR LAB BLANKS				
2696BL		o •	b	0	0	
2697BL		0	0	0	0	

64

PEAK AREAS FOR A 2X* STANDARD

CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT.STD.
1252	614	2491	5077	129557	11002

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
P2714	P2715	%RSD
155072	147907	4.73

	MACHINE DUPLICATE - SURROGATE AREA COMPARISON	
1ST RUN	2ND RUN	%RSD
150242	150240	0.00

*ANALYTE CONCENTRATIONS ARE ABOUT 2 TIMES THE EPA ESTIMATED DETECTION LIMIT

NITRATE

SPIKE RECOVERY

WELL NUMBER	% RECOVERY	
JACK 2	105%	

DUPLICATE ANALYSIS

1ST MEASUREMENT	2ND MEASUREMENT	% RSD
6.04 mg/L	6.00mg/L	0.71%

(unk = unknown, NC = not collected, ND = not detected)		(= suspect, see text)			
	1	2	3	4	
WELL ID:	JACK #9	JACK #10	JACK #11	JACK #12	
DATE SAMPLED:	12/4/95	12/4/95	12/4/95	12/4/95	
LATITUDE:	35° 32' 16"	35° 25' 22*	35° 21' 55"	35° 22' 42"	
LONGITUDE:	91° 16' 17"	91° 11' 33"	91° 13'51"	91° 13' 51"	
DEPTH OF WELL, ft:	50	40	100	unk	
pH, standard units:	6	6.6	6.7	6.8	
CONDUCTIVITY AT 25° C , umhos/cm:	165	415	513	432	
TEMPERATURE, º C :	15	14	16	18	
NITRATE, mg/L:	5.15	0.01	<0.01	<0.01	
ACIFLUORFEN, ug/L	ND	ND	ND	ND	
ALACHLOR, ug/L:	ND	ND	ND	ND	
ATRAZINE,ug/L:	ND	ND	ND	ND	
BENTAZON, ug/L	ND	ND	ND	ND	
CYANAZINE, ug/L:	ND	ND	ND	ND	
DIURON, ug/L:	ND	ND	ND	ND	
FLUOMETURON, ug/L:	ND	ND	ND	ND	
LINURON, ug/L:	ND	ND	ND	ND	
METOLACHLOR, ug/L:	ND	ND	ND .	ND	
METRIBUZIN, ug/L:	ND	ND	ND	ND	
MOLINATE, ug/L:	ND	ND	ND	ND	
NORFLURAZON, ug/L	ND	ND	ND	ND	
2,4-D, ug/L	ND	ND	ND	ND	

RESULTS OF PESTICIDE MONITORING : TRIP #2 TO JACKSON COUNTY-DECEMBER, 1995. Page1

(unk = unknown, NC = not collected, ND = not detected)		(= suspect, see text)		
	5	6	7	8
WELL ID:	JACK #13	JACK #14	JACK #15	JACK #18
DATE SAMPLED:	12/4/95	12/4/95	12/5/95	12/5/95
LATITUDE:	35° 31'07"	35° 32' 44"	35° 36' 34"	35° 37' 03"
LONGITUDE:	91° 12' 58"	91° 11' 54"	91° 12'31"	91° 12' 27"
DEPTH OF WELL, ft:	25	60	40	unk
pH, standard units:	6.9	6.8	6.9	6.9
CONDUCTIVITY AT 25°C, umhos/cm:	399	622	480	352
TEMPERATURE, º C :	18	15.5	15	18
NITRATE, mg/L:	< 0.01	0.02	0.73	<0.01
ACIFLUORFEN, ug/L	ND	ND	ND	ND
ALACHLOR, ug/L:	ND	ND	ND	ND
ATRAZINE,ug/L:	ND	ND	ND	ND
BENTAZON, ug/L	ND	ND	ND	ND
CYANAZINE, ug/L:	ND	ND	ND	ND
DIURON, ug/L:	ND	ND	ND	ND
FLUOMETURON, ug/L:	ND	ND	ND	ND
LINURON, ug/L:	ND	ND	ND	ND
METOLACHLOR, ug/L:	ND	ND	ND	ND
METRIBUZIN, ug/L:	ND	ND	ND	ND
MOLINATE, ug/L:	ND	ND	ND	ND
NORFLURAZON, ug/L	ND	ND	ND	ND
2,4-D, ug/L	ND	ND	ND	ND

RESULTS OF PESTICIDE MONITORING : TRIP #2 TO JACKSON COUNTY-DECEMBER, 1995. Page 2

EPA METHOD 507 - PAGE 1

PERCENT RECOVERIES

	SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
FIELD FORTIFIED SAMPLES								
JACK #9	92	107	135	122	102	120	125	108
JACK #10	96	100	121	110	92	107	110	117
JACK #11	98	103	122	111	92	107	110	110
JACK #12	109	112	133	60	101	118	121	103
JACK #13	93	97	121	112	92	108	117	106
JACK #14	101	104	125	123	98	154	118	98
JACK #15	88	95	117	107	89	105	112	107
JACK #16	68	92	114	105	86	102	105	109

NON-FORTIFIED SAMPLES-SURROGAT AND INTERNAL STANDARD RECOVERIES

JACK #9	61
JACK #10	70
JACK #11	75
JACK #12	94
JACK #13	85
JACK #14	81
JACK #15	79
JACK #16	83

EPA METHOD 507 - PAGE 2

LAB BLA	NKS								
		SURROGATE	MOLINATE	ATRAZINE	METRIBUZIN	ALACHLOR	METOLACHLOR	NORFLURAZON	INT. STD.
	2888BL 2894BL	97 84							101 101
		CONCENTRATI	ONS FOR LAB	BLANKS					
	2888BL 2894BL		0 0	0	0 0	0 0	0 0	0 0	
			PEAK AREAS	FOR A 2X* S	TANDARD				
	2X STANDARD		MOLINATE 25102	ATRAZINE 34983	METRIBUZIN 20589	ALACHLOR 10128	METOLACHLOR 30543	NORFLURAZON 32772	
			DUPLICATE	ANALYSIS					
			FIELD DUPLICAT	E - SURROGATE	AREA COMPARISON				
		2813 128113		2815 129620		%RSD 1.17			
			MACHINE DUPLI	CATE - SURROGA		ON			
		1ST RUN		2ND RUN		%RSD			
		171926		157069		9.03			

ρл

EPA METHOD 515 - PAGE 1

	PERCENT RECOVERIES				
	SURROGATE	2,4-D	INT. STD	BENTAZON	ACIFLUROFEN
FIELD FORTIFIED SAMPLES					
JACK #9	96	111	97	111	106
JACK #10	85	104	100	101	108
JACK #11	92	104	100	102	110
JACK #12	79	102	103	105	103
JACK #13	78	107	100	111	117
JACK #14	84	111	91	112	123
JACK #15	90	125	95	121	128
JACK #16	83	104	102	105	117

NON-FORTIFIED SAMPLES-SURROGAT AND INTERNAL STANDARD RECOVERIES

JACK #9	99	110
JACK #10	90	98
JACK #11	81	98
JACK #12	80	104
JACK #13	81	97
JACK #14	68	100
JACK #15	80	99
JACK #16	66	102

EPA METHOD 515 - PAGE 2

LAB BLANKS

	SURROGATE	2,4-D	INT. STD.	BENTAZON	ACIFLUROFEN
2880BL 2886BL	100 101		101 94		
	CONCENTRATIONS FOR LAB BLANKS				
2880BL 2886BL		0 0		0 0	0 0
	P	EAK AREAS F	OR A 2X* STAND	ARD	

2,4-D BENTAZON ACIFLUROFEN 37000 215375 83173

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON	
P2859	P2850	%RSD
41845	38912	7.26

	MACHINE DUPLICATE - SURROGATE AREA COMPARISON	
IST RUN	2ND RUN	%RSD
51799	52540	1.42

.
QUALITY CONTROL DATA FOR PESTICIDE MONITORING: TRIP #2 TO JACKSON COUNTY - DECEMBER, 1995.

NPS METHOD 4 - PAGE 1

PERCENT RECOVERIES

	CYANAZINE	FLUOMETURON	DIURON	LINURON	SURROGATE	INT. STD.
FIELD FORTIFIED SAMPLES						
JACK #9	91	90	88	91	92	99
JACK #10	93	91	88	93	94	97
JACK #11	97	89	92	94	93	95
JACK #12	96	84	93	98	98	97
JACK #13	95	93	90	93	91	104
JACK #14	105	103	110	72	105	90
JACK #15	94	94	91	97	92	105
JACK #16	95	94	93	94	93	98

NON-FORTIFIED SAMPLES-SURROGAT AND INTERNAL STANDARD RECOVERIES

JACK #9	99	97
JACK #10 -	94	97
JACK #11	98	98
JACK #12	94	101
JACK #13	51	195
JACK #14	86	108
JACK #15	98	98
JACK #16	102	100

QUALITY CONTROL DATA FOR PESTICIDE MONITORING: TRIP #2 TO JACKSON COUNTY - DECEMBER, 1995.

NPS METHOD 4 - PAGE 2

103

104

93

LAB BLANKS

SURROGATE AND INTERNAL STANDARD RECOVERIES CYANAZINE FLUOMETURON DIURON LINURON SURROGATE INT. STD. 2887BL 97 2889BL 90 2893BL 109 CONCENTRATIONS FOR LAB BLANKS 2887BL 0 0 0 0 0 2889BL 0 0 0 2893BL 0 0 0 0

73

DUPLICATE ANALYSIS

	FIELD DUPLICATE - SURROGATE AREA COMPARISON		
P2804	P2805	%RSD	
159253	150702	5.52	
	MACHINE DUPLICATE - SURROGATE AREA COMPARISON		
1ST RUN	2ND RUN	%RSD	
158037	157497	0.34	

QUALITY CONTROL DATA FOR PESTICIDE MONITORING: TRIP #2 TO JACKSON COUNTY - DECEMBER, 1995.

		NITRATE
SPIKE RECOVERY		
WELL NUMBER	% RECOVERY	
JACK 10	108%	
DUPLICATE ANALYSIS		
1ST MEASUREMENT	2ND MEASUREMENT	% RSD
5.15mg/L	5.17 mg/L	0.37%

74