

RELATIONSHIPS IN THE OZARK MOUNTAINS

PREPARED BY:

Kenneth F. Steele Department of Geology University of Arkansas Fayetteville, Arkansas 72701

PUB-109

March 1981

ARKANSAS WATER RESOURCES CENTER UNIVERSITY OF ARKANSAS 112 OZARK HALL FAYETTEVILLE, ARKANSAS 72701

GROUNDWATER QUALITY AND MINERAL DEPOSITS RELATIONSHIPS IN THE OZARK MOUNTAINS

Kenneth F. Steele Department of Geology University of Arkansas Fayetteville, AR 72701

Research Project Technical Completion Report

Project G-829-03

The research on which this report is based was financed in part by the United States Department of the Interior as authorized by the Water Research and Development Act of 1978, (P. L. 95-467).

> Arkansas Water Resources Research Center University of Arkansas 223 Ozark Hall Fayetteville, Arkansas 72701

> > Publication No. 109

September, 1984

Contents of this publication do not necessarily reflect the views and policies of the U. S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U. S. Government.

The University of Arkansas, in compliance with federal and state laws and regulations governing affirmative action and nondiscrimination, does not discriminate in the recruitment, admission and employment of students, faculty and staff in the operation of any of it's educational programs and activities as defined by law. Accordingly, nothing in this publication should be viewed as directly or indirectly expressing any limitation, specification or discrimination as to race, religion, color or national origin; or to handicap, age, sex, or status as a disabled Vietnam-era veteran, except as provided by law. Inquiries concerning this policy may be directed to the Affirmative Action Officer.

ABSTRACT

GROUNDWATER QUALITY AND MINERAL DEPOSITS RELATIONSHIPS IN THE OZARK MOUNTAINS

Ninety-nine groundwater sites were sampled in northern Arkansas in order to determine the effect of local manganese, phosphate, pyrite, lead-zinc and uranium mineralization on the groundwater chemistry. Most of this study (75 springs) was concentrated in the Batesville manganese district. Hydrogeochemical exploration for these types of manganese deposits appears possible with 44 percent of the springs within 2000 feet of mineralization having anomalous metal concentrations (especially manganese). Because only a few springs were sampled in the remaining areas, the results are not conclusive; however, only the pyrite and small lead-zinc deposit would appear worthy of additional investigation. None of the springs appeared to have geothermal water.

Eighteen of the springs exceed U.S. Public Health Service drinking water limits, but most only exceed manganese or iron limits. One spring exceeded the drinking water limits for lead. Thus, these carbonate spring waters are generally of good chemical quality.

Kenneth F. Steele

Completion Report to the U.S. Department of the Interior, Washington, D.C., September, 1984.

Keywords -- Groundwater, Water Quality, Mineralization, Trace Elements.

TABLE OF CONTENTS

....

Abstract .	• • •		•		٠	٠	•	٠		•	•	•	•••	•	•	•	•	•	•	•	i
List of Fig	jures	••	•	••	•	•	•	٠	٠	•	٠	•	٠	•	•	•	•	•	•	•	iii
List of Tab	oles .	••	•		٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	iv
Acknowledge	ements	•••	•	• •	٠	٠	•	٠	•	٠	•		3 . 2	•			٠		•	•	v
Introductio	on			•••	٠	٠	٠	٠	•	٠	•	•	٠	•	٠	•	•	٠	٠	•	1
Α. Ρι	irpose	and	0Ь	jec	tiv	/es		•	•	•	٠	٠	•	٠	•	•	٠	٠	•	•	1
B. Re	elated	Res	ear	ch	or	Ac	ti	vi	ti	es		•	•	٠	•	•	•	٠	٠	٠	1
Methods and	d Proce	dur	es		•	•	٠	٠	٠	•	•	•	٠	•	٠	٠	•	٠	٠	•	8
Principle A	inding	is a	nd	Sig	nit	fic	an	ice	2	•	•	•	٠	•	•	•	٠	•	٠	٠	12
Bates	ville A	rea	-		٠	•		•	٠	3 • 32		•	٠	•	•	•	•		•	•	12
(General	Ge	010	gy	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	٠	•	12
1	Mineral	iza	tio	n.	٠	•	•	•		•	•	•	•	2.00	•	•	·	•	•	٠	15
1	Water ()ual	ity		٠	•	•	•	•	٠	•	•	•	•	٠	•		•	•	٠	18
	Compari	ison	of	Wa	te	r (Che	em '	ist	try	1	•	٠	•	.•	•	•	•	•	•	27
	Geochen	nica	1 E	xpl	or	at	ior	n	•	•	•	•	•	•	•	•		•	•	•	30
Four	Mineral	lize	d A	lrea	s	-	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	40
	Genera	l Ge	010	рду	•	•	•	•	•	•	•	٠		•	•	•	•	•	•	•	40
	Water (Qual	ity	1.			•					•	•	•	٠	3•33		•	•	•	44
	Summary	y of	C ł	nemi	st	ry	•	•	٠	•	•	•	•		•	•		•	٠	•	47
Conclusion	s	• •	•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	55
Literature	Cited															-				-	57

ii

LIST OF FIGURES

																												Page
Figure	1	٠	•		•	•	٠	•	•	•	•		•	•	•	•	•	5.00	٠	•	•	•	•	•	٠	-	•	2
Figure	2	٠	٠	•	•	•	٠	٠	•	•	÷	•	٠		•	•	•			٠	•	•	•	٠		٠	٠	13
Figure	3	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	٠	•	٠	٠	٠	17
Figure	4	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	5.63	31
Figure	5	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•		•			33
Figure	5A	•	٠	•		•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	۲	•	•	•	•	34
Figure	6	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	٠	•	•	39
Figure	7	•	•	•	•		•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		41
Figure	8	٠	•	•	•		•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	43
Figure	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•	45
Figure	10		•						•	•	•	•			•	•	•			2. • .	•	•	•				•	46

LIST OF TABLES

5**2**3

a.

.

1.

-

343

																												Page
Table	1	•	•	•	•			•	•	•		•	•	•	•	•	•	•	•		•		•	•	•	•	•	3
Table	2	•	•	٠	٠	•	٠	•	•	٠	•	•	•		•	٠		٠	•	•		٠			•	•		7
Table	3	•	٠	٠	•	٠	٠	•	•	٠	•	•	•	٠	•	٠	•	•	•	٠	•	•	٠	٠	٠	٠	•	9
Table	4	•	•	•	•	•	٠	•	•	•	•		•			٠	•	•	•	•		•	•	•	٠	•	٠	10
Table	5	•	•	•	•	•	٠	•	•	•	•	•	٠		•	٠	•	•	•	•	•		٠	•	•		•	19
Table	<u>5</u> A	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	•	•	٠	•	٠	•	٠	٠	23
Table	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
Table	6A	•	•	•	•	•	٠	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	29
Table	7	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	٠	٠	35
Table	8	٠	•	•	•	•	•	•		•	•			٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	36
Table	9	•	•		•	•	•	•	٠			•	٠	•	÷		•	٠	•		•	٠	•	•	•	•	•	37
Table	10	•	٠	•	٠	٠	٠	٠	٠	•	٠	•	•	•	٠		•	٠	٠	•	•	٠	٠	•	٠	٠	٠	48
Table	10A	•	•	٠	•	•		•	•	٠	•	•	80	٠	•	•	•	•	•	•	•	•	•	•	•		•	50
Table	11	٠	٠	•	٠		•	٠	•	•	٠	•	٠	•	٠	•	•	•	•	•	٠		•	•	•	٠	٠	52
Table	11A	•	•	•	•	•	•	•	٠	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	53

iv

ACKNOWLEDGEMENTS

I gratefully acknowledge the local citizens of the study area for allowing their springs to be sampled and helping to locate many of the springs. Much of the field and laboratory work was carried out by Myles Overton and Ali Sadeghi. Mr. Overton also assisted in data reduction and aided in writing the general geology of the Batesville area.

I acknowledge the assistance of Pauline Mueller for typing this report and Gloria Wood for preparation of the typed tables.

INTRODUCTION

Ninety-nine springs were sampled in northern Arkansas in the vicinity of manganese, phosphate, pyrite, a small lead-zinc, and uranium deposits (Figure 1) in order to determine the effect of the mineralization on the groundwater chemistry. Springs were utilized in order to avoid metal contamination except for the use of a few wells in the phosphate area. Most of the springs have low discharge (less than 4 liters per minute) and issue from carbonate rock. Seventy-five of the springs are located in the manganese district because of the much larger extent of this deposit in comparison with the others. The spring locations are given in Tables 1 and 2 along with distance to nearest mineralization and the formation from which they issue.

A. Purpose and Objectives

Set.

The purpose of this study was to investigate the effect of manganese, phosphate, pyrite, lead-zinc, and uranium mineralization on groundwater chemistry in northern Arkansas. The objectives of this study were to:

- Evaluate the potential value of hydrogeochemical exploration for these types of mineral deposits.
- Determine the groundwater quality of these mineralized areas.
- Investigate the geothermal potential of the areas using silica geothermometry.
- B. Related Research or Activities

Figure 1. Manganese, lead-zinc, copper, molybdenum, phosphate, pyrite and uranium deposits in Arkansas. The specific study area sites are indicated by the letters M (Batesville Mn district), P (Peyton Creek phosphate area), B (Berryville pyrite area), C (Morrow lead-zinc deposit), and F (Friendship Creek U deposit). Map modified from Stroud et al. (1969).

C	Countrit	0	Township Dance	Locati	on n Quart	er S	ection	Formation	Distance to Mineralization (in feet)
Sample	county	Quau	Township Range	Jectio	ii quui c		courten		
м 1	TD	ST	T14NR7W	Sec	3 NW¥	NWł	NWł	0cj	850
M 2	ĪD	ST	T14NR7W	Sec	3 SWł	NEt	NE ¹	Mbn/Ocj	300
M3	ĪD	ST	T14NR7W	Sec	4 SEł	SEŁ		0cj	300
M 4	ĪD	ST	T14NR7W	Sec	3 SEł	SWł		Ospe/Ocj	1000
M 5	ĪD	MP	T14NR7W	Sec	4 NWł	NEt		Ospe/Ocj	1000
Mő	ĪD	MP	T14NR7W	Sec	4 NWł	NWł	SE ¹	Ospe/Ocj	1600
M 7	ID	MP	T15NR7W	Sec 3	3 NW 1	NE	NEŁ	Ospe/Ocj	2000
M 8	ID	MP	T15NR7W	Sec 3	3 NWł	NEł		Ospe/Ocj	2000
M 9	ID	ST	T15NR7W	Sec 2	I SWł	NE1		0spe	1800
M10	ID	BV	T14NR7W	Sec 2	6 SWł	NWł	SEł	Mbn	9200
M11	ID	BV	T14NR7W	Sec 2	7 SEł	NEł	SWł	S/Sc/Mbn	9800
M12	ID	BV	T14NR7W	Sec 2	2 NE 1	SE ¹	NWł	Mbn	3900
M13	ID	BV	T14NR7W	Sec 1	4 SE 1	SEł	NWł	S/Sc/Ocj	1300
M14	ID	BV	T14NR7W	Sec 2	3 NE¥	SEł	NEł	Ocj/Mbn	800
M15	ID	BV	T14NR7W	Sec 2	I SE l	SEŁ	SWł	Ospe/Ocj	2100
M16	ID	BV	T14NR7W	Sec 2	I SEł	SEŁ	SWł	Ospe/Ocj	1900
M17	ID	BN	T14NR6W	Sec 1	B SWł	SEł	NWł	0cj	1900
M18	ĪD	BV	T14NR6W	Sec 2	9 SWł	NWł		Ocj/Slsc	400
M19	ID	BV	T14NR6W	Sec 2	9 SWł	NWł		Ocj/Slsc	500
M20	TD	BV	T14NR7W	Sec 1	3 SWł	SWł	NEł	0cj	2200
M21	ĨD	BV	T14NR7W	Sec 1	I SEł	NWł	NWł	Ocj/Ospe	2300
M22	ĪD	ST	T14NR7W	Sec 1	I SE ¹	NWł	NWł	Ocj/Ospe	2400
M23	ĨD	ST	T14NR7W	Sec 1	I NW±	SEŁ	SEŁ	Ocj/Ospe	2700
M24	ID	BV	T14NR7W	Sec 1	I SWł	NEł	SEŁ SW	Ospe/Ocj	1200

TABLE 1. LOCATION OF SPRINGS, FORMATION FROM WHICH SPRINGS ISSUE AND DISTANCE OF SPRINGS TO NEAREST MINERALIZATION IN THE BATESVILLE AREA.

Sample	County*	Quad**	Township Range	Location	n Quarter Section	Formation ⁴	Distance to Mineralization (in feet)
M25	ID	BV	T14NR7W	Sec 11	SW1 NE1 SW1	Ospe/Ocj	1200
M26	ID	BV	T14NR7W	Sec 11	SW1 NE1 SE1 SE	1 Ospe/Ocj	1400
M27	ID	BV	T14NR7W	Sec 11	SWA NEA SWA	Ospc/Ocj	100
M28	ID	ST	T14NR7W	Sec 11	SWA NWA NWA	0cj	1200
M29	ID	MP	T15NR7W	Sec 32	SEŁ NWŁ SWŁ	Ospe/Ocj	1200
M30	ID	MP	T15NR7W	Sec 31	NE1 SE1	Ospe/Ocj	2000
M31	ID	MP	T15NR7W	Sec 32	SW4 NW4	Ospe/Ocj	400
M32	ID	MP	T15NR7W	Sec 32	SW& SE& SW&	Ospe/Ocj	1200
M33	IZ	MP	T15NR8W	Sec 10	SW1 SE1	Ospe	9200
M34	IZ	MP	T15NR8W	Sec 14	NE1 NE1 SW1	Ospe/Ocj	3600
M35	IZ	MP	T15NR7W	Sec 7	SE1 SW1 NE1	Ospe/Ocj	1900
M36	IZ	ST	T15NR7W	Sec 10	SEŁ NWŁ	Ospe	7100
M37	IZ	ST	T15NR7W	Sec 9	SEA NEA SEA	Ospe	6000
M38	IZ	ST	T16NR7W	Sec 34	SEł SEł	Ospe	12600
M39	ID	S R	T14NR5W	Sec 19	NWA NWA NWA	Ssc/Mbn	6100
M40	ID	SR	T14NR5W	Sec 11	NE ¹ SE ¹	Of/Soc	600
M41	ID	SR	T14NR5W	Sec 11	SEŁ SEŁ SWŁ	Of	1400
M42	ID	BV	T14NR6W	Sec 21	SEŁ NWŁ SEŁ	Mbn/Ocj	500
M43	ID	SR	T14NR6W	Sec 22	NE1 SW1 NW1	Of/Mbn	800
M44	ID	BD	T14NR7W	Sec 18	NW1 NE1 NE1	Ocj/Mbn	800
M45	ĪD	BD	T14NR8W	Sec 14	NE1 NW1 SW1	Ocj/S	200
M46	ĪD	BD	T14NR7W	Sec 8	SW1 SW1 NE1	S/Ocj	2000
M47	ĪD	BD	T14NR7W	Sec 8	SW1 SW1 NE1	S/Ocj	2100
M48	ĪD	MP	T14NR7W	Sec 9	NWA NWA SWA	Mbn/Ocj	600

TABLE 1. LOCATION OF SPRINGS, FORMATION FROM WHICH SPRINGS ISSUE AND DISTANCE OF SPRINGS TO NEAREST MINERALIZATION IN THE BATESVILLE AREA. (continued)

Sample	County*	Ouad**	Township Range	Location Section	n Quarter	Section	Formation ⁴	Distance to Mineralization (in feet)
Jumpre	county							
MAG	17	MP	T15NR7W	Sec 18	NW& NW	1	Ospe/Ocj	2400
MEO	17	MP	T15NR8W	Sec 34	SE ¹ SE	¥ NW¥	Ospe/Ocj	800
M51	17	MP	T15NR8W	Sec 33	NW4 NW	1	Mbn/Ocj	5300
M52	17	MP	T15NR8W	Sec 28	SW1 NE	1	Mbn/Ocj	5800
MES	17	MP	T15NR8W	Sec 35	SW1 SW	1 NW1	Ospe/Ocj	1400
M54	17	MP	T15NR8W	Sec 25	NE1 NW	1 SW1	Ocj/Ospe	3200
M55	in	ST	T15NR7W	Sec 34	SE1 NW	ł SWł	0cj	1600
M56	ID	ST	T15NR6W	Sec 31	NW1 SW	1	Ospe	3300
M57	ID	ST	T15NR7W	Sec 26	NE1 NW	a SEa	Ospe	6500
M58	ÎD	ST	T14NR7W	Sec 2	NE ¹ SE	ł SWł	Ospe/Ocj	2000
M50	TD	ST	T14NR7W	Sec 3	NE1 NE	1 SW1	0cj	2000
M60	ID	00	T15NR5W	Sec 20	NW1 SE	1	Mbn/Ospk	2200
M61	10	00	T15NR6W	Sec 26	NE ¹ SE	1	Ospe	9900
M62	10	00	T15NR6W	Sec 26	SE1 SW	1 SE1	Ospe	8800
M63	ÎD	00	T15NR6W	Sec 26	NE ¹ SE	1	Ospe	9300
M67	10	00	T15NR5W	Sec 30	NE ¹ SW	1 SE1	Ospe	8400
MGE	ID	BV	T14NR6W	Sec 9	SEŁ NE	1 NW1	0cj	200
M66	ID	ST	T15NR6W	Sec 33	NE1 SW	1 NE1	0spe	3600
M67	10	ST	T15NR6W	Sec 33	NE± SW	1 SW1	Ospe	3200
M60		10	T15NR6W	Sec 35	SW1 SE	1	Mbn/Ojpk	2900
M60	SH ID	00	T15NR6W	Sec 13	SW1 SE	1 NE1 SE1	Ospe	1900
M70	511 511	20	T15NR6W	Sec 13	SW1 SE	1 NE1 NE1	Ospe	1800
M71	511		T15NR6W	Sec 10	NW1 NE	1 SE1	Ospe	14800
M72	511	00	T15NR5W	Sec 17	SW1 SE	1	Ojpk	2500
r1/ 4	511					•	- •	

TABLE 1. LOCATION OF SPRINGS, FORMATION FROM WHICH SPRINGS ISSUE AND DISTANCE OF SPRINGS TO NEAREST MINERALIZATION IN THE BATESVILLE AREA. (continued)

TABLE 1. LOCATION OF SPRINGS, FORMATION FROM WHICH SPRINGS ISSUE AND DISTANCE OF SPRINGS TO NEAREST MINERALIZATION IN THE BATESVILLE AREA. (continued)

Sample	County*	Quad**	Township Range	Location Section	n Quarte	r Section	Formation [#]	Distance to Mineralization (in feet)
M73 M74 M75	SH ID ID	CC ST ST	T15NR5W T15NR6W T15NR6W	Sec 18 Sec 33 Sec 33	NE4 S SE4 N SE4 N	SEŁ NWŁ IWŁ SEŁ IWŁ NWŁ	Ospe Ospe Ospe	2100 2700 2000
* ID = ** BD = MP = / Ospe Oj = Op = Ok = Of = Oc =	Independer Bethesda I Mt. Pleas = St. Petr Joachim L Plattin L Kimmswick Fernvale I Cason Sha	nce IZ = 3V = Bates ant ST = er Sandsto imestone Limestone Limestone le	Izard SH = Shan sville CC = Cave Sandtown SR = S one and Everton L e	°p ≩City Sulfur Ro .imestone	ock e Ojpk		0jc	
Ssc = Slsc S = S Mbn = / = C	= St. Clai = Laffert Silurian = Boone Ch contact	r Limeston y Limeston ert	ne ne and St. Clair	Limesto	ne			

TABLE 2. LOCATION OF SPRINGS, FORMATION FROM WHICH SPRINGS ISSUE AND DISTANCE OF SPRINGS TO NEAREST MINERALIZATION IN PEYTON CREEK (P) PHOSPHATE AREA, BERRYVILLE (B) PYRITE AREA, MORROW (C) LEAD-ZINC AREA AND FRIENDSHIP CREEK (F) URANIUM AREA.

. .

Sample	County	* Quad**		Location			Formation ⁴	Distance
P76	SY	LE	T13NR14W	Sec 6	SW1 S	Mł	Pch/Mp	4600
P77	SY	LE	T13NR14W	Sec 6	SW1 S	Eł	Pch/Mp	4700
P78	VB	LE	T13NR15W	Sec 13	NE ¹ N	Eł	Pch/Pmm	5800
P79	VB	LE	T13NR15W	Sec 11	NE1 S	El	Pch	2200
P80	VB	LE	T13NR15W	Sec 11	NE ¹ S	El	Pch	2000
P81	SY	LE	T13NR15W	Sec 12	NW1 N	Al	Mp/Pch	1000
P82	SY	LE	T14NR15W	Sec 26	SW1 N	Eł	Mfb	1200
P83	SY	LE	T14NR15W	Sec 17	SEŁ N	NA	Mfb/Mp	17900
B84	CL	GV	T20NR25W	Sec 1	NW1 S	Eł	0c	3300
B85	CL	GV	T20NR25W	Sec 1	NE1 S	44	0c	3500
B86	CL	GV	T20NR25W	Sec 12	NE1 N	11	0c	0
B87	CL -	GV	T20NR24W	Sec 7	SW1 S	NA NWA	0c	3300
B88	CL	GV	T20NR25W	Sec 13	SEŁ N	11	0c	8000
B89	CL	GV	T20NR24W	Sec 5	SE ¹ S	11	0c	4500
B90	CL	GV	T21NR24W	Sec 26	NW1 SI	14	0c	25700
B91	EA	CL	T20NR26W	Sec 15	NW1 N	E4	0c	40000
C92	WN	EV	T14NR32W	Sec 31	SW1 N	17	Pch/Phb	5200
C93	WN	EV	T13NR32W	Sec 6	NW ¹ S	4	Pch/Phb	8200
C94	WN	EV	T13NR32W	Sec 5	NW1 SI	11	Pch/Mpfb	9600
C95	WN	LN	T14NR32W	Sec 4	NW1 SI	1	Pbh/Mpfb	28500
F96	WN	SA	T18NR23W	Sec 35	SEŁ SI	Et NEt	MDc/Mbn	5800
F97	WN	SA	T18NR29W	Sec 36	SEŁ SI	EA NEA	MDc/Mbn	2500
F98	WN	SA	T17NR29W	Sec 3	SE1 SI	Et NEt	Mbv/Mbn	12700
F99	WN	SA	T17NR29W	Sec 4	SW4 NI	14	Mbn	21000
* CL :	= Carroll	SY = Searcy	VB = Van Buren	WN = Washington				

** EA = Eureka Springs EV = Evansville GV = Grandview LE = Leslie LN = Lincoln SA = Sonora
Mbn = Boone Limestone Mbv = Batesville Sandstone MDc = Chattanooga Shale Mfb = Fayetteville
Shale and Boone Limestone Mmm = Middle Morrow Group Mp = Pitkin Limestone Oc = Cotter Chert
Pbh = Brentwood Limestone and Hale Formation Pch = Cane Hill Formation.

There are not many published studies concerning the use of groundwater chemistry in mineral exploration, the main thrust of this study. A few papers have been published concerning hydrogeochemical exploration for lead-zinc deposits (Steele, 1984 & 1983; Deering, 1982; Vales and Jurak, 1969 and Ginzburg, 1960) and many papers have been concerned with hydrogeochemical exploration for uranium (e.g., Langmuir and Chatham, 1980). Therefore, much of this present study is frontier-type investigation

METHODS AND PROCEDURES

Temperature, pH, conductivity and total alkalinity as mg/L CaCO₃ were determined in the field on raw water samples. The temperature measurements were not made in the springs but were made while conductivity was determined. Thus, the temperatures do not always reflect aquifer temperatures. A one liter sample and a 500 milliliter sample were filtered through a 0.4 micron pore-size membrane using a freon-pressurized unit. The one liter sample was acidified with three milliliters of 1:1 nitric acid for cation analyses in the laboratory. The 500 milliliter sample was refrigerated for anion, silica and ammonia analyses also at the laboratory.

U.S. Environmental Protection Agency (EPA, 1982) Hach Chemical Company (1976) and Standard Methods (APHA, 1975) methods were used for analyses. See Table 3 for summary of the analytical methods used. Table 4 gives the precision and detection limits for the analyses.

Springs were located from U.S. Geological Survey topographic

TABLE 3.	SUMMARY OF ANALYTICA	METHODS. THE	METHOD USED IS	INDICATED IN ()	IF NO (), THEN
	THE METHOD IS THE SA	ME AS OR SLIGHTL	Y MODIFIED EPA	(1982) METHOD.	

Parameter		Method
Temperature		thermometer
pH a		pH meter
Specific Conductivity		conductivity meter
Total alkalinity		titration to methyl red end point with 0.02N sulfuric acid (APHA, 1975).
NO3		colorimetry cadmium reduction (Hach, 1976)
NHa		colorimetry phenate (APHA, 1975)
PO_{4} (ortho, dissolved)		colorimetry ascorbic acid (Hach, 1976)
so ₄		colorimeter turbidimetric (Hach, 1976)
C1		colorimetry Mercuric nitrate (Hach, 1976)
Si0 ₂		colorimetry silicomolybdate (Hach, 1976)
Ca, Mg	AAS*	C ₂ H ₂ -N ₂ O flame, CsCl added
Sr AAS ³	* or	flame emission $C_2H_2-N_2O$ flame, CsCl added
Na, K, Li		flame emission H ₂ -air flame, CsCl added
Zn, Pb, Cd, Fe, Cu, Ni, Co, Mn		C ₂ H ₂ -air flame chelation - extraction method of Nix and Goodwin, 1974.

*AAS atomic absorption spectrometry.

	Variable	Precision	Detection Limits	Limits
Temperature	°C	± 0.5	0.50	
Specific Conductance	µmhos/cm at 25°C	± 5	2.00	
Alkalinity	ppm CaCO ₃	± 5	5	
рН		± 0.1	.01	$5 - 9^{1}$
P04 ⁻³	as P ppm	± 0.02	.01	
c1 ⁻	ppm	± 0.30	.30	250 ²
NH4+	as N ppm	± 0.02	.01	0.5 ²
SiO ₂	ppm	± 2.00	0.20	
s04 ⁻²	ppm	± 5.0	2.0	250 ²
NO3	as N ppm	± 0.5	.02	10 ¹
Cd	ррb	± 10%	1	
Zn	ррb	± 10%	2	5000 ¹
РЬ	ppb	± 10%	5	50 ¹
Fe	ррЬ	± 10%	10	300 ¹

TABLE 4. VARIABLE, PRECISION, DETECTION LIMITS AND RECOMMENDED LIMITS (for drinking water) FOR WATER CHEMISTRY PARAMETERS.

	Variable	Precision	Detection Limits	Limits
Cu	ppb	± 10%	1	
Ni	ppb	± 10%	4	
Со	ppb	± 10%	5	_
Mn	ррЬ	± 10%	2	50 ¹
Na	ppm	± 10%	0.1	
К	ppm	± 10%	0.1	
Sr	ppm	± 10%	0.002	
Ca	ppm	± 10%	1	200 ³
Mg	ppm	± 10%	0.05	150 ³

TABLE 4. VARIABLE, PRECISION, DETECTION LIMITS AND RECOMMENDED LIMITS (for drinking water) FOR WATER CHEMISTRY PARAMETERS. (continued)

¹EPA (1976) ²Public Health Service (1962) ³World Health Organization (1971)

maps and field dx cursions. Mange messed epositerand prospector popertions overe obtained monoxinate and variant of the second comparison of the s

Emesable sites were obtained from stroudeposits were obtained from Stroud

(1964). The THE ANA MURACINES is location was may prevalus known to the

author. Geologic worksheets were obtained from the Arkansas Geoknown to the author. Geologic worksheets were obtained from the logical Commission in order to determine/confirm the formations Arkansas Geological Commission in order to determine/confirm the from which the springs issue.

formations from which the springs issue

PREINCEIPLE FINDINGS AND SIEGNEFERANCE

Batesville Area

General Geology tock types associated with the Batesville manganese

The Back types associated with the Batesville manganese dis-

tridighcline linestine, schert, schertand standstand ranging mage and or doviding from Ordovician to Mississippian. The strata are essentially horito Mississippian. The strata are essentially horizontal with a dip of less than 0.20 zontal with a dip of less than 0.2 to the south and strike generto the south and strike generally eastward (McGowen, 1981 and Gordon, 1944) ally eastward (McGowen, 1981 and Gordon, 1944)

A generalized stratigraphic column from northern Arkansas is shown in A generalized stratigraphic column from northern Arkansas is Figure 2; however, not all of these rocks are exposed in the Batesville shown in Figure 2; however, not all of these rocks are exposed in manganesed istrict. Most of the springs issue from the Cotter, Everton, St. Peter, the Batesville manganese district. Most of the springs issue from Silurian and Boone Formations: and manganese mineralization is located the Cotter, Everton, St. Peter, Silurian and Boone Formations; and manganese mineralization is located predominantly in the Fernvale Limestone, with tonsomineralization is located predominantly in the Fernvale Eimestone, with tonsomineralization will esceive heigt descriptions below brief descriptionster of polonite consists largely of dolostone and nodular

The Cotter Dolomite consists largely of dolostone and nodular

The

System		Formation	Member
NA		Hartshorne ss. Atoka fm.	
LVANI		Bloyd sh.(undiff.)	Kessler ls.
ISYI	row		Brentwood ls.
PENN	Mor Gre	Hale fm.(undiff.)	Prairie Grove Cane Hill
SSISSIPPIAN		Pitkin ls. Fayetteville sh. Batesville ss. Ruddell sh. Moorefield fm. Boone fm.	Wedington ss. Hindsville ls.
MIR		Chattanooga sh.	Sylamore ss.
DEVONIAN		Penters chert	
SILURIAN		Lafferty ls. St. Clair ls. Brassfield ls.	
		Cason sh.	
		Fernvale ls.	
		Kimmswick ls.	
_		Plattin ls.	
CIAN		Joachim dol.	
IVOD		Everton fm.	
OR		Powell dol.	
		Cotter dol.	
		Jefferson City dol.	
		Roubidoux fm.	
		Gasconade-Van Buren fm.(undiff.)	Gunter
CAMBRIAN		Eminence-Potosi fm.(undiff.)	
		Pre-Potosi (undiff)	
PRE-CAMBRIA	N		

Figure 2. Generalized stratigraphic column for northern Arkansas. From Caplan (1957). =:....====-~~~~

cheenteranahoi is of Oradorciari andeage A rather thick section of diversion Limnesone (>210 feet) is is resear in the stady drearea. The Eventon Formation consists of officient and and and and and and and and the service service and the se Perestor Retion, Enmation of the Union of the Union of the Unitation of the United States of the Union of the nunetaithela and sente baissyille abrid and the source of antheniber, end and the set of the source of the set PERTVAIETFOMSGENDEN is 1981 upper Orbervicial 22 and the isperinvaring Equipate ately sorted upperodrigenties unit blog baise no official a generated a substrated beaueand ranges in color from aspectize to carter ink to motile Think farmation the massively obsolved and rangestion maximum the the second and the there are the second and th to anoter edapting and provide or black prefie and other dectronic the formation (maximum thickness 125 feet) weathers to a very dark gray, brown or manganese oxides and carbonates (Miser, 1940). Unmanganiferous imestone black, reflecting the occurrence of iron and manganese oxides and weatherselightwarger to youth in the lower hear Arcessney to her als include mant gaagse minerals, pyrithechenteragneests and ebsoppath neinerals include man defeeemandereens, pyrite, chert fragments and phosphate minerals (McGowen, 1981) Nanganesse and ferrugious manganese ores are widen uististr the

uted in the Cason Shale. The manganese oxides, mainly psilomelane Cason Shale. The manganese oxides, mainly psilomelane and braunite, occur and braunite, occur as irregular masses in thin horizontal seams as irregular masses in thin horizontal seams and beds, and in replaced algea and beds, and in replaced algea fossils (Miser, 1940). Although fossils (Miser, 1940). Although the maximum thickness of the formation is only

f2omeshal varies saous shale to samestome to dirpesone rotehosphonotehosphone

ville area. The shale is platy, calcareous, and clayey to silty Batesv; le area. The shale is platy, calcareous, and clayey to silty sandy in to sandy in texture. The sandstone unit consists of quartz and texture. The sandstone unit consists of quartz and phosphatic material in the phosphatic material in the form of shell fragments (Miser, 1922)

form of shell fragments (Miser, 1922) 14

14

to This is The uted Formation

The dominant Silurian formations in the Batesville district are the St. Clair and Lafferty Formations. The upper and lower most parts of the St. Clair are composed of thin-bedded calcilutite consisting mostly of well-cemented, fine-grained calcite; whereas, the middle unit is a calcirudite which contains accessory minerals which include manganese minerals, pyrite, fluorite, and glauconite (McGowen 1981) The Lafferty is composed of thin-bedded, compact, finegrained, earthy limestone. The contact between the St. Clair and Lafferty is gradational (Miser, 1940).

The Boone Formation in Figure 2 includes the St. Joe Formation. The St. Joe is a thinly bedded, coarse-grained calcarenite. Minor manganiferous minerals are present in the St. Joe in the Batesville district. The Boone Formation, Mississippian in age, is composed mainly of chert in the Batesville area, but also contains limestone with a little sandstone and shale (McMahon, 1957)

Although structural features are subtle in the district, anticlines, synclines, basins, arches, and faults are present (Miser, 1940). However, as a whole this district has undergone little deformation, having been warped slightly by minor folds and broken by a few normal faults (Gordon, 1944). The more prominent faults are in the southwestern part of the district and generally trend east-northeast (McGowen, 1981).

Mineralization

Manganese ore was first produced from the Batesville district in 1849 and continued until 1953, although mining was not continuous

during that period. All mining operation ended with cessation of the government stockpiling program of the 1950's. During that period about 196,000 long tons of ore of at least 35 percent manganese and 236,000 tons of 10-35 percent ferruginous manganese ore were mined at 189 mines and prospects (Kline and Ryan, 1956). Prospects, mines and springs are shown in Figure 3

Host rocks of the primary mineralization are the Fernvale Limestone and, to a limited extent, the Cason Shale and St. Joe Limestone. The manganese ore of the Batesville district consists mainly of oxides, six of which were identified by Branner (1940) as psilomelane, K $(Mn^{+2},Mn^{+4})_8 0_{16}$; hausmannite, $Mn^{+2}Mn^{+4}0_4$; manganite, Mn_20_3 H₂0; pyrolusite, $Mn0_2$; and wad, nMn0 H₂0. Coffey (1981) has identified additional manganese minerals of lithiophorite, $Li_2Mn^{+2}Al_8Mn^{+4}0_{35}$ 14H₂0; braunite, Ca $(Mn,Fe)_{14}^{+3}Si0_{24}$; bixbyite, $(Mn,Fe)_20_3$ and rancieite, $(Ca,Mn^{+2})Mn_4^{+4}0_9$ '3H₂0. In addition to the oxides, the manganese carbonate, rhodochrosite, $MnC0_3$; and the manganese silicates of bemenite, $Mn_8Si_60_{15}(OH)_{10}$, and neotocite, $Mn_2Fe_2Si_40_{13}$ '6H₂0 have also been identified by Miser (1922) and McMahan (1957). The primary minerals in their order of abundance are oxides, carbonates and silicates (Kline and Ryan, 1956)

The principle types of manganese deposits in this district are:

 Unaltered or slightly altered deposits of the primary minerals rhodochrosite, hausmannite, and braunite. These minerals are disseminated in the Cason Shale and the upper 15 to 50 feet of the Fernvale Limestone and the St. Joe Limestone under the protective

mantle of densely bedded Boone chert.

2. Irregularly distributed deposits of secondary oxides in residual clay caused by the weathering of the Cason Shale and the Fernvale Limestone. The deposits are in place under shattered and partly weathered Boone chert (Miser, 1922).

3. Deposits in residual clay and talus usually representing both vertical slumpage and downslope creep of secondary oxide deposits.

4. Placer deposits (Miser, 1922).

Stroud (1964) and McMahon (1957) suggest that synclines within the district were favorable sites of deposition for manganese mineralization with the structural high being unfavorable. McGowen

1981 concluded that these synclinal areas contain the greatest concentration of manganese and he also concluded the important synclines are confined to the west Lafferty basin in the southwestern part of Izard County and to the Glen Creek basin located on the southwest flank of the East Lafferty arch in the southwestern part of Independence county.

Water Quality

The spring water in the Batesville area is primarily a calciumbicarbonate type water with a hardness value of about 150 mg/L as $CaCO_3$ on the average; however, several of the springs (e.g., M66-M75) contain considerable magnesium and would be classed as calcium-magnesium, bicarbonate type water (Tables 5 and 5A). These values are consistant with the fact that most of the springs issue from carbonate rock or the contact between carbonate rock, and shale or sand-

C AND	S I 0 Z	16.0	14.6	15.6	11.6	15.6	16.6	16.6	16.6	15.6	16.0	13.2	11.4	14.5	1+1	15.5	16.0	14.1	12.5	13.2
ASUREM BY (.	\$0 4	10.1	11.2	8.5	8.5	11.9	10.1	10.1	9.5	8.5	10.1	9.5	11.2	8.5	7.6	8.5	8.5	10.1	8.5	· 9 • 5
BATESV MHOS/C HER ME ICATED SIGNS	EON	0.59	1.45	0.57	0.68	2.00	1.70	0.66	0.66	1.40	0.19	0.10	0.17	0.30	0.68	0.18	0.10	0.33	69.0	66.0
ALL DI ALL DI ALL DI ALL DI ALL DI ALL DI ALL DI ALL DI	♦HN	0.08	0.12	0.09	0.07	0.07	0.08	0.08	0.07	0.07	0.02	0.02	0.20	-0.01	E0.0	-0.01	-0.01	0.04	-0.01	-0.01
VSES FC CTIVITY CCILVITY ALUES BY MIN	СГ	2.1	3•0	11.3	1.4	17.4	10.5	9.8	4.2	25.6	1.8	1.1	2.4	17.3	14.2	3•3	3.1	12.2	4.4	4.0
N ANAL CONDUC AS NU SING V	P04	0.06	0.11	0.12	0.14	0.08	0.08	0.11	0.07	0.01	0.08	E0.0	0.19	0.10	0.06	0.03	0.09	0.01	0.01	0.04
ECTFIC 03-N03 RE IND	Н	8.9	8.7	8.0	6.5	7.0	7.3	7.4	7.5	•	6.5	7.3	6.8	6.8	5.8	6.6	6•9	4.9	7.3	7.1
ITS A	ALK	275	270	215	65	215	220	205	195	265	70	120	85	135	20	235	225	120	15	120
BER FIE BER CC AS CAC CEPTAC	COND	508	480	377	136	433	402	353	342	510	122	462	147	268	88	435	410	232	229	220
HE NUN HE NUN HE LE	TEMP	19.0	22.0	19.5	18.5	19.5	21.5	18.0	16.0	19.0	14.0	14.0	11.0	14.0	12.0	12.0	12.0	14.0	13.0	14.0
5. SPRI ID-SAMP Kalinity Ven in m Below d	DATE	68/10/01	68/20/01	68/70/01	10/07/83	E8/70/01	68/10/01	10/07/83	68/10/01	E8/10/01	11/25/83	11/25/83	11/25/83	11/25/83	11/25/83	11/25/83	11/25/83	11/25/83	11/26/83	11/26/83
TABLE TRICT. Alk=Al Are Gi Values	10	NO1	H02	EON	104 I	N05 1	M06 1	M07	M08 1	N09 1	M10]	111	N12 1	I EIN	N14 1	N15 1	N16 1	N17]	M18	N19 1

ID	DATE	TEMP	COND	ALK	PH	P04	CL	NH4	NO 3	S04	\$102	
H20	11/26/83	15.0	216	155	7.3	0.06	1.6	-0.01	0.12	6.2	14.1	
M21	11/26/83	14.0	146	75	7.3	-0.01	3.6	-0.01	0.19	14.8	8.3	
H22	11/26/83	14.0	145	268	7.0	0.11	4.0	-0.01	0.74	8.5	10.5	
M23	11/26/83	15.0	140	258	7.2	0.02	4.4	-0.01	0.74	10.1	8.6	
H24	11/26/83	16.0	313	190	7.2	0.03	3.1	-0.01	0.94	8.5	14.1	
N25	11/26/83	15.0	185	330	7.1	0.07	3.1	-0.01	1.09	7.6	14.1	
H26	11/26/83	16.0	215	378	7.1	0.20	3.6	-0.01	0.91	10.1	14.5	
H27	11/26/83	15.0	195	336		0.14	3.3	-0.01	0.98	8.5	16.0	
H28	11/26/83	16.0	330	205	7.7	0.07	3.6	-0.01	0.88	8.5	14.1	
H29	11/26/83	26.0	235	160	7.5	0.06	4.2	-0.01	0.14	10.1	15.0	
M30	11/26/83	14.0	171	75	5.7	0.20	3.1	-0.01	1.14	10.1	9.6	
M31	11/26/83	14.0	366	210	6.5	0.10	2.2	0.15	1.14	8.5	14.1	
N32	11/26/83	14.0	458	255	6.2	0.06	0.9	0.44	0.14	8.5	11.4	
M33	01/13/84	14.0	238	135	7.2	-0.01	5.5	0.04	0.60	11.2	11.6	
834	01/13/84	6.0	117	60	7.7	0.03	10.0	0.06	0.01	12.5		
M35	01/13/84	13.0	125	186	7.0	0.03	1.3	0.07	0.83	10.1	18.8	
M36	01/13/84	13.0	223	140	6.8	0.01	2.5	0.05	0.86	10.6	16.7	
M37	01/13/84	11.0	269	155	6.5	0.01	4.0	0.06	0.80	11.9	12.3	
M38	01/13/84	10.0	234	145	6.6	0.04	4.8	0.11	0.78	10.1	17.8	

TABLE 5. SPRING WATER FIELD AND ANION ANALYSES FOR THE BATESVILLE DIS-TRICT. ID-SAMPLE NUMBER COND-SPECIFIC CONDUCTIVITY, MICROMHOS/CM 25 C ALK-ALKALINITY, MG/L AS CACO3 NO3-NO3 AS N, MG/L. ALL OTHER MEASUREMENTS ARE GIVEN IN MG/L EXCEPT FOR PH. MISSING VALUES ARE INDICATED BY (.) AND VALUES BELOW DETECTION LIMITS ARE INDICATED BY MINUS (-) SIGNS.

10	DATE	TEMP	COND	ALK	PH	P04	CL	NH4	KO3	S04	\$102
M39	01/14/84	12.0	176	100	7.2	0.05	2.5	0.05	80.0	10.1	13.0
M40	01/14/84	12.0	315	180	7.0	0.20	4.3	0.17	0.10	13.6	17.8
841	01/14/84	4.5	144	80	7.3	0.05	9.5	0.01	0.14	10.1	12.6
M42	01/14/84	11.0	179	110	7.5	0.06	4.8	0.06	0.22	11.9	12.8
H43	01/14/84	12.0	290	135	7.1	0.17	2.8	0.10	0.11	10.6	15.8
844	01/14/84	4.0	227	25	7.6	0.01	53.5	-0.01	0.18	17.7	13.0
N45	01/14/84	7.0	367	180	•	0.05	6.0	0.02	0.32	13.6	10.7
N46	04/12/84	21.0	313	245	6.6	0.20	1.2	0.07	0.08	8.5	9.2
H47	04/12/84	16.0	177	85	7.0	-0.01	4.4	0.07	0.58	10.1	10.2
M48	04/12/84	20.0	154	80	7.8	0.33	4.7	0.07	0.38	12.5	11.3
H49	04/12/84	14.0	207	125	6.2	0.04	3.0	;0.07	0.27	10.1	9.2
M50	04/12/85	8.0	221	115	7.4	0.03	3.0	0.06	0.36	7.6	10.6
M51	04/13/84	20.0	55	30	7.5	0.06	7.7	0.12	0.17	10.1	10.6
M52	04/13/84	18.0	171	100	6.6	0.01	4.7	0.11	0.88	10.1	9.9
N53	04/13/84	18.0	376	230	7.2	0.14	2.1	0.11	0.35	11.2	12.4
854	04/13/84	16.0	295	150	7.2	0.05	1.4	0.09	0.35	10.6	7.0
N55	04/13/84	18.0	3	10	7.8	0.03	1.9	0.09	·0.02	11.2	9.9
M56	04/13/84	21.0	194	110	•	0.11	1.9	0.10	0.27	10.1	8.6
M57	04/13/84	16.0	106	5	6.4	0.02	12.8	0.12	1.09	10.1	7.9

TABLE 5. SPRING WATER FIELD AND ANION ANALYSES FOR THE BATESVILLE DIS-TRICT. ID-SAMPLE NUMBER COND-SPECIFIC CONDUCTIVITY, MICROMHOS/CM 25 C ALK-ALKALINITY, MG/L AS CACO3 NO3-NO3 AS N, MG/L. ALL OTHER MEASUREMENTS ARE GIVEN IN MG/L EXCEPT FOR PH. MISSING VALUES ARE INDICATED BY (.) AND VALUES BELOW DETECTION LIMITS ARE INDICATED BY MINUS (-) SIGNS.

ID	DATE	TEMP	COND	ALK	PH	P04	CL	NH4	NO3	S04	SI02
M58	04/13/84	18.0	342	185	6.8	0.16	2.8	0.11	0.64	11.2	7.9
N59	04/13/84	17.0	290	180	6.2	0.10	3.0	0.10	0.80	8.5	12.8
M60	06/11/84	11.0	288	105	7.8	0.01	11.0	-0.01	0.70	9.2	12.2
M61	06/11/84	18.0	251	160	7.5	0.17	2.3	0.78	0.22	7.4	11.8
M62	06/11/84	14.0	289	180	7.6	0.15	2.8	0.66	0.70	5.7	14.0
M63	06/11/84	15.0	252	150	8.0	-0.01	1.6	0.64		6.3	11.4
M64	06/11/84	17.0	81	45	7.1	-0.01	2.4	-0.01	0.42	10.3	9.8
M65	06/11/84	12.0	271	150	8.0	0.05	1.5	-0.01	0.08	9.8	11.8
M66	06/11/84	26.0	294	170	8.3	0.03	2.3	-0.01	0.17	7.4	9.8
H67	06/11/84	26.0	289	165	8.4	0.05	2.0	0.08	0.18	7.9	9.1
M68	06/11/84	25.0	400	295	8.3	0.02	3.3	-0.01	0.22	9.2	14.0
M69	06/12/84	14.0	317	155	6.5	0.84	4.0	-0.01	0.10	10.3	18.4
H70	06/12/84	21.0	356	210	7.1	1.90	10.5	0.01	0.10	9.8	13.5
M71	06/12/84	12.5	331	165	7.7	0.74	2.5	0.05	0.07	9.2	11.8
H72	06/12/84	17.0	336	165	7.1	3.62	11.0	-0.01	0.06	6.3	14.9
N73	06/12/84	16.0	260	85	7.1	1.60	3.5	0.01	0.06	4.2	9.1
H74	06/12/84	17.0	331	165	7.6	1.39	2.0	-0.01	0.01	11.0	9.8
N75	06/12/84	17.0	371	175	7.5	1.30	2.5	-0.01	0.05	9.8	11.8
TABLE 5A. CATION ANALYSES SPRING WATER SAMPLES FROM THE BATESVIL. DISTRICT. NA, K, CA, AND MG VALUES ARE IN MG/L AND ALL OTHER VALUES ARE IN UG/L. MISSING VALUES ARE GIVEN AS (.) AND VALUES BELOW DETECTION LIM-ITS ARE INDICATED BY MINUS (-) SIGNS.

	MN	FE		CO		ZN	CD				MG	
101	108	21				-3		2.0	70		3.5	0.070
MOZ	670	71	30			25		.5	2.00	04.0	2.3	0.054
M03	20							3.0	.00	18.0	.5	0.039
104	27		-5					.1	0.80	.0	5.3	0.020
M05	33							5.0	0.70		4.3	0.040
106					24			3.	.20	16.0	5.3	0.040
M07		-8		-3	10			5.0	2.60	12.0	2.6	0.036
108			-5					2.3	1.	12.0	3.	0.038
N09		427			20				0.40	.0	30.7	0.034
M10			-5					3.3	0.70	23.0	.9	0.019
								3.5	.00	.0	.6	0.045
H12	907	958	51					3.3	3.	30.0	- 1	0.021
Ml								10.0	.20	45	.5	0.039
	164	327	25			254		7.2	1.00	8.0	.5	0.021
								2.8	2.30	74.0	14.	0.047
M16					20			2.4	0.90		3.8	0.050
						30		5.3	2.00		3.	0.026
M18								3.1	1.	• 8	3.1	0.030
W18							-1	3.	0.07	46.0		0.027

TABLE 5A. CATION ANALYSES OF SPRING WATER SAMPLES FROM THE BATESVILLE DISTRICT. NA, K, CA, AND MG VALUES ARE IN MG/L AND ALL OTHER VALUES ARE IN UG/L. MISSING VALUES ARE GIVEN AS (.) AND VALUES BELOW DETECTION LIM-ITS ARE INDICATED BY MINUS (-) SIGNS.

ID	MN	FE	NI	CO	CU	PB	ZN	CD	NA	ĸ	CA	MG	SR
M20	4	56	49	3	7	5	15	2	2.2	0.9	51	2.4	0.026
M21	4	13	6	-3	3	13	10	2	1.3	0.6	20	7.6	0.019
H22	6	47	-5	3	5	5	3	-2	2.8	1.3	39	12.8	0.033
H23	6	15	-5	-3	7	10	ં ૩	-2	2.8	1.2	39	13.2	0.030
H24	141	35	3	14	3	38	23	6	2.5	1.0	76	5.0	0.036
N25	13	31	-5	-3	7	15	14	1	2.5	0.7	102	4.2	0.033
M26	32	71	-5	3	5	25	8	1	2.5	1.0	70	8.8	0.039
H27	4	21	9	8	13	30	19	5	2.7	0.9	70	4.1	0.036
M28	64	24	19	8	10	21	16	5	2.4	0.8	70	4.7	0.039
M29	150	59	19	3	17	38	27	6	2.4	0.7	64	3.8	0.039
M30	10	13	9	3	7	13	12	4	1.6	2.3	28	6.2	0.019
N31	15	47	-5	3	2	5	5	1	1.6	0.6	69	6.8	0.036
M32	11	8	-5	3	7	10	19	-1	1.6	0.7	80	21.6	0.047
M33	20	47	-5	-3	7	10	17	2	2.2	1.0	39	12.0	0.030
H34	11	55	10	З	9	30	11	1	0.8	0.3	20	6.6	0.017
N35	3	47	5	3	16	20	19	1	1.6	0.6	25	11.8	0.021
M36	-2	-4	-3	-3	-3	-5	3	-2	1.4	0.6	29	14.6	0.027
M37	-2	31	-5	3	5	10	3	1	2.4	1.3	33	16.4	0.030
M38	12	13	3	3	3	13	12	3	3.5	2.6	29	15.4	0,036

TABLE 5A. CATION ANALYSES OF SPRING WATER SAMPLES FROM THE BATESVILLE DISTRICT. NA, K, CA, AND MG VALUES ARE IN MG/L AND ALL OTHER VALUES ARE IN UG/L. MISSING VALUES ARE GIVEN AS (.) AND VALUES BELOW DETECTION LIM-ITS ARE INDICATED BY MINUS (-) SIGNS.

I D	MN	FE	NI	CO	CU	PB	ZN	CD	NA	K	CA	MG	SR
M39	Z	47	5	3	14	10	5	1	2.5	1.2	38	3.0	0.030
N40	3	7	-3	-3	3	5	27	-2	2.4	0.3	80	1.1	0.027
N41	6	18	6	3	З	21	15	6	2.0	1.5	34	1.2	0.021
N42	3	10	-3	3	3	5	7	2	3.5	1.5	36	2.6	0.026
N43	4	7	-3	3	-3	-5	7	-2	1.9	0.9	62	2.2	0.030
844	6	13	3	-3	3	-5	6	-2	30.0	1.4	10	3.0	0.019
N45	18	13	3	3	3	13	10	-2	2.2	0.7	66	3.7	0.039
N46	-2	26	5	-3	5	5	5	-1	1.0	0.5	90	0.1	0.034
847	-2	20	-5	-3	5	5	-3	-1	3.4	2.0	29	2.0	0.033
M48	198	108	40	20	2	71	19	4	2.4	1.4	27	1.3	0.044
H49	30	26	10	6	9	20	11	1	1.8	0.9	28	8.8	0.036
M50	6	13	-5	-3	7	-5	3	-1	1.8	1.1	39	2.0	0.024
M51	3	26	-5	-3	2	-5	-3	-1	1.0	0.9	7	0.1	0.024
N52	30	37	6	5	-2	8	4	1	1.6	1.1	33	1.1	0.032
M53	7	30	-6	5	2	4	14	1	1.4	0.6	85	2.5	0.046
854	10	15	6	2	2	-4	29	1	1.4	0.7	42	15.2	0.032
H55	-1	28	-6	2	7	-4	11	1	1.2	0.5	2	0.1	0.018
N56	39	-8	-6	2	2	-4	4	-1	1.4	0.3	26	10.4	0.022
N57	39	-8	6	13	2	4	14	-1	7.4	0.9	-1	5.9	0,024

TABLE 5A. CATION ANALYSES OF SPRING WATER SAMPLES FROM THE BATESVILLE DISTRICT. NA, K, CA, AND NG VALUES ARE IN MG/L AND ALL OTHER VALUES ARE IN UG/L. MISSING VALUES ARE GIVEN AS (.) AND VALUES BELOW DETECTION LIM-ITS ARE INDICATED BY MINUS (-) SIGNS.

ID	MN	FE	NI	CO	CU	PB	ZN	CD	NA	к	CA	MG	SR
M58	5	15	-6	5	2	8	5	-1	1.6	0.4	59	15.2	0.044
M59	4	15	-6	5	2	4	7	1	1.8	0.6	64	2.0	0.046
M60	2	8	-6	2	2	-4	4	-1	6.2	1.5	50	6.3	0.024
M61	1	8	-6	-2	2	8	6	-1	1.4	0.6	32	16.0	0.026
M62	-1	8	-6	-2	2	13	4	1	1.4	0.8	34	16.8	0.031
M63	7	8	-2	-4	1	1	-1	-1	1.0	0.8	29	16.0	0.042
H64	1	-8	-6	-2	2	-4	3	-1	1.8	1.0	7	4.1	0.020
M65	32	15	12	5	2	21	8	1	2.1	1.3	50	4.1	0.030
M66	11	15	6	-2	2	13	4	-1	2.1	1.1	37	17.2	0.034
M67	67	22	23	2	-2	13	5	-1	1.6	0.9	37	17.6	0.032
M68	75	15	17	5	-2	30	8	2	2.1	0.6	61	20.8	0.040
M69	4	8	12	-2	2	13	10	1	2.1	0.9	26	16.8	0.025
M70	2	-8	-6	2	2	13	4	-1	5.1	0.8	45	23.6	0.044
N71	-1	-8	-6	-2	2	13	8	1	1.4	0.9	39	20.0	0.034
M72	4	8	17	-2	7	13	11	-1	10.0	3.1	36	16.8	0.048
H73	4	8	6	2	2	4	6	4	1.8	0.6	31	13.2	0.038
N74	2	-8	-6	2	2	4	3	-1	1.4	0.6	42	16.4	0.044
M75	5	8	-6	2	2	8	7	1	1.8	1.2	41	20.8	0.042

stone.

Generally the spring water of this area is of good quality based on the chemical analyses performed. However, 11 springs out of 75, exceed drinking water imits (Tables 4, 5 and 5A). All 11 springs (Number 1, 2, 9, 12, 14, 24, 28, 29, 48, 67 and 69) exceed the limits for manganese and/or iron. It should be noted, however, that the manganese and iron imits are set because of staining problems rather than for health reasons. Additionally spring 48 with a lead concentration of 71 ppb exceeds the 50 ppb drinking water limit (Tables 4 and 5A).

Comparison of Water Chemistry

Although there is an overall general similarity of the spring water chemistry in the Batesville district and other carbonate areas there are some slight differences. Tables 6 and 6A give the range of values and median values for spring water samples from several areas in northern Arkansas and Joplin, Missouri. The Ponca, Rush, Zinc and Joplin areas are all lead-zinc mineralized areas. Also it should be noted that data for carbonate units 1 and 2 are based on unfiltered water Tables 6 and 6A).

The Batesville district spring water is slightly higher in orthophosphate, based on median values, than the other areas listed in Table 6. This slightly higher phosphate value might be indicative of some contamination; however, as ammonia, chloride and nitrate values do not appear to be elevated, this interpretation does not seem warranted. Another explanation of the slightly higher phosphate could

27

TABLE 6. COMPARISON OF SPRING WATER FIELD AND ANION DATA. THE TOP VALUES ARE THE RANGE AND THE BOTTOM VALUE IS THE MEDIAN VALUE. SEE FOOTNOTE FOR JOPLIN DATA. NUMBERS IN () ARE THE NUMBER OF SAMPLES FROM EACH AREA.

Area	Specific Cond. 25 C	Alkalinity as mg/l CaCO ₃	рН	PO4 ⁻³ as P ppm	C1 ⁻ ppmį	NH ⁺ as ⁴ N ppm	SiO ppm ²	SO ^T ppm	NO3 as N ppm
Ponca ¹ (48)	12-447 302	15-358 183	5.2-8.0 7.4	<.0147 .01	.6-4.3 2.0	<.01-1.56 .07	3.1-7.8	<5.0-23.5 5.9	<.02-1.30 .14
Rush'(52)	136-546 348	70-410 195	6.8-8.3 7.6	<.0117 <.01	.9-45.1 4.2	<.0150 .02	4.2-7.9 5.9	<5.0-55.0 8.5	<.03-20.23 .33
Zinc ¹ (43)	168-552 348	90-315 205	6.5-7.8 7.3	<.0107 .01	1.3-6.5 2.2	<.01-2.34 .04	4.6-8.5 7.0	<4.2-11.9 5.0	<.02-2.20 .'3
Northern Arkansa Carbonate unit 1 (16)	s ² 192-451 270	85-207 140	7.0-8.4 7.5		1.5-16.0 3.4	0	6.0-11.0 7.4	<.4-9.0 2.5	.02-13.0 3.4
Carbonate unit 2 (15)	320-600 329	140-282 169	7.6-8.4 7.9		1.5-4.2 3.5		8.2-14.0 11.1	<.4-8.0 2.2	1.4 - 3.9 2.6
Joplin ³ (3)	-	136	7.2	-	-	-			
Washington ⁴ Co., AR (10)	-		-	<.0109 .01	-	-			11.0-4.6 5.6
Batesville ⁵ (75)	3-510 252	5-378 155	5.7-8.9 7.2	<.01-3.62 .06	2.9-53.5 3.3	<.0178 .05	7-18.8 12.8	4.2-17.7 10.1	.01-2.00 .34
Data from Steel Data from Lammo Data from Procte Data from Couch	e (1983). nds and Si or et al. lin (1975)	tephens (196 , (1977). A	9). Verage va	lues for	alkalini	ity and pH.	Maximun	n values fo	or metals.

5^{Data} from Coughlin (1975). Data from this study.

TARLE 6A	COMPARISON OF SPRING WATER CATIONS. THE TOP VALUES ARE THE RANGE AND BOTTOM VALUE IS THE	MEDIAN
TADLE UN.	SEE FOOTNOTE FOR JOPLIN DATA. NUMBERS IN () ARE THE NUMBER OF SAMPLES FROM EACH AREA.	

Area	Zn	РЬ	Cd	Fe	Mn	Nі	Со	Cu	Na	K	Са	Mg	Sr
	ppb	ррЬ	ppb	ppb	ppb	ррь	ррь	ppb	ppm	ppm	ррш	ppm	ppb
Ponca ¹ (48)	<1- 63 10	<4-100 13	<1-2 2	<3.373 18	<1- 57 4	<3-33 11	<1-27 4	<2-13 3	.1-6.7	.4-1.4 7	2-98 65	.5-11.9 2.4	22-272 42
Rush (52)	4-252	<4-40	<1-3	<3-36	<3-22	<1 -16	<1-18	<2-11	.8-20.0	.4-4.1	22-118	.7-34.5	17- 90
	12	6	2	6	<4	5	8	<3	1.9	.7	64	1.6	41
Zinc ¹ (43)	6-214	<8-48	<2-6	<11-50	<1-97	<4-18	<5-21	<2-2	1.2-4.2	.5-2.5	35-100	1.1-30.8	22-70
	25	24	<2	12	4	7	9	<6	1.8	1.0	68	3.1	46
North. Arkansas Carbonate Unit (16)	2			<10-200 30	<10-10 <10	-	-	-	1.6-12.0 2.0	.6-1.5 .8	41-105 52	.9-10.0 1.2	
Carbonate Unit (15)	2 -			<10-100 80	- <10	-			1.8-2.0 2.0	.8-1.5 1.2	26-65 53	5.2-37.0 25.0	
Joplin ³ (3)	200	6		11	-	-		1.5	-	-			
Wash Co, AR ⁴	<2-381	<1-2	<.2-1.0	<1-46	< 4-36	<2-5	2-6	<1-9	3-18	.9-3.5	30-75	1-2	25-41
(10)	20	<1	<1	<2	1	<2	4	<1	5	1.8	54	2	38
Batesville ⁵	<1-254	1-80	<1-15	2 - 958	<1-907	1-49	1-29	1-20	.8-30.0	.1-3.7	<1-111	.1-30.7	17-70
(75)	10	10	1	15	6	3	3	2	2.2	0.9	39	5.0	33

l

) Joata from Steele (1983). Spata from Lammonds and Stepphens (1959) Data from Proctor et al., (1977). Average values for alkalinity and pH. Maximum values for metals. Joata from Coughlin (1975). 5 Data from this study.

Note: ppb = #g/1

0

+

be the the probability of the rooks of a field structure. Slightly by thigher median sulfate and stild valued suggests the top the probability of the second structure of the st

Although the concentration of theavy metals in the cambonate-type groundwater in nonnethean ansate sets were not a very hydrogeownerse charpionalion place patriem places provide some of the set of t

- 1. 155 mgg/L CaCO3 (alkabihity)ity) = =1555 mg/g/L++500 mgg/meeq = 3.11 meeq//Lx x 61 mg/meg/meg1+mg1/mmg/mersotes =13.11 mmersotes/bror100-2.5M HCO3;
- 2. (H^+_{++}) $(CO_{3}^{-}-)/(HCO_{3}) = 100^{-10}.3^{3} = (100^{-7}.2) (COO_{3}^{-7})/(1012.5^{-5}) (COO_{3}^{-7})/(1012.5^{-5}) (COO_{3}^{-7})/(1012.5^{-5}) = 100^{-10}.3 \times 1002.5/10/102^{-7} = 10^{-5}.6$

3.
$$(Mn^{2+}_{2+})$$
 $(CO_{3}^{2-}) = 7019.3^{-9.3}$
 $(Mn^{2+}_{2+}) = 10^{-9.3}/10^{-5.6} = 10^{-3.7}$ for $10.974^{-3.7}$

1.32.Al-th30155sulfate conditions reasonable Geochemical Lower

Figure 44 Stability briel a tionse antoing some ngangeness composed as into moder to the second state of t

",**-0**..'.'.Mn10.∎

Wher transmit interange and proson programmating at the management and the rict, Besteriaily Ruid istraiger Correction 1, 19981, Allo of the Charlestof for the last analyzed of the thoutawatert san mated shandlissand gi botheration production ts (Table rogics steel digainst the following correlation coefficients when regressed against mangenese: Fee (0.7749(3,0), Ni (6.96050685), Coo (0.966649(4), Cuu (0.942649(4), Ptb (0.967673)5), Zn(0.2089), and 6d (0.5587). Ald of these contraction coefficients have alphavarleest 26.0009. See Serguriseus and sands 56xampres of less frethess; ons. gressions. Therefore, threshold values were determined for all the therefore, threshold values were determined for all the transition metals using the transition metals using the methods of Sinclair (1976) and Lepeltier methods of Sinclair (1976) and Lepeltier (1969). The thresholds and number of springs (1969). The thresholds and number of springs with anomalous metal with anomalous metal concentrations are given in Table 7. There are 25 springs out concentrations are given in Table 7. There are 25 springs out of the of the 75 collected in the Batesville district with anomalous values; however~ note that 75 collected in the Batesville district with anomalous values; however, there are only 8 anomalous metal values that do not have corresponding manganese note that there are only 8 anomalous metal values that do not have coranomalous concentrations. From Table 7 it is apparent that, manganese is the best responding manganese anomalous concentrations. From Table 7 it is indicator of the manganese mineralization; however, nickel and cobalt, especially in apparent that manganese is the best indicator of the manganese mineralcombination, also indicate the mineralization ization; however, nickel and cobalt, especially in combination, also indicate the mineral springs exhibit a relationship with distance to nearest The anomalous springs exhibit a relationship with distance to mineralization lables, 8 and 9 and Figure 6). Dilution of the manganese nearest mineralization (Tables 8 and 9 and Figure 6). Dilution of the congeneration on the through beneficially and the province of from mineralization due to mixing with "non-unique" water Only 44 to mixing with "non-unique" water. Only 44 percent of the springs within 2000 feet of percent of the springs within 2000 feet of known mineralization were known mineralization were Thus, hydrolgeic and chemical factors such as solubrility anomalous. of the gavious on an an an an arrange of the state of the second states of the second well as character well pash the yrown are jow path (i.e., the groundwater

i.e., anomalous.(0.2089)Table ,

~ W 🖬 🛛 🔍

~ =

~ Z

~ 0 ..J ~ Ζ

..

כ

Element	<u>Mn</u>	Fe	Ni	Со	Cu	Pb	Zn	Cd
Threshold	32	186	14	4	16	41	46	9
# of Anomalous Springs	17	3	11	9	3	2	2	2
# of Anomalous Springs Without Mn Anomalies		0	2	3	1	0	1	1

TRABLE 7. JURESHOLD VALUES AND NUMBER OF ANOMALIES BY ELEMENT FOR THE BATESVILLE DISTRICT. CONCENTRATEIONS ARE Hg/L.

TABLE 8.	RELATIONSHIP BETWEEN NUMBER OF	ANOMALOUS S	SPRINGS AND	DISTANCE T	O NEAREST	MINERALIZATION
	IN THE BATESVILLE DISTRICT.					

	Distance to N	earest Mineralization (f	eet)
	0-2000	2000-4000	>4000
Number of Anomalous Springs	15	7	3
Number of Springs	34	26	15
Percent Anomalous Springs	44	27	20

TABLE Metal To Nei 2-ever	CONCENT CONCENT REEST MI	DF SP RATION NERALI KIMMSW	RINGS Sation Zation Ick, 6	IN THE L UNIT AND F LAFFE	BATES S ARE ORM RE RTY/ST	VILLE IN UG/ PRESEN	AREA WI L: DIS T: FORM R, AND	TH AND T-0151 ATION 7-800N	MALOUS H Ance in HITH 1-C E.	FEET DTTER,
ID	NK	FE	IN	CD	CU	P.B	NZ	CD	1210	FORM
101	108	21	e	e	٢	-5	6-	4	850	-
402	670	11	30	e	٢	30	25	m	300	1
80H	33	18	ç	e	6.	5	15	2	1000	2
90H	10	15	ŝ	e	2	24	73	2	1600	2
404	9E	427	15	Ē	14	20	42	8	1800	2
01N	-7	-8	5	6-	2	-5	Ÿ	15	9200	1
TTN	4	13	14	9	61	17	14	4	9800	2
412	106	958	11	29	20	80	32	14	3900	2
N13	47	13	6	Ē	Ĩ	S	11	•	1300	þ
414	164	327	25	9	ŝ	10	254	2	800	1
N18	4	٢	14	9	6-	21	8	•	400	9
N20	•	56	49	e	٢	ŝ	15	2	2200	1
H24	141	35	e	14	æ	3 6	23	9	1200	2

HEAVY 1 FEET .cotter,	
DAALOUS TANCE IN WITH 1- NE-	
11H AN 51=D15 81=D15 MAT10N 7=B00	5
AREA W	11
ILLE NUG/IN UG/IN RESENT	00
BATESV ARE I RM REF	5
IN THE L UNITS AND FD -LAFFER	U J
A I NGS	ĨN
OF SPI LERALION	5
LIST NCENTS ST HIN	MM
BLE 9. Tal co Neare Everto	
	1 D

1D	NW	FE	IN	CO	сп	P B	NZ	CD	1210	FORM
N26	32	11	-5	Ē	ŝ	25	8	I	1400	2
N27	4	21	6	8	13	90	19	5	100	2
M28	64	24	19	8	10	21	16	2	1200	1
M29	150	59	19	m	11	38	27	Q	1200	2
N35	æ	47	2	e	16	20	19	1	3500	2
N48	198	108	10	20	2	11	19	4	600	2
M56	39	- 8	-6	2	2	4	-	1	3300	2
N57	39	81	þ	13	2	4	14	1	6500	2
M65	32	15	12	2	2	21	8	T	200	1
N67	67	22	23	2	-2	13	2	7	3200	2
89W	75	15	17	ŝ	7-	9 C	8	2	2900	7
N72	Ŧ	8	17	-2	7	13	11	7	2500	æ
~N~~"										
"										

38

~O"".QNNNN~~~

may never have come in contact with the mineralization) are important factors in controlling anomalous metal concentrations of the ground-water.

The latter statement above indicates that there could be a relationship between the formation from which a spring issues and anomalies. Fifty percent $\binom{4}{8}$ of the springs from the Cotter Formation have anomalous values, 29 percent $\binom{12}{42}$ from the St.Peter-Everton, 29 percent $\binom{2}{7}$ from the Silurian Formations and 50 percent $\binom{7}{14}$ from the Boone-St.Joe. Although there are not a sufficient number of springs from some of the formations to allow conclusive interpretation, there appears to be a relationship between the anomalous springs and formation (Table 9).

There are no unusually high silica values for springs in this area that would suggest a geothermal source of some of the water.

÷.

Four Mineralized Areas

General Geology

There are two phosphate mineralized areas in the Peyton Creek vicinity of Highway 65 south of Leslie (Figure 7). The most southerly and less mineralized deposit is the smaller of the two and has been referred to as the Marshall deposit. The results of drilling at the Marshall deposit indicate that this deposit is associated with a black, oolitic, limestone conglomerate that marks the base of the Cane Hill Formation and in a cross-bedded brownish sandstone. The outcrop of a single continuous bed of phosphate dissipates into a series of thin, discontinous, phosphate layers at depth (Stroud, 1961).

40

Figure 7. Locadation of groundwate sitestes (solid circles)s) sampled in the vicinity of the they red to be captured at posses (discledixis). Stadpie's 78, 86 and 89 are from wells and all other samples are from spingers.

The typican 1 P205 content of the rocks at this site is about 8 percent

4964) ~i~~-;-:~'~~~'~~'**~~L1-:--**`, ,~_.g.:.'.I'.'"

> The lager and hover minimized reading on the prosphere beserves iterasted deprovided and the second with the analysis of the standard and the second second with the FARAS FORMATION Phe detables it has an to requestione that externes is utravary a customer of abosh 2700 that frathemesos autoby sugges this that a may above body debesited an a the outstoary suggesting and that be not the prosphere bearing sandstone the estuary. Sandstone and shale overlie the phosphate-bearing sandstone ore-bearing zone has an oolitic texture, calcite cement, carbonized wood fragments, The ore-bearing zone has an oolitic texture, calcite cement, carbon-pyrite and varying amounts of quartz sand. Ore reserves are estimated to be ized wood fragments, pyrite and varying amounts of guartz sand. Ore 2,800,000 short tons of phosphate rock averaging 19 percent P2OS and occurring in reserves are estimated to be 2,800,000 short tons of phosphate rock a verd of not least live fret thick a hariations ingra prade are due primatily to vilutieet the sand grains at GGs 1965 are grade are due primarily to dilution by sand grain De (AGG) ite occur in a highly fractured zone of the Cotter Dolomite in Carrol Depusitys (Figurey 8) te hecdeposities estimated tracturation 462 courses the toos the ondomitte that Caveraides 2403 yoé ficient reuleur. (Stitued eposit the lestestated osit is koopated in 462 NOOD NEmig tons of crude ore that averages 24.3 percent sulfur (Stroiteon. Res) wa noted has smeather deposition is have been in the influe set and in the aebostis, stre BrgEsendebosti as expased nostivered minimized by the bed of a creek between these two deposits () The largest deposit is exposed mostly as limonite along the bed of a creek for about 100 feet (Branner, 1940) in the Boone Formation (Branner Washington Lead and zinc minerals occur in the Boone Formation in Washington County. The Morrow prospect is located on the bank of Fly Creek about feet west of County. The Morrow prospect is located on the bank of Fly Creek about the town of Morrow. The ore minerals, galena and feet west of the town of Morrow. The ore minerals, galena and

> > 42

12,

Figure 8. Location of springs (solid circles) sampled in the pyrite mineralized area near Berryville. Pyrite mineralization is located in the NW1 NE1 sec. 12, T2ON R25W; SE1 SW1 sec. 8, T2ON R24W; and in sec. 7 between these two sections.

sphalentith about better and on the second state of the second sta

Shate aceased shales hinget et clinity (Fhjuge 40). Courses and some contains have used of the contract of the

Water Quality

Only a few springer were concerned and a complete the second and t

(#78-#80 and F83)) op the begint springerings Peyton Creek optospring Patalog and F83)) op the begint spring Peyton Creek area generally reflects the source rocks for the

Figure 9. Location of springs (solid circles) sampled in the vicinity of the Morrow lead-zinc deposit (x).

\$

£:

Figure 10. Location of springs (solid circles) sampled in the vicinity of the Friendship Creek uranium deposit (circled x).

groundwater. The springs (P76-P79) issuing from sandstone have lower pH values (about 5.5) and lower hardness (about 20 mg/L as $CaCO_3$) whereas, those issuing from dolostone (P80-P83) have a calcium or calcium-magnesium type water with pH values about 7.1 and hardness about 300 mg/L as $CaCO_3$ (Tables 10 and 10A).

Only one spring (B86) located in the midst of the pyrite deposit near Berryville exceeded drinking water limits, and it only exceeded limits for manganese. The spring water collected in the Berryville area is of a calcium-magnesium bicarbonate type, reflective of the Cotter Dolomite source of the groundwater. Spring F98 in the uranium (Friendship Creek) area exceeded the manganese limits, and no springs in the lead-zinc (Morrow) area exceeded the drinking water limits. The springs in the Friendship Creek and Morrow areas issue from limestone which results in calcium bicarbonate type water (Tables 10 and 10A).

Summary of Water Chemistry

Because no more than eight springs, including sites as near as possible to mineralization and background sites, were collected in the Peyton Creek, Berryville, Morrow and Friendship Creek areas, the data from these areas should not be considered as representative of a very wide area. However, with this caution in mind, the spring water chemistry from these areas will be compared below and in Tables 11 and 11A.

The spring water from Peyton Creek is lower in alkalinity, pH and calcium; and higher in silica, zing, iron, manganese, strontium and possibly sodium (Tables 11 and 11A). These observations are indicative of the presence of shale in the Peyton Creek area. Despite

47
шш CRI 121 JZ SPRING WATER FIELD AND ANION ANALYSES FOR PEYTON CI (B), MORROW (C), AND FRIENDSHIP CREEK (F) MINERALI JMBER COND=SPECIFIC CONDUCTIVITY, MICROMHOS/CM 25 (L AS CACO3 NO3=NO3 AS N, MG/L, ALL OTHER DETERMIN (L EXCEPT FOR PH, MISSING VALUES ARE INDICATED BY 1 DETECTION LIMITS ARE INDICATED BY MINUS (-) SIGN HE NUM ш TABLE 10 BERRYILL ID-SAMPLI ALINITY GIVEN IN

1 11

ID	DATE	TEMP	COND	ALK	Н	P04	เ	♦HN	EON	\$0 4	SI02
P76	06/26/84	17.5	51	10	5.1	0.02	-0-3	0.12	0.06	10.6	12.2
779	06/26/84	17.5	45	10	5.1	0.05	2.0	0.10	0.30	10.1	10.6
P 78	06/26/84	24.0	105	45	6.0	0.01	5.8	0.10	0.24	8.5	16.3
P 79	06/26/84	21.0	42	20	5.8	0.01	1.5	0.12	0.04	10.1	15.9
P 8 0	06/26/84	22.5	735	325	7.1	-0.01	3• O	0.11	0.12	6.2	19.5
P 8 1	06/26/84	22.0	541	30E	7.1	0.10	3.8	0.95	0.03	11.9	19.0
P 8 2	06/26/84	20.5	471	260	7.1	0.10	5.3	0.14	0.38	28.2	14.0
P 83	06/26/84	20.0	768	345	7.0	0.04	10.5	0.32	0.16	48.5	20.0
884	07/02/84	23.0	541	295	1.1	-0.01	9.2	0.01	0.87	14.1	13.3
885	07/02/84	18.0	515	300	7.0	0.01	8.3	0.01	46.0	13.0	12.8
886	07/02/84	22.0	528	305	7.2	-0.01	2.9	0.07	0.12	21.7	10.9
887	07/02/84	23.0	417	210	7.0	-0.01	9.2	0.04	0.80	18.2	13.7

÷ł, 1

.

-

48

ш a ND 4 REE ANION ANALYSES FOR PEYTON CR IENDSHIP CREEK (F) MINERALIZ DUCTIVITY,MICROMHOS/CM 25 C N,MG/L. ALL OTHER DETERMIN ING VALUES ARE INDICATED BY INDICATED BY MINUS (-) SIGNS SINUS ARE ARE SPRING WATER FIELD / (B), MORROW (C), AND UNBER COND=SPECIFIC /L AS CACO3 NO3=NO3 /L EXCEPT FOR PH. W DETECTION LIMITS / ZC LE NUL NG/L d L TABLE BERKY ID=SAI ALINII GIVEN

1D	DATE	TENP	COND	ALK	Н	P04	CL	5HN	EDN	504	SI02
888	07/02/84	21.0	177	260	7.2	-0.01	6.9	0.10	0.62	14.1	9.8
889	07/02/84	24.0	610	295	7.6	E0.0	9.0	0.04	11.0	21.7	12.5
B 90	07/02/84	18.5	407	225	1.1	0.01	4.6	0.07	0.80	10.6	12.1
891	07/02/84	21.0	200	80	7.1	-0.01	10.2	0.11	1.01	17.7	10.5
C 9 2	48/E0/L0	25.5	713	310	7.0	0.09	1.6	0.10	9.70	10.1	16.4
693	48/60/20	26.0	465	265	7.2	0.12	2.1	0.04	16-0	10.1	12.1
694	07/03/84	26.0	390	220	7.0	0.04	2.5	0.15	16.0	9.5	11.3
C 95	07/03/84	24.5	204	105	7.2	0.05	4.0	0.04	1.04	9.5	13.3
F96	48/40/20	23.0	356	160	1.1	0.15	7.9	0.26	1.14	9.5	11.7
F97	48/40/20	22.0	363	150	7.1	E0-0	7.9	0.09	7.50	9.5	13.3
F98	07/04/84	23.5	369	180	1.1	0.06	3.6	0.06	0.89	13.0	13.3
F 99	07/04/84	23.0	490	205	7.5	0.13	14.4	0.04	4.10	28.9	16.4

• 1														
EEK (P) Areas. JG/L. Are In	SR	0.020	0.022	0.018	0.014	0.767	1.967	0 4 30	2.333	0.058	0.064	0.043	0.045	0.046
TON CRE LIZED / RE IN (LIMITS	MG	1.1	0.8	1.1	1.6	35.6	17.6	8.1	16.0	37.2	35.2	28.8	29.6	32.0
M PEY UES A 110N	CA	4	2	16	Ē	109	30	69	140	57	58	62	47	57
S FRO (F) H R VAL	×	1.1	0.9	0.2	1.0	2.0	0.6	2.0	1.1	6.8	3.4	1.3	0.8	1.5
SAMPLE CREEK Below	NA	1.4	1.4	3.7	1.8	26.5	74.0	12.0	5.8	3.4	3.7	2.8	2.9	3.7
HIP D AL	CD	10	2	m	5	2	2	2	2	2	m	٢	2	2
NG NG IENDS VL AN	NZ	26	18	36	297	130	٢	17	109	10	10	٢	S	1
N HG	P.B	9	23	14	28	9	q	9	4	14	19	28	14	10
S C S S	CU	ŝ	e	5	18	20	-3	6 -	1	٦	T	I	T	1
YSES ES EN A IGNS	C0	2	٢	٢	٢	2	4	4	4	2	4	2	٢	4
VALU Calu	IN	8	8	5	15	8	2	5	8	8	12	15	8	ŝ
T T DN D MG S ARE NUS (FE	53	36	69	165	359	57	48	31	8	16	28	8	16
A CA	NH	32	38	63	159	39	16	19	50	6	٢	257	22	1
TABLE 10, BERRYVILL NASSING DICATED	ID	P76	P77	P 78	P79	P 8 0	P81	P.82	P83	884	885	886	887	888

HABI NAS DICJ	K CA K CA K CA K CA K CA K CA	A. CAL E (B) ALUES	MC MC MC MC	RRON VALUES GIVEN	SES OI	AND FI IN HI	RIEND G/L AI	ATER SHIP ND AL LUES	SAMPLES CREEK (I CREEK (I DTHER BELON DI	FROM F NINE VALUE ETECTIO	E ALIZIAN ARE	CREEK ED AREA ITS ARE	(P).
10	NW	FE	IN	CO	сu	P.B	NZ	CD	٩N	¥	CA	ЭW	SR
889	6	12	8	4	e	9	T	1	5.8	2•2	9	39.0	0.056
B90	٢	16	8	2	1	9	1	2	2.8	1.4	55	24.0	0.038
891	6	20	12	٢	m	19	2	m	4.9	2.8	30	7.7	0.064
C92	6	16	15	15	1	32	۲	5	3.4	0•3	144	3.8	0.260
693	4	12	8	4	7	10	7	1	0.1	••0	105	2.3	060.0
694	1	12	5	1	I	9	٦	T	4.0	1.1	70	4.7	0.115
C 9 5	7	T	-7	1	1	- 6	1	1	2.8	1.5	38	1.8	0.050
F96	Ē	4	2	*	1	14	5	1	5.1	2.8	66	2.3	0.064
F 9 7	e	4	2	4	7	10	7	1	2.6	1.2	69	3.6	0.054
F98	63	24	S	~	10	19	ŝ	2	5.8	2.7	14	2.4	0.058
F99	4	4	8	11	T	23	٢	2	14.5	1.5	87	4.6	0.104

51

. 't. COMPARISON OF SPRING WATER FIELD AND ANION DATA FROM THE PHOSPHATE (PEYTON CREEK), PYRITE (BERRYVILLE), LEAD-ZINC (MORROW) AND URANIUM (FRIENDSHIP CREEK) AREAS. TOP VALUES ARE THE RANGE AND THE BOTTOM ONES ARE THE MEDIAN VALUES. NUMBERS IN () ARE THE NUMBER OF SAMPLES COLLECTED FROM EACH AREA. TABLE 11.

-

CULLEUIE	NUT LINNI R			5		+			
	Specific	Alkalinity as mg/l		PO4 as P	-ເວ	NH4 as ⁴ N	sio,	S0 [∎]	as N
Area	25°C	cac0 ₃	H	wdd	iudd	bbw	ppm	hidd	wdd
Peyton Creek (8)	42-768 288	10-345 152	5.1-7.1 6.5	<.0110 <	3-10.5 3.4	.1095 .12	10.6-20.0 16.1	6.2-48.5 10.4	.03-38
Berryville (8)	200-600 496	80-305 278	7.0-7.6 7.1	<.0103 2 <.01	2.9-10.2 9.1	.0111 .06	9.8-13.71 12.3	0.6-21.7 16.9	.12-1.01 .80
Morrow (4)	209-713 427	105-310 243	7.0-7.2 7.1	.0412 2	2.1-9.1 3.3	.0415 .07	11.3-16.4	9.5-10.1 9.8	.9 -9.7 1.0
Friendship Creek (4)	356-490 366	150-205 170	7.1-7.5 7.1	.0315 3	3.6-14.4 7.9	.0426 .08	11.7-16.4 13.3	9.5-28.9 11.3	.9-7.5 2.6

ì

.....

ł

TABLE 11A. C F V	OMPARIS RIENDSH ALUES.	ON OF IP CRE NUMBE	SPRIN EK AR RS IN	G WATER EAS. T () AR	CATION OP VALU E THE N	DATA ES AR UMBER	FROM E THE OF S	A PEYT RANG SAMPLE	ON CREEK, E AND THE S COLLECT	BERRYV BOTTOM ED FROM	ILLE, M ONES A EACH A	MORROW ANN ARE THE MANAREA.	D EDIAN
Area	Zn	Pb	Cd	Fe	Mn	Ni	Со	Cu	Na	K	Ca	Mg	Sr
	ppb	ppb	ppb	ppb	ppb	ppb	ррђ	ppb	ppm	ppm	ppm	ppm	ppb
Peyton Creek	7 -29 7	4-28	2-10	31-359	16-159	2-15	4-7	1 <u>-</u> 20	1.4-74.0	.2-2.0	2-140	.8-35.6	14-2333
(8)	31	6	3	55	39	8	7	4	4.8	1.1	23	4.9	226
Berryville	<1-10	6-28	1-7	8-28	7-257	5-15	4-7	1-3	2.8-5.8	.8-6.8	30-64	7.7-39.0	38-64
(8)	6	14	2	16	9	8	7	1	3.6	1.9	57	30.8	51
Morrow	<1-7	3-32	<1-5	2-16	< 1-9	1-15	2-15	<1-7	.1-4.0	.3-1.5	38-144	1.8-4.7	50-260
(4)	1	8	1	12	6	7	3	1	3.1	.8	88	3.1	103
Friendship	<1-7	10-23	1-2	4-24	3-63	2-8	4-11	<1-10	2.6-14.5	1.2-2.8	66-87	2.3-4.6	54-104
Creek (4)	5	17	2	4	4	4	6	1	5.5	2.1	72	3.0	61

NOTE: $ppb = \mu g/1$

•

.

the phosphate mineralization in the area, there does not appear to be elevated phosphate contents in the spring water nor any other indication of mineralization. However, phosphate is rathter insoluble and contamination in the other areas may obscure any slight elevation of phosphate in this area.

The one sample (B86) in the midst of the pyrite deposit near Berryville had higher manganese and perhaps higher nickel values. Sample B85 may also have slightly higher nickel values (Table 11A). The sulfate values are also somewhat higher in this area (Table 11). Thus, groundwater geochemical exploration for pyrite deposits of this type appears to be worthy of additional investigation, especially using a close grid for sampling.

In the Morrow area, sample C92 with a lead concentration of 32 ppb may be reflecting the lead-zinc mineralization in the area (Table 11A). This observation plus the results of other hydrogeochemical studies in lead-zinc mineralized areas (Steele 1984 & 1983) suggests that additional investigation in the Morrow area would be of value.

Although samples from the Friendship Creek were not analyzed for uranium, it was hoped that other elements, e.g., Co and Cu, might be indicative of the mineralization (Tables 11 and 11A). There is no indication of the uranium mineralization; however, it should be noted that it occurs in an anomalous sandstone that is not widespread and therefore, the groundwater issuing from the springs of this area may not have come in contact with the uranium mineralization.

Compared with the spring water from other areas of northern Ar-

kansas (Tables 6 and 6A), the Berryville, Morrow and Friendship Creek areas' springs are apparently higher in nitrate; the Berryville and Friendship Creek areas' springs are higher in chloride; the Morrow and Friendship Creek areas' springs are higher in phosphate; and all of the areas have higher ammonia values (Tables 11 and 11A). These data indicate that these areas, especially Berryville, Morrow and Friendship Creek, are contaminated by animal and/or septic tank wastes (and possibly road salt). Note the generally lower values for phosphate, chloride, ammonia and nitrate values for the lower population (including livestock and poultry) Ponca and Rush areas. The lack of anomalously high silica values rules out any significant geothermal component of these spring waters.

CONCLUSIONS

23

Although 18 of the 99 springs exceeded drinking water limits, most of the springs exceeded only iron and/or manganese limits which were established because of staining problems. Thus, the water in these areas is generally of good chemical quality. However, there is an indication that the Berryville, Morrow, and Friendship Creek areas have higher ammonia and nitrate, chloride or phosphate concentrations than other northern Arkansas areas and these higher values may be due to higher human and animal populations which have caused contamination of the groundwater. The results of this investigation do not indicate any geothermal waters in these areas.

The potential value of hydrogeochemical exploration for phosphate, pyrite, uranium and the small lead-zinc (Morrow) deposits can not be

effectively evaluated due to the small number of springs sampled from each of these areas. However, the small size of the uranium deposit may have contributed significantly to the negative results for this area. The insolubility of the phosphate, plus possible phosphate contamination, gave negative results for the Peyton Creek area. The results from the Berryville and Morrow areas do suggest that additional research would be worthwhile in these areas.

Hydrogeochemical exploration in the Batesville district appears to be effective, with 44 percent of the springs within 2000 feet of mineralization having metal anomalies (especially manganese). Additional work in this area with particular attention to the formation from which the spring issues would be helpful in developing more complete interpretations of the data.

LITERATURE CITED

- APHA, 1979. <u>Standard Methods for the Examination of Water and Waste-</u> water, 15th ed. American Public Health Association, Washington, D.C., 874 p.
- AGC, 1965. Core drilling project Peyton Creek phosphate area, Arkansas, Final Report-Phase II. Arkansas Geological Commission, 7 p.
- AGC, 1964. Core drilling project Peyton Creek phosphate area, Arkansas, Final Report-Phase I. Arkansas Geological Commission, 12 p.
- Branner, George C., 1940. Mineral resources of Benton, Carroll, Madison and Washington Counties. Arkansas Geological Surv., County Mineral Rept. 2, 55p.
- Branner, George C., 1940. Manganese minerals of Arkansas. Arkansas Geological Surv., 20 p.
- Caplan, William M., 1957. Subsurface geology northwestern Arkansas. Arkansas Geological Commission, Information Circ. 19, 14 p.
- Coffey, W. S., 1981. The mineralogy and geochemistry of the Batesville manganese district, Arkansas. Unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 82 p.
- Coughlin, T. L., 1965. Geologic and environmental factors affecting ground water in the Boone Limestone of northcentral Washington County, Arkansas. Unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 98 p.
- Derring, M. F., Mohr, E.T., Sypniewski, B.F. and Carlson, E.H., 1983. The application of hydrogeochemistry to the exploration for Mississippi Valley-type deposits in northwestern Ohio - Program with Abstracts, 9th International Geochemical Symposium, Saskatoon, Canada, p. 20-21.
- Duncan, Robert C., 1983. Geochemical investigation of the Chattanooga Shale, Arkansas. Unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 184 p.
- EPA, 1982. <u>Methods for Chemical Analysis of Water and Wastes</u>. U.S. Environmental Protection Agency, Washington, D.C., 298 p.
- EPA, 1976. <u>Quality Criteria for Water</u>. U.S. Environmental Protection Agency, Washington, D.C., 256 p.

- Fournier, R. O. and Rowe, J. J., 1966. Estimation of underground temperatures from the silica content of water from hot springs and steam wells. Am. Jour. Sci., vol. 264, p. 685-697.
- Garrels, R. M., and Christ, C. L., 1965. <u>Solutions, Minerals, and</u> <u>Equilibria</u>. Harper and Row Publishers, New York, 450 p.
- Ginzburg, I.I., 1960. <u>Principles of Geochemical Prospecting</u> (translation from Russian by Sokoloff). Pergamon, New York-London, 311 p.
- Gordon, Mackenzie, Jr., and Kinney, Douglas M., 1944. Geological map and structural sections of the Batesville district, Independence, County, Arkansas. U.S. Geol. Surv., Oil and Gas Inventory Prelim. Map. 12.
- Hach Chemical Company, 1975. Water Analysis Handbook. Hach Chemical Company, Ames, Iowa. 186 p.
- Lammonds, A. G. and Stephens, J. W., 1969. Water-resources data for the Ozark Plateaus Province, Arkansas. Unpublished report, available through the U.S. Geological Survey, Water Resources Division, Little Rock, Arkansas.
- Langmuir, D. and Chatham, J. R., 1980. Groundwater prospecting for sand-stone-type uranium deposits: a preliminary comparison of the merits of mineral-solution equilibria, and single-element tracer methods. Jour. Geochem. Explor., Vol. 13, p. 201-219.
- Lepeltier, C., 1969. A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol., Vol. 64, p. 538-550.
- McGowen, M. F., 1981. A structural and stratigraphic study of a portion of the Batesville manganese district, Arkansas. Unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 69 p.
- McMahan, T.W., 1957. Geology of representative manganese deposits in the Batesville district, Arkansas. Unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 65 p.
- Miser, Hugh D., 1940. Manganese carbonate in the Batesville district, Arkansas. U.S. Geol. Surv. Bull. 921A, p. 1-94.
- Miser, Hugh D., 1922. Deposits of manganese ore in the Batesville district, Arkansas. U.S. Geol. Surv. Bull. 734, 273 p.
- Nix J. and Goodwin, T., 1970. The simultaneous extraction of Fe, Mn, Cu, Co, Ni, Cr, Pb and Zn from natural water for determination by atomic absorption. At. Absorpt. Newsl., Vol. 9, p. 119-122.

- Proctor, P. D., Kisvarsanyi, G., Garrison, E. and Dilamarter, R. R., 1976. Heavy metal additions to waters of the Joplin area, Tri-State mining district, Missouri. <u>in</u> Hydrologic Problems in Karst Regions, R. R. Dilamarter ed., Western Kentucky Univ. Press, Bowling Green, KY, 481 p.
- Public Health Service, 1962. Public Health Service Drinking Water Standards. U.S. Public Health Service, Dept. of Health, Education and Welfare, 61 p.
- Sinclair, A. J., 1976. Applications of probability graphs in mineral exploration. Assoc. of Explor. Geochemists, Special Vol. 4, 93 p.
- Steele, K. F., 1984. Hydrogeochemical exploration for Mississippi Valley-type deposits, Arkansas. Jour. Geochem. Explor. (in press).
- Steele, K. F., 1983. Chemistry of the springs of the Ozark Mountains, Northwestern Arkansas. Arkansas Water Resources Research Center Publication No. 98, Univ. of Arkansas, Fayetteville, 48 p.
- Stroud, R. B., Arndt, R. H., Fulkerson, F. B. and Diamond, W.G., 1969. Mineral resources and industries of Arkansas. U.S. Bureau of Mines, Bull. 645, 418 p.
- Vales, V. and Jurak, L., 1979. Hydrogeochemical prospecting for fluorite and barite in the Zelezne Hory Mts. Jour. of Geological Science, Economic Geology and Mineralogy, Vol. 17, p. 59-94.
- World Health Organization, 1971. <u>International Standards for Drinking</u> <u>Water</u>. 3rd ed., WHO, Geneva, 70 p.