PROJECT COMPLETION REPORT

PROJECT NO: 8-055-ARK

AGREEMENT NO: 14-34-0001-8061

Starting Date: October 1, 1977

Ending Date: September 30, 1979

CHEMISTRY OF THE SPRING WATERS OF THE OUACHITA MOUNTAINS EXCLUDING HOT SPRINGS, ARKANSAS

bу

George H. Wagner and Kenneth F. Steele

Arkansas Water Resources Research Center UNIVERSITY OF ARKANSAS Fayetteville, Arkansas 72701 March, 1980

Contents of this publication do not necessarily reflect the views and policies of the Office of Water Research and Technology, U.S. Department of the Interior, not does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U.S. Government.

	[
	[m]

ACKNOWLEDGEMENT

The work upon which this publication is based was supported in part by funds provided by the Office of Water Research and Technology, U.S. Department of the Interior, through the Water Resources Research Center at the University of Arkansas under Project B-055-ARK as authorized by the Water Research and Development Act of 1978.

				E
		43		
			1D	

Table of Contents

	<u>ra</u>	٩e
1.	Introduction	1
2.	Experimental	2
I.	WATER QUALITY AND CHEMISTRY	9
1.	Water Quality	9
2.	Water Chemistry	1
a.	<u>Base Metals</u>	1
ь.	Alkaline Earth Metals (Ca, Mg, Sr and Ba)	2
c.	Alkali Metals (Li, Na, and K)	5
II.	GEOTHERMOMETRY	7
1.	Introduction	7
a.	Quartz Geothermometry	7
ь.	Surface Temperature	8
c.	<u>Heat Flow</u>	8.
d.	Geothermal Gradient	9
e.	<u>Circulation Depth</u>	0:
2.	Results and Discussion	0!
3.	Comparison of Historical Data and Present Work	!3
4.	Summary	25
III.	EXPLORATION	?7
1.	Introduction	27
2.	Background Values of Non-Mineralizing Elements	30
3.	Mineralizing Elements	32
* a.	Base Metals	32
b.	<u>Barium</u>	10

		П
		П
		П

Table of Contents, con't

	. Pag	ΙE
c.	<u>Strontium</u>	5
d.	<u>Lithium and Potassium</u>)
4.	Springs with Anomalous Temperatures	Ĺ
5.	Summary	2
IV.	REFERENCES	5

	[
	11

Tables

								F	age
Table 1-1	. Summary of	Analytical	Methods.						59
Table 1-2	. Chemical Ar Anion Analy								60
Table 1-3	. Chemical Ar Alkali and						•		63
Table 1-4	. Chemical Ar for Heavy N								66
Table 1-5	. Median Valu Measuremen	ues (and Ra ts and Anal	nges) of yses for	Variou Areas	s I and	II	•		69
Table I-1	. Comparison Ranges and Drinking W Values for	Median Val ater and wi	ues with th Ranges	Limits and M	for edian				72
Table I-2	. Data on Su Ca, Sr, Ba								73
Table II-	1. Surface Te Heat Flow	mperature, and Geother	Subsurfac mal Gradi	e Temp ent .	eratu •••	re,			74
Table II-	2. Anomalous Geotempera								78
Table III	-1. Summary of	Anomalous	Measureme	nts .			•		79
Table III	-2. Anomalous	Springs, Ar	ea I					•	80
Table III	-3. Anomalous	Springs, Ar	ea II						81
Table III	-4. Location a Samples .	nd Date of					•	•	82
Table III	and Corres	er Surface ponding % S and SrSO ₄	Saturation	s of t	he Wa	ters	;		87

Figures

		Page	ŀ
Figure	1-1	Location Map of Study Area and Spring Sites 91	
Figure	1-2	Stratigraphic Column for Study Area I 92	
Figure	I-1	Correlation Plot for Co vs Mn, Area I and II 93 $$	
Figure	I-2	" " Ni vs Mn, " " " 94	
Figure	I-3	" " " Cu vs Mn, " " " " 95	
Figure	I-4	" " Zn vs Mn, " " " 96	
Figure	I-5	" " Li vs Mn, " " " " 97	
Figure	I-6	" " Ba vs Mn, " " " 98	
Figure	I-7	" " Mn vs Fe, " " " 99	
Figure	I-8	" " Co vs Fe, " " " 100	
Figure	I-9	" " Ni vs Fe, " " " " 101	
Figure	I-10	" " Cu vs Fe, " " " " 102	
Figure	I-11	" " " Zn vs Fe, " " " " 103	
Figure	I-12	" " Mg vs Ca, " " " " 104	
Figure	I-13A	Equilibrium Constant for HCO_3 vs T 105	
Figure	I-138	Solubility Product of Calcite and Strontianite vs T	
Figure	I-14	Concentration of Mg vs Concentration of Na for Area I and II	
Figure	I-15	Concentration of K vs Concentration of Na for Area I and II	
Figure	I-16	Concentration of Sr vs Concentration of Na for Area I and II	
Figure	I-17	Concentration of Ca vs Concentration of Na for Area I and II	
Figure	I-18	Concentration of Li vs Concentration of Na for Area I and II	

	nán	

Figure	II-1	Histogram o Waters	f Silica Co	oncent	rati	ions	in Sp	ri	ng · ·	•	•	111
Figure	II-2	Histogram o Waters	f Silica G	eotemp	erat	tures	of S	pr	ing • •			112
Figure	II-3	Histogram o Waters	f Surface	Temper	atur	es o	f Spr	in	g 	•		113
Figure	II-4	Contour Map	of Heat F	low .						•		114
Figure	III-1	Cumulative	Frequency	Curve	for	Fe,	Area	I	and	ΙΙ		115
Figure	III-2	n 🦥	tt.	10	U.	Mn,	II	(1	11	u		116
Figure	III-3	10	11	II .	g u	Zn,	II	11	H E	11		117
Figure	III-4	u	u	11	н	Ba,	11	11	14	11		118
Figure	III-5	11	11	u	11	Sr,	16	n	14	18		119
Figure	III-6	II	u	н	11	Ni,	Area	I				120
Figure	III-7	Cumulative	Frequency	Curve	for	Co,	Area	I	and	II		121
Figure	III-8	II	It	u	II	Cu,	ŧŧ	11	11	l1		122
Figure	III-9	11	11	u	n	pН,		11	10	•		123
Figure	III-10	rı .	u	a	2.0	PO ₄ ,	Area	a I	I.			124
Figure	III-11	Solubility Function of			e ai	nd Ce	elest	ite • •	as	a 	•	125
Figure	III-12	Ba ⁺⁺ Concen Ouachita Sp										126
Figure	III - 13	Ba ⁺⁺ Concen Ouachita Sp	tration vs ring Water	Ca ⁺⁺ s of <i>F</i>	Cond Area	centr II	ation	n f	or			127
Figure	III-14	Ba ⁺⁺ Concen Ouachita Sp	tration vs ring Water	Sr ⁺⁺ s of A	Cond Area:	centr s I a	ation	ngf I.	for			128
Figure	III-15	Ba ⁺⁺ Concen Ouachita Sp	tration vs ring Water	Speci s in A	ific Areas	Cond S I a	duction I	vit I .	y fo	or • •		129
Figure	III-16	Sr ⁺⁺ Concen	tration vs	Ca ⁺⁺ s in A	Cond	centr	ration	n f	for	.es		130

121 1

	LG.		

1. Introduction

This report is based on the chemical analysis of the waters from 93 springs and 9 wells. Springs, when free from metal plumbing, provide an uncontaminated source of the ground water and it was desired to obtain water uncontaminated with metals. A few wells were added to the list, usually because of their unique location in the sampling grid.

An uncontaminated ground water sample is of interest for its quality (purity), its subsurface temperature and its aid in mineral exploration. These three interests are covered in the main sections of this report which follow the experimental and geological sections.

Study Area I is a 135 x 80 km area which extends west from Hot Springs, Arkansas, to the Oklahoma line and it is located north of the 34° 42′30" N. latitude line. It encompasses the core area of the Ouachita Mountains. Area II is 135 x 23km and abuts Area I on the south. It is known as the Athens Plateau and includes some of the Gulf Coastal Plains. Figure 1-1 shows the location of the study area and the springs. Springs were located from notations on USGS topographic maps, from the literature on warm springs in Arkansas (Billingsley and Hubble; Miser and Purdue, 1929; Bryan, 1922) and from discussions with local inhabitants.

For convenience tables and figures are collected together in the rear of the report and titles with page location are summarized in the Table of Contents.

2. Experimental

In the collection, storage, and analysis of the water samples, the recommendations and procedures of the Environmental Protection Agency were followed. These procedures are outlined in EPA (1974) and APHA (1971). All samples were collected and stored in polyethylene containers. Some polyethylene caps for the 1 gallon containers are compounded with a filler. These types of caps were avoided and only clear polyethylene caps were used. All polyethylene containers were rinsed with concentrated nitric acid and allowed to stand capped from one to several hours, then rinsed several times with dionized distilled water before use.

At each site the routine was to collect 5 liters of raw water, 4 liters of which were immediately filtered through a $0.4\mu m$ (142mm) Nuclearpore filter and stored in a 1 gallon polyethylene container to which 12 ml of 1:1 HNO $_3$ were added. An additional 500 ml of 0.4 μm filtered water was stored in a polyethylene container at $4^{\circ}C$ for SiO_2 , SO_4 , Cl, PO_4 , NO_3 , and NH_3 analyses. Anion analyses were made within 3 days after collection. Alkalinity, pH, and conductivity were measured at the site on unfiltered samples.

A special filter devised by the Savannah River Laboratory was used for the filtrations. This filter was pressurizable to 40 psi with freon, used a 142 mm filter, and filtered one liter of water per filling. New filters were prewashed with at least 100 ml of raw water, via filtration to remove any soluble contaminants.

All cation analyses were by either atomic absorption (AA), spectrophotometry or flame emission. Both a Perkin Elmer Model 303 AA unit and a Jarrel Ash modernized Solid State Model 82-500 unit were used. The particular flames and other adaptations of these units are summarized in Table 1-1 along with the anion analytical schemes. Heavy metals (Fe, Co, Ni, Co, Zn, Pb) were first chelated and extracted by methyl isobutyl ketone after Nix and Goodwin (1970), before being determined by AA.

Temperature was measured by a mercury thermometer which was calibrated against an A.S.T.M. certified thermometer. The pH was measured with a Markson Model 80 pH meter. Conductivity was measured with a KCl (soln.) calibrated YSI Model 33 S-C-T conductivity meter. Total alkalinity was measured by titration to the methyl red end point using a methyl red- bromocrescol green mixed indicator and 0.02 N $\rm H_2SO_4$. All measurements were made on the acidified raw water except for barium. For this element the acidified raw water was first concentrated 10-25 times by evaporation from a teflon beaker on a hot plate in order to improve the sensitivity. No loss in this evaporation technique was found for Na, K, and Mg. Therefore, no loss of Ba is expected.* However, Sb could not be retained by an evaporative concentration process and was always determined on the raw water.

Mercury was determined by atomic absorption using the flameless method (EPA, 1974, pp. 118). The samples of raw water were first treated with strong oxidizing agents to convert any organic mercury compounds to inorganic forms. The method thus measures organic and

^{*}On a few samples with detectable Ba in the raw water no loss was found.

inorganic mercury. The oxidizing procedure was as follows: 1) add 5 ml of $5.6 \text{ N} + \text{NNO}_3$ to 100 ml of the raw water sample (from 1 gallon polyethylene storage container which has been acidified with 1:1 $+ \text{HNO}_3$; 2) wait 15 seconds and add 5 ml of $+ \text{18N} + \text{2} + \text{20}_4$; 3) wait 45 seconds and add 15 ml of 5% potassium permanganate and 8 ml of a 5% aqueous solution of potassium persulfate; 4) heat 2 hours at + 20

Antimony was analyzed by the volatile hydride method after Fernandez (1973). A Perkin Elmer (PE) Hydride Generation Sampling System (303-0849) was adapted to a Jarrel Ash Solid State modernized Model 82-500 atomic absorption spectrophotometer. A 20 ml sample of spring water (from acidified storage sample) was added to the PE generator along with 8 ml of conc. HCl. A pellet (10/32 inch) of solid sodium borohydride (from Alfa Inorganic Division of Ventron Corp., Beverly, Mass. 01915) was added to the generator to form hydrogen and antimony hydrides which were fed to a hydrogen-nitrogen flame. Peak heights on a recorder were calibrated against antimony standards.

The following table gives a comparison of SiO_2 analysis by atomic absorption (DeVine and Suhr, 1977) and by the colorimetric method adopted for this work.

Spring <u>No.</u>	Colorimetri Analysis 1	Atomic Absorption Method (ppm)			
501	7.7	8.7		7.7	
502	3.2	4.4		7.2	
503	18.3	19.1		23.0	
504	12.1	13.5		15.6	
505	7.7	9.1		12.2	
506	12.1	13.9		15.6	
507	13.7	9.5		11.6	
508	7.7	10.0		11.6	
509	10.3	8.8	80	11.2	
510	6.6	3.7		6.1	
511	10.2	8.1		8.9	
512	8.9	9.3 %		8.9	20

Analytical data are summarized in Tables 1-2 to 1-4. Precision for most cation analyses in Table 1-2 to 1-4 is estimated at ±10%. This is generally true when the concentration being analyzed is several times the detection limit -- the "less than" values in the various columns. These detection limits may vary in a given column because of change in sample size, instrument noise at the time, or size of the blanks. Where the concentrations are low the per cent error is much larger and is given by (detection limit)/(concentration) x 100. The reproducibility of the various anion analyses in the hands of various investigators has been studied in part by EPA and APHA. Reproducibility for our median concentration ranges are given in the concluding lines of Table 1-2 using the precision data of EPA (1974) and APHA (1971) for this range when available.

Geology

The following two study areas were selected based on contrasting lithologies and mineralizations.

a. Area I: (Mm, Fe, Ba mineralization with minor Cu, Zn, Pb mineralization) As shown in Figure 1-1 this area includes parts of Montgomery, Polk, Pike, Howard, and Garland counties in west-central Arkansas. This is the core area of the Ouachita Mountains with relief of 152 to 304 m. and ridges 450 to 701 m above sea level. The region has some small farms, but is mostly forested and in the Ouachita National Forest.

A stratigraphic column for Area I is shown in Figure 1-2. Formations range in age from Cambrian to Carboniferous. Shales, Arkansas Novaculite (chert), and sandstone predominate with only minor limestone (in the Crystal Mountain and Womble Shale Formation). The upper member of the Arkansas Novaculite can be highly calcareous. Folding is intense and the east-to-west ridges have a corrogated surface due to the steeply dipping strata.

Manganese mineralization is widespread. Manganese oxide minerals lithiophorite ($\text{Li}_2\text{Al}_8\text{Mn}_{12}\text{O}_{35}.14~\text{H}_2\text{O}$), cryptomelane ($\text{K}_{\chi}\text{Mn}_8\text{O}_{16}$), psilomelane, (Ba, H_2O)₄ $\text{Mn}_{10}\text{O}_{20}$, and pyrolusite (MnO₂) are scattered among over 100 manganese ore prospects and mines. These minerals particularly lithiophorite, may contain of the order of 1 wt. % each of the base metals Co, Ni, Cu, and Zn (Wagner, et. al., 1979). These minerals and iron oxides are found in the bedding planes and cracks of the lower and upper division of the Arkansas Novaculite. Native copper has also been found in the novaculite.

Two barite districts are known. In each case the barite is in the first few meters of the lower Stanley Shale Formation. The barite

is formed as a result of replacement or fracture filling. Quartz veins in shale are associated with silver-containing sphalerite and galena in the eastern extremity of Area I.

b. Area II: (Hg, Sb, Sr, Ba mineralization with minor Zn, Pb mineralization) This area consists mainly of the Athens Plateau in the Gulf Coastal Region of Arkansas. Ages of the rocks vary from Mississippian (Stanley Shale), Pennsylvanian (Jackfork sandstone and Atoka sandstone, shale, and siltstone), Cretacous (Trinity limestone, gravel, siltstone, sandstone and some barite), and Quarternary (Terrace deposits and alluvium of gravel, sand, and silt). Along the northern edge there is a gradation from Area I to Area II type rocks. In the central part of the area there are kimberlite necks at Murfreesboro.

Three mineral districts exist. A mercury district with several mines covers essentially the central and eastern half of Area II (Clardy and Bush, 1976). An antimony district covers the western half of Area II with the antimony and mercury districts overlapping in the central part of Area I (Stroud et. al., 1969). Strontium ores have been mined in Howard county from the DeQueen Limestone member of the Trinity Formation. Similar deposits occur intermittantly across the area. Ore minerals for the three districts are mainly cinnabar (HgS), stibnite (Sb $_2$ S $_3$), celestite (SrSO $_4$) and strontionite (SrCO $_3$). Some barite (BaSO $_4$) is found with the strontium area. In Howard and Pike counties barite occurs as a cementing material in gravels and sandstone.

Gypsum deposits occur in the central part of Area II.

Quartz veins in sandstone adjacent to Stanley Shale were mined for lead, zinc, and silver in two deposits in Sevier county, in the western part of Area II.

WATER QUALITY AND CHEMISTRY

- Water Quality
- a. <u>Springs</u>: The groundwater of the Ouachita Mountains of Arkansas is classed as a calcium bicarbonate type and generally is soft to moderately hard (Hem, 1970). The median hardness for all samples is about 60 ppm as $CaCO_3$. The total dissolved content is generally low, less than 100 ppm as $CaCO_3$ with Ca^{++} and HCO_3^- the major ions.

Samples included in this study occasionally exceed drinking water standards (Table I-1). Fifty-six of the samples have pH values below that recommended (WHO, 1971). In fact, the median value for all samples is 6.2 which is below the recommended value of 6.5. This recommended pH value is based on taste and corrosion properties of the water rather than health effects.

High values for NO_3^- , NH_3^- , and/or PO_4^{3-} are indicative of contamination and suggest that bacteria counts may also be high. Four samples (904, 922, 927, and 948) exceed the recommended NO_3^- value of 10 ppm as N (EPA, 1976). However, only one sample 948 (19.7 ppm) exceeds the limit by more than 4.5 ppm. Seven samples (Table I-1) exceed the recommended NH_3^- value of 0.5 ppm as N (PHS, 1962) with the highest value at 1.52 ppm. Only one sample, 927, exceeds the recommended limits for both NO_3^- and NH_3^- . This site is an artesian well that may have its water affected by local surface contamination. Phosphate values are relatively low (Table I-1) with only three samples having PO_4^{3-} in excess of 0.3 ppm, yet just one sample, 927, exhibits either high NO_3^- or NH_3^- in addition to the high PO_4^{3-} value.

Thirty samples and thirty-five samples exceed the limits (EPA, 1976) for Fe (300 ppb) and Mn (50 ppb) respectively (Table I-1). Twenty-six samples exceed both of these limits. However, these limits are not set because of health reasons, instead they are set because of taste and staining problems. One sample, 932 (59 ppb) exceeds the Pb limit of 50 ppb, and the Hg limit of 2 ppb is exceeded by another sample 908 (2.27 ppb)(EPA, 1976). The concentration values of other elements are well below the limits set for other parameters with the exception of two samples, 929 and 944, which have Ba concentrations of 0.9 ppm which are close to the limit of 1.0 ppm (EPA, 1976). These samples are actually from the same spring at different times. Thus, the spring water of the Ouachita Mountains is potable, and the major problems are those associated with taste, corrosion and staining.

b. <u>Comparison of Springs and Wells</u>: The wells in the Ouachita Mountains of Arkansas have been analyzed previously in another project for major parameters (Albin and Stephens, 1963) and the analytical results of this study are compared with those of the present study in Table I-1. Values reported by Albin and Stephens for Fe and Mn have not been included as their water samples were not filtered prior to analysis (R. Sniegocki, personal communication, 1978). Therefore, their Fe and Mn values are considerably greater than those of the present study due to the presence of suspended material containing Fe and Mn. Although the waters from the springs and wells are generally similar, the high and low ranges and median values from well water are greater than spring water with the following exceptions. The warm springs samples (e.g. 915) have higher temperatures

than the wells. The springs also have a higher median Ca^{++} concentration which may be due to the more alkaline nature of the well water. The higher pH values for well water may be related to chemical and physical reactions in storage tanks, e.g. the loss of carbon dioxide could raise the pH of the water causing precipitation. The springs median and upper range values for SiO_2 exceed those for the wells probably due to the high density of samples in the Caddo Gap area where some warm springs are located, and also the few wells samples were deep ones which could intersect thermal waters.

The higher values exhibited by the wells may be the result of more intimate contact of water with rocks or other factors. However, because the well water was not filtered, it is likely that the presence of suspended material has increased concentration values for many parameters. Thus, most of the differences between the well and spring waters in Table I-1 may simply reflect the differences between unfiltered and filtered groundwater.

2. Water Chemistry

The large number of analyses for a variety of elements and anions provides an opportunity to: 1) seek correlations among the various elements and 2) examine the saturation of the waters with respect to some of the more common minerals. These two facets are examined in the following subsections.

a. <u>Base Metals</u>: The manganese concentrations of the waters were found to correlate with their concentrations of Fe, Co, Ni and Zn. Correlation coefficients calculated after Lepeltier (1969) from Figures I-1 to I-11

are summarized below. The correlations are for Areas I and II as a whole.

	<u>Correlation Coefficient</u>			
<u>Metal</u>	With Mn	With	Fe	
Fe	0.652	•		
Co	0.454	0.22	8	
Ni	0.778	0.50	0	
Cu	-0.050	0.03	4	
Zn	0.430	0.39	1	

Correlation of the base metals with Fe is somewhat poorer than with Mn as noted by the smaller correlation coefficients in the above table.

Copper did not correlate with either Mn or Fe. These correlations with Mn are particularly interesting because base metal contents of stream sediments in this area were found in previous studies (Wagner, et al., 1978) to correlate with their Mn contents. Similar chemistries and perhaps similar source rocks account for the correlation between elements.

b. Alkaline Earth Metals (Ca, Mg, Sr and Ba): Calcium is by far the major element, in general, in the various spring waters. This is due to the widespread distribution of limestone and calcareous cements, both of which are mainly $CaCO_3$, in sedimentary rocks and the ready solubility of $CaCO_3$ in waters containing CO_2 via the equation:

$$CaCO_3(c) + H_2O + CO_2 = Ca(HCO_3)_2 (soln)$$

The carbon dioxide (CO_2) is available from the air (0.03%) and soil (respiration and decay of plants).

The concentrations of other alkali metals correlate with the concentrations of calcium. The following table shows correlation coefficients

calculated after Lepeltier (1969) from the plots in Figures I-12, III-13 and III-16.

	Correlation
Element	Coefficient with Ca
Mg	0.797 (Areas I and II)
Sr	0.925 (Areas I and II)
Ba	0.123 (Area I), 0.329 (Area II)

The chemistries of the four elements are similar and they have common sources, except for Ba. The barium ion does not fit into the $CaCO_3$ lettice, being too large. Mg^{++} and Sr^{++} are common impurities in limestone. Ba is more likely to come from barite, igneous rocks, or feldspar fragments in sedimentary rocks. These differences of Ba are reflected in the lower correlation coefficient.

Barium occurs widely in our study Area I as the manganese mineral psilomelane, $(Ba, H_20)_4 \text{Mn}_{10}0_{20}$. In stream sediments correlation coefficients for Mn-Ba were about 0.9 (Wagner, et al., 1978). No significant correlation has been found for Mn-Ba based on their concentrations in the waters of Areas I and II (p = 0.164). This contrasts to the Mn-base metals correlation which persists in sediments and groundwater, as noted in the previous subsection.

Skougstad and Horr (1963) have summarized a large number of Sr analyses for surface and groundwaters of the United States. The sulfates and carbonates of Ca, Sr, and Ba are relatively insoluble. It is of interest to determine the relative saturation of the spring waters with

respect to the six minerals corresponding to these compositions. Table I-2 lists the minerals, their solubility products, the activity ratios for ions with minerals in equilibrium, and the median values for these quantities for Areas I and II. Equilibrium values of activity ratios when drawn on correlation log - log plots for the two ions show which springs are saturated with which mineral.

General statements can be made by comparing median values and equilibrium values of activity ratios. For the celestite $(SrSO_4)$ = gypsum $(CaSO_4, 2H_2O)$ equilibrium the mean value of $a_{Sr}^{++/a}Ca^{++}$ is greater than the equilibrium value in both Area I and II and indicates that celestite is generally the stable mineral, not gypsum. Barite $(BaSO_4)$ is even more favored than gypsum and is thus the favored sulfate mineral. Calcite is the most favored carbonate mineral.

In Figure I-13 the solubility products of strontianite ($SrCO_3$) and calcite ($CaCO_3$) are plotted versus temperature. Figure III-11 has similar data for barite ($BaSO_4$) and celestite ($SrSO_4$). We have calculated for each spring using its surface temperature, the percent saturation with respect to the four minerals: barite, celestite, calcite, and strontianite. Median values and the ranges are shown in the following table. Activity coefficients were determined from ionic strength and the graph of Hem (1970), p. 21. Carbonate ion concentrations were determined from the $C_{HCO_3^-}$ (from alkalinity), pH, and the equilibrium constant for $C_{HCO_3^-}$ which is plotted versus temperature in Figure I-13A.

% Saturation of the Spring Waters with ${\rm BaSO}_4$, ${\rm SrSO}_4$, ${\rm CaCO}_3$ and ${\rm SrCO}_3$ At Surface Water Temperature

				<u>% of Springs</u>	
Mineral	Area	<u>Median</u>	Range	Above 10% Saturation	Above 50% Saturation
barite, BaSO ₄	I	1.3* 8.5*	0.16-96 0.40-97	15 = 45	7 16
celestite, SrSO ₄	II	0.0075 0.0047	<0.0001-0.50 0.0011-1.97	0	0 0
calcite, CaCO ₃	I II	0.065 0.022	0.000013-154 0.00019-79	25 19	7 4
strontianite, SrCO ₃	II	0.033 0.002	$\begin{array}{c} 0.04 \times 10^{-4} \\ 0.002 \times 10^{-4} - 3 \end{array}$	8 0 1 8	0

^{*}Using all values and counting < values at ½ their < value.

Area I had a median of 2% using finite values only.

Area II had a median of 8% using finite values only.

Only barite and calcite show any appreciable saturation in the spring waters. In Area II there were 8% of the springs with over 10% saturation with strontianite but none were over 50%. Both barite and calcite have some springs over 50% saturated.

c. Alkali Metals (Li, Na, K): Figures I-14 to 18 show plots of Na versus Mg, K, Sr, Ca, and Li. Only Li shows a reasonably good correlation coefficient (p = 0.509) with Na. However, the Mg-Na, Sr-Na, and Ca-Na plots have a minimum envelope to the data. The reason for this is unknown at the moment but it is interesting that the minimum parallels more or less the concentration ratios for the ions in rain water. Curves A, B, and C depict in Figure I-14 the course of the ionic ratio of Mg/Na based respectively on A (absorption of Mg from rain water solution and replacement with Na), B (either addition of Mg or absorption of Na with no

replacement by Mg) and C (addition of Na to the rain water with no change in Mg). Mere loss of water proceeds along the rain-ratio line. Since most of the points of Figure I-14 are above the rain-ratio line the combined process of water loss (by evaporation and transpiration) and Mg addition predominate. In Figure I-15 for K-Na, the process of water loss and K absorption predominate. Figure I-16 for Sr-Na is predominantly water loss and Sr addition. Figure I-17 indicates both Ca addition and Ca removal processes at work along with water loss.

A manganese mineral containing lithium, lithiophorite, with the formula ${\rm Li}_2{\rm Al}_8{\rm Mn}_{12}{\rm O}_{35}.14{\rm H}_2{\rm O}$ is widespread in our study area (Wagner et al, 1979). This mineral might provide both Li and Mn to groundwater. Figure I-5 shows a correlation plot for Mn-Li with p = 0.289, a rather poor correlation.

Vatin-Pérignon et al.(1979) has listed the Li/Na ratio of a large number of different kinds of waters.

II. GEOTHERMOMETRY

1. Introduction

A survey of spring water temperatures in Areas I and II has been carried out utilizing two methods: 1) the quartz geothermometer and 2) the surface temperature of the water. By this means areas of geothermal activity should be located. A third method, the Na-Ca-K geothermometer, was evaluated for the study area but it yielded erroneous results because it is designed for areas where feldspars are abundant. Feldspars are rare to absent in the rocks of the study area.

The approach taken was to construct histograms for the total study area (Areas I & II) of the temperature obtained from the SiO_2 and surface methods, calculation of the mean and standard deviation, assuming a normal distribution, and defining values greater than one standard deviation unit above the mean as being anomalous (Swanberg and Morgan, 1978). The details of the method are discussed below.

a. Quartz Geothermometer: Many papers have been published regarding the solubility of silica as an empirical function of temperature in an aqueous environment (Fournier, et al., 1974); (Fournier and Truesdell, 1973); (Mahon, 1966) and (Mariner and Willey, 1976). The relationship is expressed quantitatively according to the equation of Truesdell (Swanberg and Morgan, 1978):

$$T_{SiO_2} = [1315/(5.205 - Log_{10} SiO_2)] - 273.15$$

where T_{Si0_2} is the silica geotemperature in degrees centigrade and $Si0_2$ is expressed in parts per million. The method is useful in estimating reservoir base temperatures of geothermal systems. However, three principle

assumptions must be made in order for the method to be utilized quantitatively (Swanberg and Morgan, 1978): 1) there is no mixing of nonthermal waters with the waters migrating from the geothermal reservoir to the surface, 2) equilibrium in the geothermal system must be established between the waters and the surrounding rocks, and 3) there is no silica precipitation. The general reluctance of quartz to precipitate from supersaturated solutions (Truesdell, 1976) and slow waterrock reactions at low temperatures (Rimstidt, 1977) aid in supporting these assumptions. It must be kept in mind that temperatures calculated from the SiO₂ concentrations are a minimum temperature due to the possibility of dilution taking place by waters encountered near the surface.

- b. Surface Temperature: The surface temperature method involved establishing a mean surface temperature of the waters sampled in the study area. We assume after Swanberg and Alexander (1979) that waters at the surface having a temperature of one standard deviation above the mean may be of geothermal origin. Figure II-3 is a histogram of the surface temperatures of the study area. The modal value is 17° C and compares with a mean value of 16.8° C and standard deviation of 4.3° C.
- c. <u>Heat Flow</u>: Heat flow is defined as the product of the thermal conductivity of a substance and the thermal gradient in the direction of the flow of the heat (AGI Glossary, 1972, p. 326). Swanberg and Morgan (1978) showed that regional heat flow can be predicted from the silica concentration of groundwater by using the following empirical equation:

$$T_{SiO_2} = m'q + b, \qquad (1)$$

where T_{SiO_2} is the silica geotemperature in degrees centigrade (O C), q is heat flow in milliwatts (w) per square meter (m) and m' and b are constants of 0.67^{O} Cm O /w and 13.2^{O} C, respectively. The physical significance of the intercept b is that this value should represent the rational mean annual air temperature because the absence of heat flow implies that all thermal energy be solar in nature (Swanberg and Morgan, 1978).

d. <u>Geothermal Gradient</u>: The geothermal gradient represents the increase in the rock temperature per unit of distance as one proceeds from the surface of the earth downwards. It is expressed in the following equation:

Geothermal Gradient = Heat Flow/Thermal Conductivity of the Rocks (2) where the geothermal gradient is in ${}^{\circ}$ C per kilometer, heat flow is in milliwatts per square meter and the thermal conductivity is in milliwatts per kilometer per ${}^{\circ}$ C.

The stratigraphic column of the study area (Figure 1-2) includes numerous strata of variable thicknesses. The dominant rock types in the area are sandstones, shale, and chert. The thermal conductivities of sandstone and shale are quite similar (Handbook of Chemistry and Physics, 1972-1973). The thermal conductivity value of chert could not be located and was estimated at $1.2\text{w/km}^{\circ}\text{C}$. Due to the relatively small difference in the thermal conductivities of the three rock units and also due to the actual thicknesses of the rock units in the Quachitas being unknown, an approximate thermal conductivity value of $1.3\text{w/km}^{\circ}\text{C}$ was assigned to the Quachita sediments.

e. <u>Circulation Depth</u>: It is not known to what depth the waters from the springs are circulating, or to which formations they are confined. However, based on the mean SiO_2 temperature and the mean geothermal gradient, a mean depth of circulation can be calculated by the following equation:

Depth =
$$(T_{Si0_2} - A)/(Geothermal Gradient)$$
 (3)

where depth is in kilometers, T_{SiO_2} is in O C, the geothermal gradient is in O C/km, and A is the mean surface temperature. The surface temperature of the rock is assumed to be the same as the surface temperature of the spring water.

2. Results and Discussion

The frequency distribution of the silica concentrations found in the Ouachita spring samples is shown in Figure II-1. It can be seen that the bulk of the samples can be accounted for in the 5-15 ppm range. The calculated mean was 11.5 ppm and the modal value was 10 ppm. Geotemperatures calculated from silica concentrations are shown in Table II-1 and represented in a frequency plot in Figure II-2. The mean silica geotemperatures in the study are was 44.3° C with a modal value of 37.5° C. Because the mean and the modal values are approximately equal and the 14.1° C standard deviation less than the 25° C suggested by Swanberg and Morgan (1978), the value of 44.3° C is taken to be representative of the entire Ouachita Province (Areas I & II). The provinces that most closely resemble the Ouachita Province in Swanberg and Morgan's (1978) paper are the Eastern United States (North), Eastern United States (Central), and Middle Rocky Mountains (Wyoming). In the North and Central Eastern United

States, the silica concentrations are slightly less than the Ouachita Province, which indicates a slightly lower calculated subsurface temperature. In contrast, the Rocky Mountain region yielded slightly higher silica values than the study area corresponding to higher subsurface temperatures.

According to Swanberg and Morgan (1978), geotemperatures of greater than one standard deviation unit above the mean (i.e. greater than 58.4°C in this case) is an effective cut-off temperature in searching for geothermal areas. Using this criteria, there are approximately 14 springs out of the 102 water sites sampled that are possibly of "thermal origin or have a component of thermal water". Table II-2 lists these springs and their associated silica geotemperatures.

Using the surface temperature method, 7 springs (Table II-2) have temperatures of one standard deviation above the mean (i.e. greater than 21.1° C in this study). Only two springs, 923W and 924 in the Caddo Gap area, have both anomalous surface and geotemperatures. The two hottest springs, based on surface temperatures, $915(35^{\circ}\text{C})$ and $921(30^{\circ}\text{C})$ also in the Caddo Gap area do not have anomalous geotemperatures.

The data show that low temperatures at the surface need not be indicative of low temperatures calculated from the SiO₂ concentrations. This observation can be explained by considering the path taken by the waters on their way to the surface. Once silica is in solution it is reluctant to precipitate out even though the temperature of the water drops as would be the case for a long distance of travel. If only a short distance of travel is involved, the silica concentration should remain constant;

however, the water temperature should be higher. Such a case then should be indicative of a heat source near the surface. However, it must be kept in mind that the silica geotemperature values represent a minimum temperature due to the possiblity of the waters being diluted on their way to the surface.

Due to faulting being so intense in the study are, it is believed that the anomalous silica values are associated with faults which penetrate, stratigraphically, deeper than their surrounding counterparts.

Minimum heat flow was calculated using the method of Swanberg and Morgan (1978), as stated above. Table II-1 shows the results of these calculations. Sample 502 gave an unrealistic negative value. This sample is extremely low in silica and is interpreted as containing primary meteoric water.

Figure II-4 shows a contour map of the heat flow in the study area. Areas of highest heat flow are located in the vicinity of Caddo Gap, the Cossatot Mountains, Lake Greeson, Mena and east of Dierks Lake in Sevier County. In the Lake Greeson area, the high heat flow is believed to be associated with the epithermal Hg deposits.

Table II-1 shows the geothermal gradient values calculated for the study area. In general, the geothermal gradient in the study area ranges from 20-50 $^{\rm O}$ C/km and has a mean value of 35.7. Due to the lack of wells drilled in the study area, the geothermal gradients given by the AAPG are only rough extrapolations, yet based on the AAPG values through the middle of the study area, their average of 30.08 $^{\rm O}$ C/km corresponds quite well with our mean of 35.7 $^{\rm O}$ C/km.

Equation (1) was developed for regional use where $T_{\rm SiO_2}$ and q have mean values for the region being studied. In Table II-1 we have applied the equation to the calculation of heat flow, q, for individual springs. Using the mean value for our study area (Area I & II) for $T_{\rm SiO_2}$ we now calculate the mean value of q using equation (1), and from equation (2) and (3) the mean heat flow, geothermal gradient and depth of circulation for our study area. These values are summarized below:

Parameter	Symbol	Mean for Area I & II	<u>Units</u>
Subsurface Spring Water T	T _{SiO2}	44.3	°C °
Heat Flow	q	46.4	milliwatts/m ²
Geothermal Gradient	-	35.7	OC/km
Surface Spring Water T	А	16.8	°C
Depth of Circulation of Sprin Water	ıg -	0.77	km

The mean circulation depth of 0.77 km seems reasonable for our study area.

3. Comparison of Historical Data and Present Work

Miser and Purdue (1929) and Bryan (1922) have previously recorded data on warm springs in Area I. Although Miser's data were published in 1929, the temperature measurements were made in 1910 and 1916. As will be noted in the comparison on the next page of these previous measurements with ours, there has been no significant temperature changes in the springs. Our spring 921 is possibly not the same as Barton's spring and may be $\frac{1}{4}-\frac{1}{2}$ mile to the south of it. We locate 921 at SW4, NW4, sec. 26, T4S, R25W. The references list it as "along sec. 23-26 line.

Present No. Spring	Past Name	(1) T ^O C(year)	(2) T ^O C(year)	Present Work, T ^O C
945	(Little Missouri River Bank)	23.3(1916)	-	23.0
915	(Bed of Caddo River, North Spring)	35.0(1910)	-)	
		34.4(1916)		35.0
	(Bed of Caddo River, South Spring)	35.4(1910)	>	
		36.0(1916)		
921	W. B. Barton	listed, no T	31.7(?)	30.0
924	Redland Mountain	25.0(1916)	- 5	25.0

- (1) Miser and Purdue, 1929; Bryan, 1922
- (2) Billingsley, et al.

Miser and Purdue (1929) list some chemical data on two of the springs which are compared below to our data. All data are in ppm.

	Cado	Barton's Spring			
<u>Analysis</u>	N. Spring	S. Spring	<u>Our Data</u>	Miser and P.	Our Data
S10 ₂	18.7	15.0	17.2	15.4	10.5
Ca	41.7	38.9	42.0	39.8	50.4
Mg	4.2	2.2	2.45	2.3	2.38
Na	3.4	7.5	5.4	9.1	3.83
К	0.000	0.000	1.00	1.3	1.10
so ₄	2.32	1.42	0.70	8.3	3.2
C1	7.1	4.8	3.5	8.0	2.5
Li	-	-	-	0.6	0.0046

The data on the Caddo River Spring are in close agreement, except for K and SO_4 . Only Mg and K are in close agreement for Barton's Spring. The literature data acknowledged some contamination with other waters during the Barton Spring sampling. Also, as pointed out earlier, our spring 921 while in the same area as Barton's Spring may be $\frac{1}{4}$ - $\frac{1}{2}$ mile south of it.

It is of interest to compare our data in a very general way with that of the hot and warm springs near Hot Springs, Arkansas. The hot springs have a uniform SiO_2 concentration of about 42 ppm which corresponds to a subsurface temperature of $94^{\circ}\mathrm{C}$ (Bedinger, et al., 1974). The average concentration of SiO_2 for the warm springs (i.e. greater than $20^{\circ}\mathrm{C}$) near Hot Springs was 23.6 ppm, corresponding to an average source temperature of $70.6^{\circ}\mathrm{C}$. These warm springs have a fairly uniform elemental concentration which indicates a common source. The warm springs in our study areas varied substantially in chemical composition which indicate a variety of sources.

4. Summary

The area around Caddo Gap has the springs with the higher surface temperatures (30 and 35° C). Other warm springs, Redland Mt. (25° C) and a "warm" spring (23° C) are the next hottest. Miser first measured the temperatures of these springs in 1910 and 1916. The temperatures are the same today (1979).

Subsurface temperatures of the various spring waters based on the silica geotemperature were highest in the Fancy Hill barite district (911W with 91.2°C T_{SiO_2}), next highest in the Lake Greeson mercury district (907W with 89.2°C T_{SiO_2}) next highest in the Caddo Gap area (923W with

 82.9° C T_{SiO₂}) and next highest in the antimony area of Sevier County (951W with T_{SiO₂} of 78.3°C). The preponderance of wells in this list is to be noted.

These data are of geologic interest and are discussed further in the Exploration Section III. In economic terms the hottest springs might be of balneological or direct heating use. They cannot be used for power generation which requires about 180° C for turbine power generation (Muffler, 1973).

III. EXPLORATION

1. Introduction

Stream sediments and soils have received much attention in geochemical exploration for mineral deposits. In general, mineral deposits have indicators in nearby sediments and soils either through clasts or chemical solutioning and reprecipitation. Chemical analyses of sediments and soils detect the element of interest and the vector of the amount of the element points, in theory, toward the deposit.

Analyses of surface and ground waters have likewise been used for exploration (see p. 271 of Hawkes and Webb, 1962). Water samples are generally very dilute in mineral content compared to solid samples and analytical schemes are strained. Surface waters have an advantage of traveling far and with strategic sampling can be used to broadly survey a large drainage basin. Surface waters have a disadvantage of being in contact with air and converting some metallic ions, Fe $^{2+}$ and Mn $^{2+}$ for example, into the less soluble "ic" forms. It is not unusual to see this process in operation via the precipitation of iron and manganese oxides where a seep or spring flows into air or a stream. Precipitation of Fe $_2$ O $_3$ or MnO $_2$ coprecipitates many trace metals and removes them from solution.

For geochemical exploration, ground water has certain advantages over surface waters: 1) lower Eh and greater solubility for certain metallic ions in the "us" form; 2) longer contact with rocks and soils with greater chance of equilibrium and higher metallic content;

3) higher CO₂ content due to organic decay processes which give it a lower pH and more dissolving potential; 4) more concentrated in mineral content due to no dilution by direct rainfall or surface runoff and, in forested areas, a 2X to 3X concentration due to evaporation and transportation; 5) in a faulted or steeply dipping strata, spring waters may have a deeply buried conduit and in the process "sample" buried rock structures and minerals which have no surface exposure. This last advantage is also a disadvantage for springs in that all the rock units to which spring waters have been exposed are unknown.

In the present work about 100 springs were sampled in west-central Arkansas (see Figure 1-1). This is a highly mineralized area as described above in the "Geology" section and consists of two areas of distinct mineralization. Thus, an opportunity is provided for testing the potential of spring waters in these areas as an exploration tool. Chemical analyses of the waters are summarized in Tables 1-2 through 1-4.

Analyses were made for the following elements:

- 1) Base metals (Fe, Mn, Zn, Cu, Co, Ni, Pb, Hg, and Sb)
- 2) Alkaline earth metals (Ca, Mg, Sr, and Ba)
- 3) Alkali metals (Na, K, and Li)
- 4) Anions $(NO_3, NH_3, PO_4, SO_4, C1, and SiO_2)$

In addition, the following measurements were made: water temperature, pH, specific conductivity, and alkalinity.

The scheme for testing spring water analyses as an exploration tool is to compare the location of springs of anomalously high concentrations of metal content with the location of known mineral deposits of the same metal. This will be done on a district (Areas I and II), as well as on a fractional section basis using Stroud et. al. (1969) for the location of mineral deposits.

We are using section, township, and range for locating springs and mineral deposits. Spring locations are based on the latest U.S.G.S. topographic maps and field observations. Stroud, et. al. (1969) also uses section, township, and range for locating mineral deposits. Any other system would be awkward as would any distance unit other than mile, due to sections being 1 mile square. All distances given in the discussion of individual springs are in miles.

To determine anomalous values, the concentration of each metal for the various springs was plotted graphically as cumulative frequency curves after Lepeltier (1969). Anomalous values were those exceeding threshold, the 95% value on the high side. Figures III-1 through Figure III-5 compare several of these cumulative frequency curves for Areas I and II. Figures III-6 through Figure III-10 show several additional cumulative frequency curves for the areas. These curves shown are illustrative of the types of curves exhibited by Areas I and II and are not meant to be complete.

Most of the cumulative frequency curves for Areas I and II show two segments of similar slopes which are slightly offset. This indicates that there are two types of aquifers in the areas with slightly different chemistries. Several reasons such as different lithologies, depths, and temperature could explain the different chemistries. Although the slopes and intercepts are different for Areas I and II, the general shape of the curves for a given element are remarkably similar for the two areas. An exception is the PO₄ curve for the Area II which is quite linear with a single branch. Area I curves are based on 71 data sets whereas Area II curves are based on only 31. It is of interest to note that in both areas the data follow a lognormal distribution which is a requirement for linearity in this type of plot. To our knowledge, the lognormal distribution of chemical data on a natural water system has not been previously reported.

Threshold values and anomalous values determined from the above plots are summarized by analysis or measurement in Table III-1. Median, threshold, and anomalous values are compared for Area I and Area II, element by element in this table.

Before examining Table III-1, the different mineralizations of the two areas are worth repeating. Area I has Mn, Fe, Ba mineralization with minor Cu, Pb, and Zn mineralization. Area II has Hg, Sb, Sr, and Ba mineralization with minor Zn and Pb mineralization.

2. Background Values of Non-Mineralizing Elements

Median values which reflect the backgrounds for Areas I and II are compared below for temperature, pH, specific conductivity, and alkalinity with the ranges of the values given in parenthesis.

	<u>Water Temp</u> Surface	perature(OC) Subsurface*	pH <u>Units</u>	Sp. Cond. μ mhos/cm(25 ⁰ C)	Total Alkalinity mg/L CaCO3
Area I	17(5-35)	40.0(7.1-91.2)	6.4(3.8-7.9)	107(14-385)	50(0-291)
Area II	16(8-25)	45.9(11.2-39.2)	5.8(4.1-8.7)	61(<5-563)	15(0-265)
II/I (%)	94	115	91	57	25

^{*}Calculated from SiO_2 content.

The median subsurface water temperature is slightly higher for Area II, but the hotter individual springs were in the eastern part of Area I. Other parameters in the above table are comparable or lower for Area II. The lower median pH for Area II should favor higher concentrations of most elements. This is countered by the higher electrolyte content (and thus lower activity coefficients) of Area I as indicated by its higher median specific conductivity. Higher electrolyte content would favor the solubility of barite, which was found in several cases to be near its saturation value.

Anion concentrations for the two areas are compared in the following table which gives median values and ranges in parenthesis.

Anion Median (Range) Concentrations (ppm)

	NO_3 as N	NH_3 as N	PO ₄ as P
Area I	0.66(<0.01-5.5)	0.1(<0.01-1.52)	0.07(<0.01-0.54)
Area II	1.0(0.06-14.3)	0.2(0.02-1.52)	0.10(0.02-0.41)
II/I (%) 151	200	143
		· ·	
	so ₄	C1	SiO ₂
Area I	2.3(<0.3-32)	2.3(0.25-87)	10.3(3.2-34.9)
Area II	3.2(0.3-55)	3.5(0.5-9.5)	12.1(5.4-37.1)
II/I (%) 139	152	117

In all cases, Area II has the greater median anion concentration but the ranges are comparable, except for chloride. For NO_3 , NH_3 , and PO_4 this is most likely due to the greater agricultural and silviculture activities of Area II.

Other ions to be considered for background purposes for the present study are shown below. Median values, with ranges in parenthesis, are shown for Areas I and II.

Alkali and Alkaline Earth Ions, Median (Range) Concentrations

	Na Na	K	Ca	Mg
Area I	1.8(0.95-152)	0.56(0.04-2.9)	13.5(0.03-70)	1.9(0.15-14.9)
Area II	3.9(0.85-162)	1.10(0.21-8.5)	2.7(0.6-78)	1.4(0.19-23.7)
II/I (%)	217	196	20	74

Ranges for these four ions are comparable for the two areas but median values for Na and K for Area II are about twice those for Area II and for Mg and Ca much less for Area II.

In summary, for the non-mineralizing ions in the spring waters of the two areas, no order of magnitude differences are found. The greatest difference is in the median value of Ca ion which for Area I is five times the value in Area II. It is generally the most abundant ion in Area I, controls alkalinity (through HCO_3), specific conductance, and ionic strength. In Area II, Na competes more strongly with Ca and Mg ions for control of these parameters.

- Mineralizing Elements
- a. <u>Base Metals</u>: Median values, with ranges in parenthesis, are given below for nine base metals found in the spring waters for Areas I and II. Seven of these, Fe, Mn, Zn, Cu, Hg, Sb, and Pb, have primary

mineral deposits in at least one of the areas. All, except Pb, Hg, and Sb, may be associated with Mn oxide minerals in Area I. Median values are given with ranges in parenthesis.

Base Metal Median (Range) Concentrations (ppb)

	Fe	Mn	Zn	Cu		Со
Area I	56(2-5220)	19(1-1220)	18(2-144)	4(1-85)	5(<2-31)
Area II	49(7-10082)	14(4-370)	9.5(2-48)	3(4-14)	s = 11	(2-39)
II/I (%)	87	74	53	75		220

7%	Ni	Hg	Sb*	РЬ
Area I	9(2-39)	<0.1(<0.1-2.1)	<0.2(<0.2-0.3)	10(1-37)
Area II	20(2-54)	0.2(<0.1-1.2)	<0.5(<0.2-0.5)	30(<10-59)
II/I (%)	222	>200	0	300

^{*}Based on a limited number of only 8 samples for Area II

For Fe, Mn, Zn and Cu, Area II Has a lower median and a lower range (except for Fe). For the other five metals the ranges are comparable for the two areas but with Area II having a higher median. Considering the differences in sample densities, 71 samples for Area I and 31 for Area II, and the analytical difficulty in these low ppb ranges, these differences are judged to be small. Manganese which is decidedly more abundant as manganese oxide minerals in Area I does have a much higher range in Area I, but only about a 25% greater median. Hg which has a definite mineralized area in Area II, but none in Area I has a higher median but lower range in Area II. Threshold values are decidedly greater for Fe, Mn, Zn, and Cu in Area I as shown in the following table.

Base Metals, Threshold Concentrations*(ppb)

	Fe	Mn	<u>Zn</u>	<u>Cu</u>	Co	<u>Ni</u>	Pb
Area I	5000	900	100	11	20	28	31
Area II	580	220	33	7	32	37	42
II/I (%)	12	24	33	64	160	132	135

^{*95%} values on the high side of cumulative frequency curve, except Hg=1 ppb.

Hg and Sb are not included in the above table. They have too few finite analytical values for each area for a cumulative frequency treatment. Arbitrarily, we define the threshold value for Hg as 1 ppb. Sb will not be treated further in this discussion except to say that in spite of good definite Sb mineralization in Area II we have been unable by our chemical methods to detect any significant finite amounts of Sb in the spring waters of Area II.

The number of anomalous springs and their average anomalous concentrations are summarized in the following table for Area I and II.

Base Metals Average Anomalous Concentration (ppb)
(Number of Anomalous Springs in Parenthesis)

	Fe	<u>Mn</u>	<u>Zn</u>	Cu	Co	<u>Ni</u>	<u>Hg</u>	РЬ
Area I	5222(2)	1220(1)	134(4)	34(4)	27(4)	36(4)	2.0(2)	35(2)
Area II	6399(4)	353(3)	46(2)	12(3)	38(2)	54(1)	1.1(3)	59(1)
II/I (%)	122	29	34	35	141	150	55	169

Area I has the higher anomalous values for Mn, Zn, and Cu. In summary, a higher metal content for Area I is indicated for Fe, Mn, Zn, and Cu when using median, threshold and average anomalous concentrations

(except Fe) as criteria. Manganese which is well documented to have more mineralization in Area I gives the best indication of this in the threshold and average anomalous values, not the median value.

Area II has a higher median for Hg but lower anomalous average.

We now examine specific springs for the correlation of their water chemistry with the local mineralization. Table III-1 lists by analysis the springs in Area I and II which are anomalous for that analysis. Table III-2 for Area I and III-3 for Area II lists the springs in order of sample number which have anomalous analyses. Those springs having anomalous base metal values are summarized in the following table along with any other anomalous measurements or analyses for that spring. The anomalous elements and their concentrations are listed.

Springs with Anomalous Base Metal Concentrations

Area I

Spring No. or Well (W)	Mineralization in Local Area of Spring*	Measurement (Value) for Which Spring Is Anomalous
511	A	Cu (85 ppb)
513	D	Cu (15 ppb), SiO_2 and subsurface temperature (63.2 $^{ m O}$ C)
517	В	Mn (1220 ppb), Cu (21 ppb), Ni (29 ppb), PO_4 (0.54 ppm), SO_4 (12 ppm)
520W	A(Ba)	Pb (33 ppb), NH ₃ (0.64 ppm), Li (23 ppb), Ba (420 ppb)
523	В	Cu (14 ppb), surface temperature (22°C)
528	Ď÷	Hg (21 ppb)
536	A	Zn (143 ppb)

^{*}Using Stroud, et al. (1969) and Miser (1917)

A =within1 mile of mineralization related to the anomalous metal concentration

D = over 4 miles from " " " " " "

Spring No. or Well No.	Related Mineralization in Local Area of Spring*	Measurement (Value) for Which Spring Is Anomalous
537	B	Zn (110 ppb)
544	D D	Hg (1.9 ppb)
900	Α	Zn (137 ppb)
911	С	Zn (144 ppb), PO ₄ (0.28 ppm), Sn (500 ppb)
916W	.A	Fe (522 ppb), Co (23 ppb), Ni (39 ppb), Pb (37 ppb), SO ₄ (13.1 ppm), subsurface temperature (91.2°C)
938	Α	Co (22 ppb), Ni (36 ppb)
939	Α	Co (30 ppb), NO ₃ (4.8 ppm)
943	В	Co (31 ppb), Ni (39 ppb)
		Area II
904	D	Cu (14 ppb), Zn (48 ppb), pH (4.1 units), NO ₃ (14.3 ppm), C1 (9.5 ppm)
908	А	Fe (10082 ppb), Co (39 ppb)
909	А	Hg (1.1 ppb)
910	В	Hg (1.2 ppb), SiO_2 and subsurface temperature (62.9 $^{\circ}$ C)
919	D	Cu (13 ppb), surface temperature (21°C)
920	Α	Cu (9 ppb), subsurface temperature (68.8°C)
924	А	Mn (345 ppb), surface temperature (25°C), SiO ₂ and subsurface temperature(60.4°C)
928	А	Fe (4218 ppb), Mn (345 ppb), SiO_2 and subsurface temperature (75.8 $^{\circ}$ C)
932	D	Fe (1375 ppb), Pb (59 ppb), SiO_2 and subsurface temperature (73.4 $^{\mathrm{O}}\mathrm{C}$)
936	D	Mn (370 ppb), Co (38 ppb), Ni (54 ppb), SiO ₂ and subsurface temperature (70.0°C)
937	D	Fe (9930 ppb), Li (86 ppb), pH (8.7 units), sp. cond. (563 µ mhos), alkalinity (265 mg/L CaCO ₃)
948	D	Zn (45 ppb), pH (4.1 units), Cl (8.0 ppm)
	28	

Stroud, et al. (1969) has a comprehensive listing of the known mineral prospects and mines for Areas I and II and their locations by 1/16 sections. Table III-4 lists the 1/16 section locations for the springs sampled in this study. Using Table III-4 and Stroud, et. al. (1969) the anomalous springs in the above table will be checked for known mineralization in their local area.

For spring 511 located NE 1/4 SW 1/4 Sec. 14, T3S, R29W we quote from Stroud p. 329, "Fractures in Arkansas Novaculite in T3SRs28-30W, and T4S, R31W, contain stains and thin seams of malachite, azurite, chrysocolla, chalcopyrite, and native copper".

Although there is no known mineralization in spring 517's section, there is a phosphatic manganese deposit 3 1/2 miles due south.

520W is in a barite district. Pb mineralization in unknown locally, but is represented by several small mines 10 miles due north at Silver, Arkansas.

Spring 523 is not in an area of known Cu mineralization, However, a small galena mine, now abandoned, is 2 1/2 miles due west. Spring 528 is in a Mn district and within 1 mile of a hematite deposit (Pointed Rock Tunnel) and at least one Mn prospect (E. S. White) containing psilomelane. No Hg minerals are known in this area.

Spring 536 is in the same 1/16 section as an abandoned Mn mine (manganite and psilomelane minerals). No Zn mineralization is known in the local area, but manganese oxide minerals, particularly cryptomelane, can have 1 wt. % of Zn (Wagner, et al., 1979).

Spring 537 is not in an area of known Zn mineralization, but is only $1\ 1/2$ miles northwest of spring 536. The comments on 536 would apply here as to a source of Zn in cryptomelane.

Spring 544 is within 1 1/2 miles of two known Mn oxide mineral deposits. One 1 1/2 miles to the west has produced several tons of ore. The deposit to the southwest is associated with limonite. No Hg minerals are known in the area.

Spring 900 is within a mile of an abandoned Pb, Zn, and copper mine and mill.

Spring 911 is not in an area with local Zn mineralization. However, manganese deposits with possible Zn are located 4 miles to the south.

Artisian well 916W is in a barite district. Manganese minerals occur with the barite at the McKnight Claim, 1 mile away. The Mn minerals contain appreciable Fe, Co, and Ni.

Spring 938 is located 1 mile southeast of the abandoned Featherstone Mn Mine (psilomelane and limonite). Co and Ni are known trace metals; up to 1 wt. % in many Mn minerals of the area (Wagner, et al., 1979).

Spring 939 is 1 mile northeast of a Mn prospect (U.S. prospect) which might contain Co. A similar Mn prospect is 1 1/2 miles to the southeast.

Spring 943 is in a barite district with no locally known Co or Ni mineralization. Mn ores which might contain Co and Ni are known 3 miles northeast and 3 miles northwest.

Spring 904 has no known minerals adjacent, but it is 2 1/2 miles north of the kimberlite at Murfreesboro. This deposit of peridotite

has some barite veins associated with it, but no known Cu or Zn minerals.

Spring 908 is in a mercury district with ore minerals being cinnabar and associated minerals of Fe (pyrite and marcasite), Cu (sulfides) and As (arsenides). Co due to a similar chemistry to Fe would probably come from the Fe minerals.

Spring 909 is within 1/2 mile of a Hg mine (section 32 mine) which has produced over 600 flasks of Hg from cinnabar.

Spring 910 is 4 miles south and down dip of a Hg district.

Spring 920 is in a barite and mercury district. Copper sulfides are found with cinnabar ores.

Spring 924 is less than 1/4 mile from two Mn prospects (psilomelane, manganite and iron oxides).

Spring 928 is on the southeast edge of a titanium sands and clay district with ilmenite ($FeTiO_3$) the main ore minerals. The sands have a ferrogenous cement.

Springs 936 and 937 on the northern edge of a Hg district with cinnabar the main ore mineral and small amounts of Cu (sulfides), Fe (pyrite and marcasite) and As (arsenides). Mn minerals which could account for the Mn, Co, and Ni are 10 miles north. Sb minerals (stibnite) are included in some of the Hg deposits.

Spring 948 has no known mineral deposits nearby. Pb and Zn minerals (sphalerite) are known in a prospect 9 miles to the northwest.

Sb minerals are known 7 miles to the northwest in an antimony district.

Barite minerals are known 3 miles to the south as a cement in sand and gravel.

In summary, 41% of the springs with anomalous base metal concentrations were within 1 mile, 18% were within 2 miles, and 7% within 4 miles of known mineralization containing the anomalous elements. The remainder of the springs, 31%, had no known related mineralization within 10 miles.

b. Barium: Barite (BaSO₄) is prevalent in both Area I and Area II. The deposits differ in type. In Area I the barite ore is either replacement or open space fillings in Stanley Shales. Area II has this type plus two other types: 1) barite veinlets penetrate peridotite and intrusive breccia of Cretaceous igneous rocks, 2) barite veins, concretions, and cement in gravels and sandstone as a principal mineral. Area I contains several Mn oxide mineral deposits with psilomelane $(Ba, H_2O)_4 Mn_{10}O_{20}$.

In the following table, medians, ranges, thresholds, and the average of the anomalous concentrations are summarized for Areas I and II.

Ba Concentrations (ppb) in Spring Waters of Areas I and II

	Median (Range)	Threshold	No. of Anomalous <u>Values</u>	Average Anomalous Concentrations
Area I	<15(1-420)	320	"1	420
Area II	40(10-920)	320	2	915
II/I (%)	>267	100	-	218

Area II has a higher median, range, and average anomalous value than Area I. Both areas have few springs with anomalous concentrations considering the widespread mineralization of barite in each area. Both areas have similarly shaped cumulative frequency curves (Figure III-4) and the same threshold (95% value on the high side).

Barite is only very slightly soluble in pure water (2.6 ppm of $BaSO_4$ which is equivalent to 1.5 ppm of Ba^{++} and 1.1 ppm of SO_4 at 25° C). The solubility product, defined as follows, is a constant.

$$M_{Ba}^{++} \times M_{S0_{4}^{-}} = constant = 1.24 \times 10^{-10} (at saturation, 25°C)$$

where M_{Ba}^{++} and $M_{S0_{4}^{-}}$ are gram moles/kg

A consequence of this relationship is that when $SO_{\overline{4}}$ concentrations increase the saturation concentration of Ba⁺⁺ decreases. For example, in a solution containing 11 ppm of $SO_{\overline{4}}$ at 25°C, the maximum or saturation concentration of Ba⁺⁺ becomes 0.15 ppm.

In water containing other ions the solubility product becomes an activity product, defined as follows:

$$a_{Ba}^{++} \times a_{S0}_{\overline{4}} = constant$$

$$a_{Ba}^{++} = \gamma_{Ba}^{++} \times M_{Ba}^{++}$$

$$a_{S0}_{\overline{4}} = \gamma_{S0}_{\overline{4}} \times M_{S0}_{\overline{4}}$$
(1)

 $\gamma_{\rm Ba}^{++}$ and $\gamma_{\rm SO}$ are the activity coefficients respectively of barium ion and sulfate ion. The solubility of barite increases in the presence of other ions due to a decrease in the activity coefficient. The amount of other ions is measured by ionic strength. See Hem (1970) for a more complete discussion of the relationship.

In view of the dependence of Ba⁺⁺ concentration on sulfate concentration, presence of other ions (ionic strength) and, of course temperature, high concentrations of Ba⁺⁺ alone may not be a good relative indicator for barite among various localities. This would be particularly true if the solutions are near saturation and equilibrium is a limiting factor on solubility.

For the above reasons the % saturation of the various spring waters with ${\rm BaSO}_4$ were calculated using the following relationship which considers the factors of sulfate concentration, ionic strength, and temperature.

% saturation = 100
$$(a_{Ba}^{++} \times a_{S0}^{-})_{T}/(solubility product)$$
 of $BaS0_{4})_{T}$

where the subscript T indicates that activities and solubility products are for the same temperature. Activity coefficients were read graphically from page 21 of Hem (1970) using ionic strengths calculated from our analyses for the various ions. Substituting activity coefficients and the measured concentrations of Ba $^{++}$ and SO $_{\overline{4}}$ into equation (1) above gave the corresponding activities. The solubility products used as a function of temperature were taken from the literature and are shown geographically in Figure III-11.

The % ${\rm BaSO}_4$ saturation at the water temperature at the surface and at the subsurface were calculated. Subsurface temperatures of the spring waters were calculated from silica solubilities as described in section II of this report. In the following table, the medians, ranges, thresholds, and average anomalous values for ${\rm 8aSO}_4$ saturation for Areas I and II are summarized.

 $\mbox{\% BaSO}_4\mbox{\ 'Saturation of Spring Waters for Area I and II}$

9	Median	(Range)	<u>Threshold</u>	No. Springs <u>Anomalous</u>	Average Anomalous %
	Surface T	Subsurface T	Surface T	Surface T	Surface T
Area I	2(0.16-96)	1.1(0.09-39)	70	2	91
Area II	8(0.40-97)	6.5(0.24-38)	84	2	94
II/I (%)	400	591	120	100	103

Only finite values ("less than" values not used) were used in deriving the above table. This gave 31 data sets (out of 71 possible) for Area I and 27 sets (out of 31 possible) for Area II. The above analysis may be considered a cumulative frequency curve analysis of the highest population for Area I.

Area II has the greater % saturation median and threshold. This is possibly a consequence of the highly disseminated nature ($BaSO_4$ cement) of some of the Area II barite deposits whereas those in Area I are veinlets and less exposed to groundwater. The ranges, number of anomalous values and average anomalous values are about the same for the two areas.

It is interesting to note that many of the spring waters have $\rm X\%$ or more of $\rm BaSO_4$ saturation. Note in Table III-5 that springs are saturated with $\rm SrSO_4$ to median saturation of only 0.00 $\rm X\%$.

Figures III-12 and III-13 show a broadly defined correlation between the concentration of Ba and Ca in Areas I and II. Due to the similar chemistry of Ba and Ca and perhaps similar source rocks, this might be expected. Those few points which lie outside the envelopes of these data are considered to represent anomalous springs. The same goes for springs whose data plot outside the envelope of the Ba $^{++}$ -Sr $^{++}$ concentration data (Figure III-14) and Ba $^{++}$ concentration vs specific conductivity data in Figure III-15.

Five definitions of anomalous springs have been given above.

Using these five definitions, the anomalous springs are summarized below:

Sample No. of Springs with Anomalous Ba

	Definition of Anomalous	Area I	Area II
1.	Ba ⁺⁺ concentration exceeds threshold	520W	929, 944
2.	% BaSO ₄ saturation exceeds threshold	916W, 943	927W, 932
3.	Ba ⁺⁺ -Ca ⁺⁺ concentration outside area norm	930	908, 929, 944
4.	Ba ⁺⁺ -Sr ⁺⁺ concentration outside area norm	902	908, 929, 944
5.	Ba ⁺⁺ -specific conductivity outside area norm	930	929, 944

520W is an artisian well in a barite district (Pigeon Roast Mountain). It is interesting to note that spring 519 in the same 1/16 section is not anomalous in Ba but has 110 ppb which is well above the mean of <15 for Area I.

916W is in the barite district of Fancy Hill. Although the % BaSO $_4$ saturation is anomalous the concentration is not. However, the 200 ppb concentration is well above the <15 ppb mean for the area.

Spring 943 is in the Pigeon Roost Mountain barite district and in the same 1/16 section as 520W. The Ba $^{++}$ concentration of spring 943 while not anomalous is high, 190 ppb.

Spring 930 is in an area of no local mineralization. However, the Pike Gravels are present which 5 miles to the southwest have a barite cement in appreciable quantities. Three miles to the southeast of 930 there are barite veins in periodotite, the Murfreesboro kimberlite. Spring 930 has 60 ppb of Ba.

Spring 902 is in the same 1/16 section an an abandoned mine for Pb, Zn, and Cu. Galena, sphalerite, pyrite, chalcopyrite, silver and gold are the minerals in quartz veins along a fault. The nearest barite deposits are 7 miles east in the Pigeon Roost District.

Springs 929 and 944 are the same spring, sampled at different times, 3-4-79 (929) and 5-16-79 (944). This spring abuts an abandoned mine based on barite cement in Pike Gravels. Interestingly, the spring is anomalous based on 3 of the 4 definitions. Only the % saturations of 45.1 and 63.1 are not anomalous. Perhaps the threshold value (84%) is too high a criterion.

Artesian well 927W is not in an area of known Ba mineralization. The nearest barite deposits are 15 miles to the north. Titaniferous

sands (ilmenite) are located 4 miles to the west of 927W. The Ba^{++} concentration of 927W is 80 ppb.

Spring 932 has no known barite deposits nearby. The nearest deposit is 8 miles east. The Ba^{++} concentration of this spring is high, 260 ppb, and almost to threshold (320 ppb).

Spring 908 is in a mercury district with no known barite deposits nearby. The nearest known deposits of barite are 10 miles northeast. Spring 907 which is 2 miles southwest of 908 (60 ppb Ba) had a reasonably high barium concentration of 270 ppb.

In summary, only definition (1) identified solely springs near or in barite deposits. Each of the other definitions selected springs in barite areas which were missed by definition (1). However, definitions (2), (3), and (4) also selected some springs not in known barite mineralization. All springs selected by each criteria had rather high concentrations of Ba and would have been selected by definition (1) with a smaller threshold value.

c. Strontium: Strontium mines and prospects are in the central part of Area II. Celestite $(SrSO_4)$ is the main ore mineral with minor amounts of strontionite $(SrCO_3)$. No strontium ores are known in Area I.

Median values, ranges, thresholds, and anomalous concentrations for springs of the two areas are summarized below.

Sr Concentrations (ppb) in Spring Waters of Areas I and II

		Median (Ra	nge)	Thresho	No. o Anomalo ld Value	ous	Avera Anomal Concentr	ous
Area	I	55(2-220	0)	380	5	8	987	
Area	II	30(<10-1	400)	150	2		857	
II/I	(%)	55		39	40		87	

All values are greater in Area I. This is not believed to be due to the small number of spring water samples from the strontium district in Area II. Four of the springs (933, 934, 935, 948) are within 2 miles of known Sr mineral deposits but four of the springs (904, 920, 929, 930) are only a few miles from the Sr district.

Strontium concentration in the spring waters increases as the calcium concentration increases as shown in Figure III-15. These two alkaline earths have similar chemistries and usually common source rocks. Thus, those concentrations outside the envelope of the data on the high side in Figure III-16 may be defined as anomalously high in Sr. Using this definition and the usual one of above threshold concentration gives the following springs which are anomalously high in Sr. We have not used % saturation of the waters with ${\rm SrSO}_4$ as a criterion of anomalous springs because the waters are very unsaturated with ${\rm SrSO}_4$ (see-Table III-5), so much so that equilibrium saturation is not a barrier to dissolving. There is essentially no ${\rm CO}_{\overline{4}}$ in the spring waters.

Springs with Anomalously High Concentrations (ppb) of Sr

		Sample No. 01 Springs			
And	omalous Definition	Area I	Area II		
1.	Sr ⁺⁺ concentration exceeds threshold	501W, 526, 527, 911, 913	927W, 951W		
2.	Sr ⁺⁺ -Ca ⁺⁺ concentration outside area norm	526, 527, 913	920, 927W, 929, 944		

Sample No. of Springs

Definition (1) includes two springs in Area I not selected by definition (2). The opposite is true in Area II.

Well 501W is not in an area of known Sr mineralization. Quartz crystal mines are within 1 mile.

Springs 526 and 527 are not in an area of Sr mineralization. A barite prospect in which Sr may be in secondary minerals, is about 1 mile away.

Spring 911 is not in an area of known Sr mineralization. About 4 miles south of spring 911 is a barite district.

Spring 913 is not in an area of known Sr mineralization. A barite district lies 6 miles south.

Spring 920 is not in an area of known Sr mineralization. A known barite deposit is less than 1 mile away. Known Sr deposits (celestite) are 6 miles to the southwest and gypsum deposits, in which Sr minerals occur to a minor extent, are 6 miles to the southeast.

Well 927 is not in an area of known Sr mineralization.

Spring 929 and 944 are the same spring sampled at different times. This spring is adjacent to a barite deposit.

The following are springs which did not have anomalous Sr concentration but are within 2 miles of known Sr mineralization: 933 (6 ppb), 934 (23 ppb), 935 (13 ppb), and 948 (92 ppb).

In summary, no spring with anomalously high Sr concentration was near known Sr mineralization. Rather, Sr acted as an indicator for barite in which Sr minerals occur. Figure III-14 notes a correlation of Ba with Sr.

d. <u>Lithium and Potassium</u>: Each of these metals exists in Area I as essential elements of two frequently encountered manganese oxide minerals -- lithiophorite ($\text{Li}_2\text{Al}_8\text{Mn}_{12}\text{O}_{35}.14\text{H}_2\text{O}$) and cryptomelane ($\text{K}_{\chi}\text{Mn}_8\text{O}_{16}$) (see Wagner, et al., 1979). Other sources for these two elements are clays and igneous rocks.

Listed below are the median values, ranges, thresholds, and anomalous concentrations for Li in springs of Areas I and II.

Li Concentrations (ppb) in Spring Waters of Areas I and II

		Median (Range)	Threshold	No. of Anomalous Values	Average Anomalous Concentration
Area	$\hat{\mathbf{I}}_{(n)}^{a}$	2.5(<1-70)	18	4	46
Area	II	2.3(<1-86)	54	2	72
II/I	(%)	92	300	50	156

The median values and ranges are essentially the same for Areas I and II. Threshold and average anomalous concentrations are higher for Area II. There is no indication of higher Li concentrations in Area I resulting from or favoring the formation of lithiophorite.

Springs which have anomalously high Li concentrations are listed below.

Springs With Anomalously High Li Content

Spring No.	501W	520W	526	527	927W	937
Li Concentration (ppb)	21	23	70	70	58	86
Na Concentration (ppm)	48.4	6.5	131	152	80	162
Li/Na Weight Ratio (X10 ³)	0.43	3.5	0.53	0.46	0.72	0.53
Li/Na Weight Ratio (X10 ³)	(Median fo	r Area)	1.4		0.9	59

520W, 526, and 527 of the above waters are near (1-2 miles) Mn mineralization and barite. The others are not near Mn mineralization. A common denominator of the above waters is a high Na content. When judged as a Li/Na ratio these high Li waters are not so abnormal.

Listed below are the medians, ranges, thresholds, and average anomalous values for the K content of springs in Areas I and II.

K Concentration (ppm) in Spring Waters of Areas I and II

	Median (Range)	<u>Threshold</u>	No. of Anomalous Values	Average Anomalous Concentration
Area I	0.56(0.04-2.9)	1.35	· 3	2.0
Area II	1.10(0.21-8.5)	6.0	1	8.5
II/I (%)	196	444	33	425

Area II has greater values in all categories, except number of anomalous values. There are no indications of higher Area I values due to the occurences of cryptomelane in Area I.

The individual springs with anomalous K content are given below.

Springs With Anomalously High K Concentration

	Area I			Area II		
Spring No.	506	520W	922	948 904		
K Concentration (ppm)	1.70	1.40	2.90	8.5 3.8		

Spring 506 is within 1 mile of abandoned Mn mines. The Mn mineral-ization of this area contains cryptomelane. Slate deposits are also nearby. None of the other springs are in areas of Mn mineralization or have anomalous manganese concentrations.

4. Springs with Anomalous Temperatures

In Section II of this report the springs with anomalously high surface and subsurface temperatures were determined. Subsurface temperatures were determined based on the concentration of SiO_2 . These springs are summarized below along with their anomalous concentrations of metal ions, if any, and local mineralization, if any.

<u>Sp</u>	ring No.	Anomalous Temperature	Metals With Anomalous Concentrations	Known Local Mineralization
	503	Subsurface (60.4°C)	none	none
	513	Subsurface (63.2°C)	Cu	none
	523	Surface (22 ⁰ C)	Cu	Pb, Zn mineralization in 2 miles
	548	Surface (22 ⁰ C)	none	Mn mineralization in 1-2 miles
	907W	Subsurface (89.2 ⁰ C)	none	Hg and Sb mineralization in 1-2 miles
	910	Subsurface (62.9°C)	Hg	Hg mineralization in 1-2 miles
	914	Subsurface (60.7°C)	none	none
	915	Surface (35 ⁰ C)	none	Mn mineralization in 1 mile
	916W	Subsurface (91.2 ⁰ C)	Fe,Co,Ni,Pb	Mn, Fe, Co, Ni, Bi mineralization in 1 mile
	920	Subsurface (68.8°C)	Cu	Ba, Hg with minor Cu in 1 mile
	921	Surface (30°C)	none	none
	923W	Surface (22°C)	none	none
		Subsurface (82.9°C)	none	none
	924	Surface (25 ⁰ C)	Mn	Mn mineralization in 2 miles
		Subsurface (60.4°C)	Mn	Mn mineralization in 2 miles
38	927W	Subsurface (65.7°C)	Sr,Li	none
	928	Subsurface (75.8°C)	Fe,Mn	ilminite sands in 1-2 miles

Spring No.	Anomalous Temperature	Metals With Anomalous Concentrations	Known Local Mineralization
932	Subsurface (73.4°C)	Fe,Pb	none, Hg district 5 miles away
936	Subsurface (70.0°C)	Mn,Co,Ni	Hg mineralization in 1-2 miles
945	Surface (23 ⁰ C)	none	Mn, Cu mineralization in 1-2 miles
951W	Subsurface (78.3 ⁰ C)	Sr	Sb mineralization in 1 mile
952	Surface (24°C)	none	Pb, Zn, Sb mineralization in 2 miles

From the above table we find the following:

9 W	% With Anomalous Concentration Of Some Metals	% With Local Mineralization	% With Anomalous Concentration With Local Mineralization*
Surface T Anomalous	25	75	100
Subsurface T Anomalous	71	57	60
All Other Springs, Areas I & II	31		54

^{*}relevant minerals within 2 miles

Springs with anomalously high subsurface temperatures are:

1) more likely (71% frequency) to have an anomalous concentration of some metal than springs generally (31%) or springs with an anomalously high surface temperature (25%), 2) as likely (60% vs 54%) as other springs to indicate known, local mineralization by these anomalies. Thus overall springs with anomalously high silica content are more likely than other springs to indicate local mineralization.

5. Summary:

a. A number of parameters and elemental concentrations for spring waters gave a lognormal distribution which were amenable to cumulative frequency curve analysis for median (50%), threshold (95% and anomalous (>95%) concentrations.

- and Cu in the spring waters of Area I were greater than in Area II and reflected better than median or concentration ranges the more frequent mineralization of these metals in Area I. Hg concentrations in spring waters of the Hg-mineralized Area II had a higher median value and springs with anomalously high concentrations were near Hg mineralizations. However, in non-Hg-mineralized Area I the two springs with anomalously high Hg concentrations had no known Hg mineralization nearby.
- c. Individual springs with an anomalous concentration of a base metal were in 41% of the cases within 1 mile, and 18% of the cases within 2 miles, of known mineralization of the anomalous element.
- d. Spring waters of both Area I and Area II were commonly saturated to X% and above with ${\rm BaSO}_4$ (barite) whereas the median ${\rm SrSO}_4$ saturation was only 0.00X%.
- Ba and Sr concentrations in the spring waters correlated with Ca concentration.
- f. High Ba concentrations in spring waters were more reliable for detecting nearby barite mineralization than criteria based on: 1) % BaSO₄ saturation,
 - 2) Ba/Ca concentration ratio above area norm,
 - 3) Ba/Sr concentration ratio above area norm.

- g. More Sr mineralization in Area II was not reflected in greater median or threshold concentrations of the area's spring waters. Springs within 2 miles of known Sr mineralization (celestite) did not have anomalously high concentrations of Sr. Anomalous Sr concentrations were an index of nearby barite mineralization, in which Sr minerals occur as minor constituents.
- h. Concentrations of Li and K in Area I spring waters were not high and gave no indications of the frequently uncountered lithiophorite and cryptomelane of this area. Li tended to increase with Na in both Areas I and II.
- i. Springs with anomalously high silica content have a high incidence of anomalous high metal concentrations and are more likely than other springs to indicate local mineralization.

IV. REFERENCES

- Albin, D. R. and Stephens, J. W., 1963, Well records, depth-to-water measurements, stream flow data, and chemical analyses of water in the Ouachita Mountains, Arkansas. U.S. Geol. Survey, openfile report, 30 p.
- American Public Health Association, 1971, <u>Standard Methods for the Examination of Water and Wastewater</u>, 13 ed., Washington, 874 p.
- Bedinger, M. S., Sniegocki, R. T., and Poole, J. L., 1970, The thermal springs of Hot Springs National Park, Arkansas factors affecting their environment and management, open-file report of U.S. Dept. of Interior, Geological Survey, Water Resources Div.
- Billingsley, G. A. and Hubble, J. H. Chemical analyses of spring waters in the Hot Springs National Park, Arkansas area. This is an undated, unpublished U.S. Geological Survey open-file paper.
- Bryan, K., 1922, The hot water supply of the Hot Springs, Arkansas. Jour. Geology, 30, 425-449.
- Clardy, B. F. and Bush, W. V., 1976, Mercury district of southwest Arkansas, Information Circular 23, Arkansas Geological Commission, Little Rock, 57 p.
- Devine, J. C. and Suhr, N. H., 1977, Determination of silicon in water samples, At. Absorption Newsletter 16 (2), 39-41.
- Environmental Protection Agency, 1974, Methods for Chemical Analysis of Water and Wastes, Environmental Research Center, Cincinnati, 298 p.
- Environmental Protection Agency, 1976, Quality Criteria for Water: U.S. Environmental Protection Agency, Washington, D.C., 256 p.
- Fernandez, F. J., 1973, Atomic absorption determination of gaseous hydrides utilizing sodium borohydride, At. Absorption Newsletter 12, 93-97.
- Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters, Geochem. et Cosmochem. Acta. 37, 1255-75.
- Fournier, R. O., White, D. E. and Truesdell, A. H., 1974, Geochemical indicators of subsurface temperature. I. Basic assumptions: Jour.-Res. U.S. Geol. Sur. <u>2</u>, 259-262.

- Garrels, R. M. and Christ, C. L., 1965, <u>Solutions</u>, <u>Minerals</u>, <u>and</u> <u>Equilibria</u>, Harper and Row, New York, 450 p.
- Garrels, R. M., Thompson, M. E., and Siever, R., 1960, Stability of some carbonates at 25°C and one atmosphere total pressure: Am. J. Sci. 258, 402-418.
- Hawkes, H. E., and Webb, J. S., 1962, Geochemistry in mineral exploration, Harper & Row, New York, 415 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, Geol. Survey Water Supply Paper 1473 (2nd edition), 363 p.
- Herz, G. R. and Holland, H. D., 1965, The solubility and geologic occurrence of strontianite: Geochem. et Cosmochem. Acta. 29, 1303-1315.
- Lucchesi, P. J. and Whitney, E. D., 1962, Solubility of strontium sulfate in water and aqueous solutions of hydrogen chloride, sodium chloride, sulfuric acid, and sodium sulfate by the radiotracer method, J. Appl. Chem. 12, 277-279.
- Lepeltier, C., 1969, A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol. 64.538-550.
- Mahon, W. A. J., 1966, Silica in hot water discharged from drill holes at Wairakel, New Zealand: New Zealand Jour. Sci., 9, 135-144.
- Mariner, R. H. and Willey, L. M., 1976, Geochemistry of thermal waters in Long Valley, Mono County, California, Jour. Geophys. Res. 81, 792-800.
- Miser, H. D., 1917, Manganese deposits of the Caddo Gap and DeQueen quadrangle, Arkansas. U.S. Geol. Survey Bull. 660-C, 122 p.
- Miser, H. D. and Purdue, A. H., 1929, Geology of the DeQueen and Caddo Gap Quadrangle, Arkansas. U.S. Geol. Survey Bull. 808, 195 p.
- Muffler, L. P. J., 1973, Geothermal resources, in Brobst, D. A. and Prott, W. P., eds., United States Mineral Resources, U.S. Geol. Survey Prof. Paper 820, p. 251-261.
- Nix, J., and T. Goodwin, 1970, The simultaneous extraction of Fe, Mn, Cu, Co, Ni, Cr, Pb, and Zn from natural water for determination by atomic absorption, At. Absorption Newsletter 9,119-122.
- Posnjak, E. W., 1938, The system $CaSO_4-H_2O$: Am. Jour. Sci., 5th series, $\underline{35A}$, 247-272.
- Public Health Service, 1962, Public Health Service Drinking Water
 Standards: U.S. Public Health Service, Dept. of Health, Education, and Welfare, 61 p.

- Ramette, R. W. and Anderson, O., 1963, On the averred effects of radioisotopic tracers on solubility, J. Morg. Nucl. Chem. 25, 763-770.
- Rimstidt, J. D., 1977, Kinetic evaluation of the quartz geotherm-ometer, abs, Geol. Soc. Am. Ann. Mtg., 1142-43.
- Skougstad, M. W., and Horr, A., 1963, Occurrence and distribution of strontium in natural water, U.S. Geol. Survey Water-Supply Paper 1496-D, 97 p.
- Stroud, R. B., Arndt, R. H., Fulkerson, F. B. and Diamond, W. G., 1969, Mineral resources and industries of Arkansas, U.S. Bureau of Mines, Bulletin 645, 418 p.
- Swanberg, C. A. and Alexander, S., 1979, Use of water quality file WATSTORE in geothermal exploration: an example from the Imperial Valley, California. Geology, 7, 108-111.
- Swanberg, C. A. and Morgan, P., 1978, The linear relation between temperature based on the silica content of groundwater, and regional heat flow: a new heat flow map of the United States, Pure and Applied Geophysics, 117, 227-241.
- Templeton, C. C., 1960, Solubility of barium sulfate in sodium chloride solutions from 25°C to 95°C, J. Chem. and Eng. Data 5, 514-516.
- Truesdell, A. H., 1976, Summary of Section III, Geochemical techniques in exploration: in Proc. 2nd U.N. Symp. on the development and use of geothermal resources, San Francisco, 1975, vol. 1, p. Liii-Lxxix.
- Vatin-Perignon, N. Shaw, D. M., and Muysson, J. R., 1979, Abundance of lithium in spilites and its implications for the spilitization process, in Phys. and Chem. of the Earth, vol. 11 (ed. Ahrens, L. H.), Origin and Distribution of the Elements, see Table 4, p. 474, Pergamon Press, New York, 909 p.
- Wagner, G. H., Konig, R. H., and Steele, K. F., 1978, Stream sediment geochemical investigations in Arkansas Comparisons of manganese, zinc, and lead-zinc districts with an unmineralized area, J. Geochem. Exploration, 9, 63-74.
- Wagner, G. H., Konig, R. H., Vogelpohl, S. and Jones, M. D., 1979
 Base metals and other minor elements in the manganese deposits of west-central Arkansas. Chem. Geology (in press).
- World Health Organization, 1971, <u>International Standards for Drinking</u>
 Water, 3rd edition, World Health Organization, Geneva, 70 p.

					Emp.
10					
		٥			
					П
	9				

TABLES

	Total

Table 1-1 Summary of Analytical Methods

Anions

Measurement	Method	APHA	(1971) Page
NO ₃	Cd reduction		
NH3	Nessler		226
PO ₄ (ortho, dissolved)	Ascorbic acid		532
so ₄	Turbidimetric		334
SiO ₂	Colorimetri'c		303,336
C1	Mercuric nitrate		97
Alkalinity(total)	Titration to methy red end pt.	1	52

	П
	(m)
	ابنا

Table 1-1 Summary of Analytical Methods (continued)

Cations

Element	Instr	ument*	Mode	<u>Flame</u>	9	Additive	
Na	J	A B	emission	H ₂ - N ₂		none	
Κ		u	16	И		11	
Li		ш	18	It		11	
Ca		u.	absorption	C ₂ H ₂ - N ₂ O		Na C1	
Mg		н	и	п		11	
Sr			emission	n		11	
Ва		nt .	concentration	11		KC1	
Fe			absorption	C ₂ H ₂ - Air		via che	lation
Co		n ·	ш	11		11	n i
Ni		u	u	п		и	
Cu		ıı	0	и		п	
Zn	Р	Ε	n	и		и	и
РЬ	Р	E a	u	11			11
. Нд	P	E	11	flameless		**	
Sb	_A ≈ J.	A hydri absor	de generation ption	H ₂ - N ₂		***	

PE = Perkin Elmer Model 303 Atomic Absorption Spectrophotometer

JA = Jarrel Ash modernized Model 82-500 Atomic Absorption Spectrophotometer

** method of EPA(1974), p. 118

*** method of Fernandez (1973)

3-nJ

Table 1-2 Chemical Analyses of Ouachita Spring Waters. Anion Analyses and Miscellaneous Measurements

	Name of Spring or Well(W)	Lab No.	Water T OC	pH units	Sp. Cond, μmhos per cm 25 ⁰ C	Total Al- kalinity mg/l as CaCO ₃	NO ₃ as N ppm	NH3 as N ppm	PO ₄ as P ppm	SO ₄ ppm	Cl ppm	SiO ₂ ppm	-
	Iron (W)	501	15.0	7.4	252	291	2.28	0.11	0.03	0.3	0.3	7.7	
	Iron	502	5.0	6.5	14	2	<0.01	0.02	0.04	0.3	1.8	3.2	
	Black	503	15.0	7.5	324	10	<0.01	0.05	0.04	32.0	0.3	18.3	
	Collier	504	16.5	6.7	61	44	<0.01	<0.02	0.06	1.1	2.3	12.1	
	Caddo Valley	505	15.0	7.3	168	225	<0.01	<0.02	0.13	1.4	0,3	7.7	
თ	Crystal A	506	18.0	7.6	197	162	<0.01	0.42	0.08	1.1	0.3	12.l	
Ö	Goat Brown	507	13.0	6.7	89	60	0.06	0.04	0.04	1.1	3.5	13.7	
	Bogg	508	13.0	7.2	372	130	0.06	0.02	0.05	2.3	0.5	7.7	
	Queen Wilhelmina S. Park	509	10.0	5.8	29	5	2.02	0.09	0.02	2.6	1.8	10.3	
	Queen Wilhelmina S. Park	510	9.0	6.4	66	2	2.68	0.13	0.05	0.6	3.8	6.6	
	Silver World	511	16.0	6.9	109	90	<0.03	0.06	0.03	4.7	1.5	10.2	
	Abernathy	512	16.0	7.0	144	70	0.37	0.09	0.12	2.0	1.0	8.9	
	Three Sisters	513	16.0	6.9	244	150	076	0.05	0.12	6.9	3.5	19.4	
	(No Name)	514	18.0	5.6	21	5	1.07	0.04	0.03	0.9	1.5	10.2	
	(No Name)	515	17.0	6.0	21	5	<0.02	<0.02	0.09	1.3	2.0	9.6	
	(No Name)	516	21.0	6.3	103	66	0.02	0.11	0.13	4.0	2.0	12.0	
	Wyatt	517	17.0	5.7	64	12	<0.02	0.25	0.54	12.0	2.5	12.0	
	(No Name)	518	15.0	5.8	18	5	0.65	0.12	<0.01	0.6	2.0	10.6	
	(No Name)	519	18.0	6.6	135	84	0.08	0.33	0.01	2.9	2.0	9.4	
	Pigeon Roost*(W)	520	17.0	7.2	208	160	0.02	0.64	0.03	2.6	1.8	13.5	
	Dripping	521	17.0	5.6	26	10	0.54	0.29	0.03	1.9	2.0	9.6	
	Strawn	522	18.0	7.3	228	125	0.05	0.38	0.03	4.0	2.3	9.5	
	(No Name)	523	22.0	3.8	37	0 .	-	0.09	0.04	< 0.3	2.0	12.0	
	(No Name)	524	15.5	5.1	30	30	<0.02	0.44	<0.01	<0.3	3.0	15.5	
	(No Name)	525	15.0	6.1	48	25	0.15	0.05	0.05	3.0	2.0	9.7	
	Gillham A	526	17.0	7.5	383	170	0.37	0.54	0.06	0.3	86	16.8	
	Gillham B	527	17.5	7.6	385	230	0.04	0.47	0.11	<0.3	87	16.8	
	Bard	528	15.5	6.8	184	140	0.03	0.22	0.07	7.6	1.3	16.2	
	(No Name)	529	17.5	6.4	35	50	2.30	0.08	0.08	<0.3	1.5	9.2 9.2	
	(No Name)	530	15.0	6.8	42	12		0.08	0.05	3.0	1.5	7.4	

207			
	40°		IJ,
			8
			L

	74575 2 2 3011 3		-0.		Sp.	w 70	NO	ALL .	DA.	SO.		C:O
		No.	Toc	рН	Cond.	Alkalinity	NO ₃	NH ₃	P0 ₄	so ₄	Cl	SiO ₂
	McClaine A	531	17.5	6.9	175	90		0.09	0.14	4.8	2.0	10.1
	McClaine B	532	18.0	6.4	80	50	2.30	0.08	0.08	3.4	2.3	9.7
	McClaine C	533	17.5	7.3	230	90	0.05	0.09	0.05	4.3	2.5	10.1
	McClaine D	534	15.5	5.5	27	10		0.15	0.05	2.0	ī.8	7.0
	W. Jones	535	16.0	6.4	41	20		0.11	0.03	0.3	1.3	7.6
	Jones Valley	536	18.0	7.0	274	90	2.50	0.04	0.12	5.6	1.8	9.2
	Buttermilk Å	537	15.0	4.4	24	40	2.30	0.08	0.07	3.0	1.5	8.3
	Buttermilk B	538	19.0	6.5	118	80	2.50	0.11	0.18	6.0	2.0	8.6
	(No Name)	539	17.0	4.4	23	0	1.10	0.07	0.06	3.4	2.0	7.6
	Mcellhanon	540	18.0	4.6	23	20	0.92	0.07	0.03	0.3	2.3	7.2
	(No Name)	541	16.0	4.7	24	20	0.75	0.05	0.07	1.3	2.5	8.8
	(No Name)	542	16.0	5.1	17	10	0.79	0.04	0.05	1.0	2.3	8.5
	Crystal B	543	20.0	7.1	259	180	0.55	0.11	0.10	4.5	4.0	9.7
	Brogdams A	544	18.0	7.3	274	160		0.06	0.07	2.3	3.0	10.1
<u>6</u>	Brogdams B	545	20.0	7.6	279	230	0.79	0.07	0.10	1.3	1.3	9.7
	Brogdams C	546	21.0	7.3	234	130	0.92	0.04	0.13	5.6	2.5	10.1
	Brogdams D	547	20.0	7.5	266	180		0.09	0.08	3.4	2.5	10.4
	Brogdams E	548	22.0	7.0	263	60	1.70	0.17	0.02	4.1	2.0	10.4
	Burrous	899	17.0	7.9	104	150	0.63	0.10	0.06	< 0.3	2.7	10.8
	Lead Mine Road A	900	18.0	6.2	34	100	0.87	0.13	0.06	0.3	1.8	9.3
	Lead Mine Road B	901	18.0	6.9	131	112	0.19	0.21	0.04	1.4	1.8	9.1
	(No Name)	902	20.0	6.4	28	50	0.67	0.16	0.08	0.7	3.8	10.5
	(No Name)	903	18.0	6.3	108	70	0.76	0.14	0.10	1.0	2.5	11.6
	(No Name)	904	18.0	4.1	108	0	14.3	0.10	0.13	3.6	9.5	8.7
	Womack, W	905	20.0	6.2	303	125	1.35	0.13	0.20	2.8	4.5	9.9
	Womack	906	20.0	4.3	55	10	1.62	0.05	0.30	1.7	4.5	5.4
	Lolla Bell, W	907	19.0	6.2	196	67	0.31	0.19	0.11	5.9	2.8	37.1
	(No Name)	908	18.0	7.1	57	25	1.20	1.39	0.04	2.1	2.3	11.9
	(No Name)	909	19.0	7.2	17	5	0.68	0.21	0.08	2.8	3.0	13.2
	(No Name)	910	18.0	5.8	57	2	0.83	0.47	0.20	12.6	5.0	19.3
	(No Name)	911	16.0	5.4	183	175	1.19	0.47	0.28	5.1	2.3	11.6
	(No Name)	912	16.5	5.8	135	.70	1.07	0.38	0.21	4.0	:1.5	9.3
	Sulfur	913	17.0	4.1	267	135	0.68	1.08	0.25	1.4	3.5	14.0
	Elliott	914	20.0	5.5	46	22	0.42	0.10	0.09	0.3	3.0	18.2
	Caddo River	915	35.0	5.7	200	122	0.17	0.16	0.08	0.7	3.5	17.2
	Artesian* Well(W)	916	18.0	5.8	97	40	0.11	0.20	0.24	7.6	3.0	34.9
	Artesian* Well(W)	917	18.0	7.2	57	17	0.67	0.10	0.14	10.2	3.0	11.6
	(No Name)	918	20.0	5.7	55	37	0.97	0.02	0.08	2.5	2.5	8.7
	;				0.	• •			^ ^	^ 7	/ -	17 0

Table 1-2 Con't

			-
		8	
70			
			П

Table 1-2 Con't

	No.	тос	ρН	Sp. Cond.	Alkalinity	N ⁰ 3	NH ₃	P0 ₄	so ₄	Cl	sio ₂
, ×			···		_						22.0
(No Name)	920	20.0	4.8	<5	5	0.77	0.21	0.03	0.3	5.0	22.9
(No Name)	921	30.0	6.4	227	130	3.26	0.10	0.12	3.2	2.5	10.5
Chalybeate	922	10.0	6.2	107	6	12.0	0.28	0.05	4.6	13.0	7.7
Caddo Gap (W)	923	22.0	7.4	138	100	0.98	0.23	0.15	5.0	2.5	31.9
Redland Mt.	924	25.0	7.2	210	144	3.86	0.22	0.08	9.7	1.5	18.5
Lolla Bell A	925	12.0	7.2	19	11	0.53	1.52	0.04	5.5	3.0	10.5
Lolla Bell B	926	12.0	7.0	19	9	0.53	1.52	0.04	6.8	1.5	10.0
Artesian Well (W)	927	18,5	7.6	373	186	10.50	1.02	0.34	29.5	3.5	21.3
Mineral	928	16.0	6.9	65	21	0.13	0.52	0.08	5.9	3.0	27.3
Barite Pit	929	10.0	5.0	20	1	0.53	1.31	0.02	0.51	2.5	10.5
Murfreesboro Area	930	11.0	5.1	19	1	1.02	1.52	0.03	4.1	3.0	7.2
Murfreesboro Area	931	11.0	5.0	15	2	0.83	0.36	0.09	8.7	0.8	4.8
Lake Greeson Area	932	13.0	6.8	112	58	0.38	0.23	0.14	5+5	4.8	25.6
Dierks Area	933	10.0	4.8	39	0	1.06	0.30	0.08	5.9	5.0	7.6
Cox Residence	934	12.0	4.7	63	0	1.36	0.29	0.06	5.5	4.0	7.4
Dierks Area	935	10.0	5.1	13	0 11	5.23	0.15	0.05	2.8	1.5	6.6
L. Greeson, Sulfur	936	11.0	6.8	109	56		0.50	0.18	4.1	3.5	23.5
L. Greeson, Possum	937	8.0	8.7	563	265	0.55	0.42	0.10	3.7	1.5	12.1
Salem Area	938	12.0	6.9	107	50	0.80	0.25	0.05	8.2	2.5	9.9
Bethesda	939	19.0	7.1	224	121	4.80	0.10	0.09	2.4	2.0	13.2
Mine Creek Area	940	16.0	5.9	248	170	0.20	0.00	0.13	2.9	2.5	9.2
Rock	941	17.0	6.5	299	176	1.24	0.05	0.09	4.3	3.0	13.2
West	942	15.0	5.3	36	24	1.24	0.10	0.06	1.3	1.5	7.9
Pigeon Roost	943	15.0	5.5	218	42	0.30	0.02	0.12	7.1	2.0	11.4
Barite Pit	944	18.5	4.6	23	12	0.08	0.06	0.10	1.0	3.0	10.8
"Warin"	945	23.0	7.1	116	73	5.50	0.00	0.15	2.6	2.5	11.1
Athens Area	946	16.0	5.8	18.	24	1.91	0.04	0.23	2.6	2.8	13.6
Umpire Area	-947	18.0	5.6	23	18	2.70	0.09	0.13	0.5	1.8	12.4
S. Cox	948	16.0	4.1	177	0	19.7	0.07	0.05	1.0	8.0	8.0
Cossatot	949	13.0	4.7	37	24	0.89	0.20	0.12	1.5	2.5	16.0
Church .	950	18.0	4.7	205	18	4.70	0.14	0.10	2.6	5.0	12.4
Defore (W)	951	16.0	7.4	484	200	0.09	0.02	0.41	55.0	3.5	29.0
(No Name)	952	14.0	4.7	61	12	5.00	0.05	0.13	1.0	5.5	12.9
•	953	16.0	4.5	71	12	2.41	0.00	0.12	8.5	6.0	12.9
Mena Park Median	222 -	16.5	6.2	85	37	0.9	0.15	0.08	3	2.9	ii'
EPA or APHA precision dat	a si	-	0.15	4	3.2	-	0.06	<0.01	0.3	-	≃2

σy

			3 .		
*					
					5.13

Table 1-3 Chemical Analyses of Ouachita Spring Waters Alkali and Alkaline Earth Metals

Name of Spring or Well(W)	Lab No.	Na ppm	K ppm	Li ppb	Са ppm	Mg ppm	Şr ppm	Ba ppm
Name of Spring or Well(W) Iron (W) Iron Black Collier Caddo Valley Crystal A Goat Brown Bogg Queen Wilhelmina Park Queen Wilhelmina Park Silver World Abernathy Three Sisters (No Name) (No Name) (No Name) (No Name) Pigeon Roost* (W) Dripping Strawn (No Name) (No Name) (No Name) Gillham A Gillham B Bard (No Name) Gillham B Bard (No Name) Claine A McClaine B McClaine C McClaine D W. Jones Jones Valley Buttermilk A Buttermilk A Buttermilk B (No Name) Mccllhanon (No Name) Mccllhanon (No Name) Crystal B Brogdams A			PPM 0.50 0.12 0.30 1.25 0.34 0.42 0.48 0.42 0.31 0.42 0.48 0.48 0.49 0.49 0.45 0.45 0.45 0.45 0.46 0.58 0.56	PPb 21.00 2.00 2.00 3.00 2.00 2.00 2.00 2.00 2		ppm 12.60 0.81 14.30 1.95 1.31 6.21 1.893 1.197 1.082 1.093	Ppm 0.597 0.003 0.356 0.020 0.140 0.062 0.031 0.063 0.014 0.011 0.117 0.138 0.089 <0.002 <0.002 <0.002 <0.002 <0.002 0.004 0.105 0.317 0.008 0.234 0.012 0.015 0.033 0.838 0.802 0.140 0.012 0.016 0.131 0.072 0.160 0.018	ppm 0.04 <0.01 0.02 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0
Brogdams B Brogdams C	545 546	1.80	0.46	3.1	61.3 56.4	2.14	0.167	<0.02 <0.02

	V		

Table 1-3 Con't

Table 1-3 con c					C -	M =	Ċ	0
V	Lab.	Na	K	Li	Ca	Mg	\$r	Ba nom
Name of Spring or Well(W)	No.	ppm	ppm	ppb	ρρ m	ppm	_ ppm	ppm
Proadoms D	547	2.20	0.48	3.1	58.9	2.33	0.141	<0.02
Brogdams D Brogdams E	548	2.30	0.55	2.9	61.3	2.41	0.149	<0.02
Burrows	899	3.25	0.50	3.8	53.3	2.17	0.119	0.03
Lead Mine Road	900	1.31	0.24	<1.0	5.60	0.89	0.010	0 06
Lead Mine Road	901	1.75	0.37	1.9	35.90	6.16	0.089	0.01
(No Name)	902	1.80	0.24	2.2	2.36	1.08	0.003	0.04
(No Name)	903	1.70	0.24	2.2	25.40	1.21	0.045	0.01
(No Name)	904	10.00	3.80	1.9	4.97	3.05	0.057	0_18
Womack Well (W)	905	82.5	1.15	28.5	8.56	2.67	0.148	0.02
Womack	906	5.15	4.30	<1.0	2.36	1.15	0.018	0.07
Lolla Bell (W)	907	20.00	1.00	16.5	13.10	19.60	0.101	0.27
(No Name)	908	2.10	0.62	7.5	1.30	3.48	0.004	0.06
(No Name)	909	1.00	1.40	1.8	0.75	0.88	0.002	0.02
(No Name)	910	0.85	0.67	14.0	4.47	1.00	0.011	0.08
(No Name)	911	1.50	0.20	2.5	70.10	2.83	0.500	0.06
(No Name)	912	1.23	0.27	1.0	25.20	1.13	0.160	0.02
Sulfur	913	16.50	0.90	17.3	27.54	14.92	2.200	0.07
Elliott	914	1.55	0.24	4.0	1.37	1.91	0.015	0.02
Caddo River	915	5.40	1.00	11.5	42.05	2.45	0.051	0.03
Artesian#Well (W)	916	2.00	0.95	10.0	7.30	2.52	0.044	0.20
Artesian* Well (W)	917	1.13	1-05	8.2	4.18	1.91	0.035	0.08
(No Name),	918	1.65	0.27	2.1	6.83	1.61	0.032	0.08
(No Name) .	919	7.60	2.80	4.3	4.18	2.90	0.048	0.08
(No Name)	920	1.23	0.46	2.1	0.60	0.74	0.070	0.02
(No Name)	921	3.83	1.10	4.6	50.41	2.38	0.100	0.15
Chalybeate	922	10.00	2.90	2.1	6.68	7.75 2.80	0.088	0.10
Caddo Gap (W)	923	13.00	0.65	12.5 7.0	18.30 53.35	23.70	0.030	0.10
Redland Mt.	924	2.50 2.00	0.95	2.0	1.54	0.96	0.016	0.02
Lolla Bell A Lolla Bell B	925 926	2.50	0.38	2.0	0.91	1.15	0.011	0.03
Artesian Well (W)	927	30.00	5.20	58.0	26.68	4.31	1.44	0.08
Mineral	928	4.60	3.90	20.0	2.66	1.40	0.049	0.01
Barite Pit	929	2.40	0.21	2.1	0.91	0.30	0.032	0.91
Murfreesboro Area	930	1.60	0.38	1.0	1.22	0.61	0.013	0.06
Murfreesboro Area	931	0.90	0.49	1.6	0.91	0.64	0.007	0.02
Lake Greeson Area	932	10.50	1.41	26.0	8.60	4.55	0.042	0.26
Dierks Area	933	3.20	2.11	1.0	1.07	0.77	0.006	0.03
Cox Residence	934	2.60	1.75	1.0	4.51	1.86	0.023	0.03
Dierks Area	935	1.25	0.45	1.6	0.91	0.58	0.013	0.03
Lake Greeson, Sulfur	936	11.00	2.60	17.5	5.57	3.92	0.041	0.15
Lake Greeson Possum	937	162.5	0.48	86.0	1.22	0.19		0.03
Salem Area	938	1.90	0.80	2.1	20.74	1.40		0.04
8athesda	939	2.85	0.80	4.0	46.36	6.44	0.080	<0.02
Mine Creek Area	940	1.24	0.46	2.6	58.90	1.70	0.320	<0.02
Rock	941	3.15	0.42	3.3	65.66	5.68	0.105	<0.02
West	942	0.93	0.49	<1.0	-	0.76	0.020	0.02
Pigeon Roost	943	2.00	0.70	8.2	12.64	2.35	0.068	0.19
Barite Pit	944	1.40	0.30	2.0	0.39	0.34	0.020	0.93
"Warm"	945	1.70	0.73	2.2	19.52	2.66	0.033	<0.02
Athens Area	946	2.85	0.78	2.0	0.78	0.47	។.010	0.02

	*)		
3			
		₩	

Table 1-3 Con't

Name of Spring or Well(W)	Lab No.	Na ppm	K ppm	Li D	Ca ppm	Mg Mg	Sr ppm	Ba ppm
Umpire Area S. Cox Cossatot Church Defore Well (W) (No Name Mena Park	947 948 949 950 951 952 953	2.70 6.80 5.00 6.25 21.50 6.50 6.70	0.62 8.50 0.95 1.20 1.25 1.30 0.78	1.6 4.6 2.0 2.0 45.0 2.6 2.6	1.37 9.45 2.73 2.82 78.39 2.62 3.68	0.64 3.45 0.64 1.47 9.37 1.93 1.88	0.010 0.092 0.033 0.026 0.275 0.020	<0.02 0.26 <0.02 <0.02 0.02 0.03 <0.02

^{*} Cored, plastic piping

				П
8				
	#1			

Table 1-4
Chemical Analyses of Ouachita Spring Waters for Heavy Metals (all data in parts per billion)

		П
		1
	20	

Table 1-4 Con't											
		Lab	_		_						
Name of Spring or \	Well(W)	No.	Fe	Mn	Zn	Çu	Co	Ni	РЬ	Hg	Sb
0 da		r. l. →	/ ^ ^			_					
Brogdams D		547	699	221	32	2	4	17	< 5	<0.1	<0.2
Brogdams E		548	661	296	13	2	6	16	10	<0.1	<0.2
Burrows ,		899	10	5	92	9	<3	8	11	0.72	<0.5
Lead Mine Road Lead Mine Road		900	33	5	137	4	2	4	<7	<0.1	<0.5
(No Name)		901	2236	701	27	2	15	17	30	<0.1	<0.5
(No Name)		902	39	19	21	2	7	12	11	<0.1	< 0.5
1		903 904	41	10	12	1	10	15	15	<0.1	<0.5
(No Name) Womack (W)		905	25	89	48	14	20	25	34	0.59	<0.5
Womack (w)		906	7	6	<5 4	1	10	15	23	0.51	<0.5
Lolla Bell (W)		907	23 2062	25	6	2	18	30	33	<0.1	<0.5
(No Name)		908	10082	344	21	2	15	32	37	0.63	<0.5
(No Name)	67.	909	146	6	7	2	39	80	42	2.27	
(No Name)		910	149	23	6 20	4	4 = 18	7	17	1.48	<0.5
(No Name)		911	195	83	144	4	10	21	21	<0.1	<0.5
(No Name)		912	5	31 1	- 1 4 4 - < 5	1		19 8	13	0.68	<0.5
Sulfur		913	31	7	> 5 < 5	2 1	W 5 5	10	1 <i>7</i> 10		<0.5
Elliott		914	1347	32	5	4	13	17	14	0.29 0.76	<0.2 <0.2
Caddo River		915	80	7	<5	4	8	17	18		<0.2
Artesian* Well(W)		916	5222	63 Í	65	2	23	39	37	0.28	0.2
Artesian* Well(W)		917	1642	351	21	2	18	28	25	0.76	<0.2
(No Name)		918	49	10	< 5	2	6	8	7		<0.2
(No Name)		919	49	42	<5	13	10	17	17		<0.5
(No Name)		920	15	22	< <u>5</u>	9	8	12	12	0.32	0.5
(No Name)	42	921	ió	4	<5	3	5	10	12		<0.5
Chalybeate		922	43	77	19	10	7	20	21	0.65	-
Caddo Gap (W)		923	580	436	38	<1	11	17	21	0.75	_
Redland Mt.		924	226	345	9	<1	22	24	30	<0.2	_
Lolla Bell A		925	15	5	4	3	<u></u>	2	30	0.22	_
Lolia Bell B		926	43	10	16	5	15	32	42	0.44	-
Artesian Well (W)		927	85	86	29	3	15	24	46	0.87	-
Mineral		928	4218	345	16	3	11	21	30	0.65	-
Barite Pit		929	129	13	10	5	7	. 9	30	0.65	-
Murfreesboro Area		930	15	16	9	5	7	13	17	0.90	-
Murfreesboro Area		931	29	5	5	<1	7	9	34	0.65	-
Lake Greeson Area		932	1375	70	5	<1	15	28	59	<0.2	-
Dierks Area		933	175	14	16	5	11	17	34	<0.2	-
Cox Residence		934	43	16	24	<1	11	24	25	0.22	-
Dierks Area		935	29	10	10	₁₅₁ 3	11	24	25	0.65	-
L. Greeson, Sulfur		936	9930	370	11	<1	38	54	34	0.65	-
L. Greeson, Possum		937	57	8	8	5	15	20	25	1.10	-
Salem Area		938	287	24	16	3	22	36	30	0.65	-
Bethesda		939	301	743	11	2	30	28	24	0.22	-
Mine Creek		940	60	22	12	2	6	7	9	0.22	-
Rock		941	2	2	4	5	2	. 3	< 5	<0.2	-
West		942	10	3	6	2	2	3	20	<0.2	-
Pigeon Roost		943	3306	800	28	3	31	39	29	0.30	-
Barite Pit		944	100	12	10	2	6	7	13	0.45	-
Athres Area		945	5	8	6	2	6	7	9	<0.2	-
Athens Area		946	13	6	4	2	2	7	18	<0.2	-

		П

Table 1-4 Con't

Name of Spring	or Well(W)	Lab No.	Fe	Иn	Zn	Cu	Со	Ni	. Pb	Нд	Sb
Umpire Area		947	27	5	6	4	8	7	11	0.2	-
S. Cox		948	20	110	45	7	25	33	31	<0.2	-
Cossatot	١	949	17	4	6	2	11	7	13	<0.2	<0.5
Church		950	43	11	7	4	11	2	31	<0.2	<0.5
Defore (W)		951	48	283	111	3	34	33	33	<0.2	< 0.5
(No Name)		952	18	14	13	2	11	5	22	<0.2	<0.5
Mena Park		953	10	11	8	2	9	7	13	<0.2	-

^{*} Cored, plastic piping

R			
		*	
		98	

60

Table 1-5

Median Values (and Ranges) of Various Measurements
And Analyses for Areas I and II

Miscellaneous Measurements

	Water T ₁ °C Surface	Water T ^O C Subsurface*	pH <u>Units</u>	Specific Cond. umhos per cm 25°C	Total Alkalinity mg/l as CaCO ₃
Area I	17(5-35)	40.0(7.1-91.2)	6.4(3.8-7.9)	107(14-385)	60(0-291)
Area II	16(8-25)	45.9(11.2-89.2)	5.8(4.1-8.7)	61(<5-563)	15(0-265)
(11/1)100 (%)	94	115	91	57	25

Anion Concentrations (ppm)

	NO ₃ as N	NH ₃ as N	PO ₄ as P	so ₄	<u></u>	si0 ₂
Area I	0.66(<0.01-5.5)	0.1(<0.01-1.52)	0.07(<0.01-0.54)	2.3(<0.3-32)	2.3(0.25-87)	10.3(3.2-34.9)
Area II	1.0(0.06-14.3)	0.20(0.02-152)	0.10(0.02-0.41)	3.2(0.3-55)	3.5(0.5-9.5)	12.1(3.8-37.1)
(11/1)100 (%)	152	200	143	139	152	117

^{*}calculated from SiO_2 ranges

Alkali Metals Concentrations

	Na (ppm)	K(ppm)	<u>Li(ppb)</u>
Area I	1.8(0.95-152)	0.56(0.04-2.9)	2.5(<1-70)
Area II	3.9(0.85-162)	1.10(0.21-8.5)	2.3(<1-86)
(11/1)100 (%)	217	196	92

Alkaline Earth Metals Concentrations

	Ca (ppm)	Mg(ppm)	Sr(ppm)	Ba(ppm)
Area I	13.5(0.03-70)	1.9(0.15-14.9)	0.055(0.002-2.2)	<0.015(0.001-0.42)
Area II	2.7(0.6-78)	1.40(0.19-23.7)	0.03(<0.01-1.4)	0.04(0.01-0.92)
(11/1)100 (%)	20	74	55	>267

Base Metal Concentrations (ppb)

	<u>Fe</u>	<u>Mn</u>	Zn	Cu	Co	<u> </u>	Pb
Area I	56(2-5220)	19(1-1220)	18(2-144)	4.0(1-85)	5(<2-31)	9(2-39)	10(1-37)
Area II	49(7-10082)	14(4-370)	9.5(2-48)	3.0(<1-14)	11(2-39)	20(2-54)	30(<10-59)
(11/1)100 (%)	. 87	74	53	75	220	222	300

7

£		
		П
	4	П
		Total State of the

71

Mercury and Antimony Concentrations (ppb)

	<u>Hg</u>	Sb*
Area I	<0.1(<0.1-2.1)	<0.2(<0.2-0.3)
Area II	0.2(<0.1-1.2)	<0.5(<0.2-0.5)
(11/1)100 (%)	>200	_

^{*}limited number of samples

% Saturation

	% BaSO ₄ Saturation		% SrSO ₄ Saturation		
	Surface Temp.	Subsurface Temp.	Surface Temp.	Subsurface Temp.	
Area I	2.0(0.16-96)	1.1(0.09-39)	0.0065(<0.0001-0.504)	0.01(0.0001-0.867)	
Area II (II/I)100 (%)	8.0(0.46-97) 400	6.5(0.24-38) 591	0.0048(0.0004-1.97) 44	0.007(0.0005-3.38) 70	

Table I-1 Comparison of Ouachita Mountain Spring Water Ranges And Median Values with Limits for Drinking Water And with Ranges and Median Values for Wells from the Ouachita Mountains (Well Data from Albin and Stephens (1963))

	*	<u>Limits</u>	Springs Range	Springs Median	Wells Range	Wells Median
Temperature, ^O C		- n	5-35	16.5	13.8-22.2	18.3
ρΗ		6.5-9.2 ^{b*}	3.8-7.9	6.2	5.0-8.6	7.5
Specific cond. μ mhos/cm 25 ⁰ C		-	<5-563	85	34-1080	214
Total Alkalinity mg/l as CaCO ₃	Šv	ess.	0-291	37	2-378	63
NO ₃ as N ppm		10**	<0.01-14.3	0.9	0-68	1.6
NH ₃ as N ppm		0.5 ^a	<0.01-1.52	0.15	-	-
PO ₄ as P ppm		- .	<0.01-0.54	0.08	-	•
SO ₄ ppm		400 ^b	<0.3-32	3	0-221	10
C1 ppm		600 ^{b*}	0.25-87	2.9	2-288	11
SiO ₂ ppm		-	3.2-31.9	11	5.1-25.0	8.0
Na ppm		-	0.85-162	2.85	1.6-167.0	13.0
K ppm	76	-	0.04-8.5	0.83	0.3-22.0	1.2
Li ppb		*	<1-86	2.4	•	-
Ca ppm		200 ^{b*}	0.03-78	16.2	. 1-131	11
Mg ppm		150 ^b	0.15-23.7	1.65	0.5-40.0	5.1
Sr ppm		-	<0.01-2.2	0.04	-	-
Ва ррт		1 ^a	0.001-0.92	0.024	-	-
Fe ppb		300 ^a *	2-10,082	53	_ 10	-
Mn ppb		50 ^a *	1-1220	17	•	-
Zn ppb		15,000 ⁵ *	2-144	14	-	-
Cu ppb		1,000 ^a *	<1-85	4	-	-
Со ррь		•	<2 - 39	8	-	•
Ni ppb		-	2-54	15	-	-
Рь ррь		50 ^a	1-59	20	₩ - ::	-
Hg ppb	•	2ª	<0.1-2.1	0.1	-	-
Sb ppb		× <u>-</u>	<0.2-0.5	<0.3	-	-

^{*} limit based solely on welfare

** EPA, 1976

^aPHS, 1962 bWHO, 1971

		ż			
			20		
	3 8				F

Table I-2 Data on Sulfate and Carbonate Minerals of Ca, Sr and Ba

Mineral	Chemical 'Formula	Solubility Product (mo6) ² /1 ² at 25 ⁰ C	Reference
gypsum	CaSO ₄ .2H ₂ O	$1.49 \times 10^{-4} = K_1$	Posnjak (1938)
celestite	SrSO ₄	$1.37 \times 10^{-7} = K_2$	Figure III-11
barite	BaSO ₄	$1.25 \times 10^{-10} = K_3$	Figure III-11
calcite	CaCO ₃	4.57×10 ⁻⁹ =K ₄	Garrels & Christ (1965)
strontianite	SrCO ₃	$4.8 \times 10^{-10} = K_5$	Helz & Holland (1965)
witherite	BaCO ₃	2.0x10 ⁻⁹ =K ₆	Garrels et al. (1960)

Equilibrium Equation for Two Solids	Ratio (Mol
$SrSO_4(C) + Ca^{++} + 2H_2O = CaSO_4.2H_2O(c) + Sr^{++}$	a _{Sr} ++/a _{Ca} +
$BaSO_4(C) + Ca^{++} + 2H_2O = CaSO_4.2H_2O(c) + Ba^{++}$	a _{Ba} ++/a _{Ca} +
$BaSO_4(C) + Sr^{++} = SrSO_4(c) + Ba^{++}$	a _{Ba} ++/a _{Sr} +
$SrCO_3(C) + Ca^{++} = CaCO_3(c) + Sr^{++}$	a _{Sr} ++/a _{Ca} +
$BaCO_3(C) + Ca^{++} = CaCO_3(C) + Ba^{++}$	a _{Ba} ++/a _{Ca} +
$BaCO_3(C) + Sr^{++} = SrCO_3(c) + Ba^{++}$	a _{Ba} ++/a _{Sr} +

Equilibrium Activity Ratio (Moles/Mole)	/			
$a_{Sr}^{++/a}Ca^{++} = K_2/K_1$	=	0.92	х	10 ⁻³
$a_{Ba}^{++/a}_{Ca}^{++} = K_3/K_1$	=	0.84	X	10
$a_{Ba}^{++/a}Sr^{++} = K_3/K_2$	z	0.91	X	10 ⁻³
$a_{Sr}^{++/a} c_{a}^{++} = K_{5}/K_{4}$				
$a_{Ba}^{++/a}Ca^{++} = K_6/K_4$				
$a_{Ba}^{++/a}Sr^{++} = K_6/K_5$				

Minerals in	Ionic	Median Values Found For Activity Ratios*		Equilibrium Values*
Equilibrium	Activity Ratio	<u>Area I</u>	Area II	Activity Ratios
celestite=gypsum	asr++/aca++	4.1x10 ⁻³	11x10 ⁻³	2.0x10 ⁻³
barite=gypsum	a _{Ba} ++/a _{Ca} ++	1100×10 ⁻⁶	15000×10 ⁻⁶	2.9x10 ⁻⁶
barite=celestite	^a Ba ^{++/a} Sr ⁺⁺	<0.27	1.3	1.4×10 ⁻⁶
strontianite=calcite	a _{sr} ++/a _{ca} ++	0.0041	0.011	0.22
witherite=calcite	a _{Ba} ++/a _{Ca} ++	<0.0011	0.015	1.5
witherite=strontianite		<0.27	1.3	6.6

^{*}units are ppm/ppm

			A
		9	

Table II-1
Surface Temperature, Subsurface Temperature,
Heat Flow and Geothermal Gradient

Sample #	Surface Temperature	SiO ₂	Subsurface Temperature OC	Heat Flow w/m²	Geothermal Gradient OC/km
501	15.0	7.7	31.7	27.6	17.5
502	5.0	3.2	7.1	-9.1	-5.8
503	15.0	18.3	60.9	70.6	44.9
504	16.5	12.2	46.1	49.2	31.3
505	15.0	7.7	31.7	27.6	17.5
506	18.0	12.2	46.1	49.2	31.3
507	13.0	13.7	50.2	55.2	35.1
508	13.0	7.7	31.7	27.6	17.5
509	10.0	10.3	40.6	40.8	26.0
510	9.0	6.6	26.7	20.2	12.8
511	16.0	10.2	40.3	40.4	25.7
512	16.0	8.9	36.0	34.1	21.7
513	16.0	19.4	53.2	74.0	47.1
514	18.0	10.2	40.3	40.4	25.7
515	17.0	9.6	38.5	37.8	24.0
516	21.0	12.0	45.6	48.4	30.8
517	17.0	12.0	45.6	48.4	30.8
518	15.0	10.6	41.7	42.5	27.0
519	18.0	9.5	37.9	36.9	23.5
520	17.0	13.5	49.7	54.5	34.7
521	17.0	9.6	38.5	37.8	24.0
522	18.0	9.5	37.9	36. 9	23.5
523	22.0	12.0	45.6	48.4	30.8
524	15.5	15.5	54.5 .	61.6	39.2
525	15.0	9.7	38.8	38.2	24.3
526	17.0	16.8	57.5	56.1	42.1
527	17.5	16.8	57.5	66.1	42.1
528	15.5	16.2	56.1	64.1	40.7
529	17.5	9.2	37.0	35.5	22.6

GI	

Table II-1 (con't)

Sample #	Surface Temperature C	SiO ₂	Subsurface Temperature C	Heat Flow w/m ²	Geothermal Gradient C/km
530	15,.0	9.2	37.0	35.5	22.5
531	17.5	10.1	40.0	40.0	25.4
532	18.0	9.7	38.8	38.2	24.3
533	17.5	10.1	40.0	40.0	25.4
534	15.5	7.0	28.7	23.1	14.7
535	16.0	7.5	30.8	26.3	16.7
536	18.0	9.2	37.0	35.5	22.6
537	15.0	8.3	33.8	30.7	· 19.5
538	.19.0	8.5	34.5	32.0	20.4
539	17.0	7.5	30.8	26.3	16.7
540	18.0	7.2	29.6	24.5	15.6
541	16.0	8.8	35.8	33.7	21.4
542	16.0	8.5	34.6	32.0	20.4
543	20.0	9.7	38.8	38.2	24.3
544	18.0	10.1	40.0	40.0	25.4
545	20.0	9.7	38.8	38.2	24.3
546	21.0	10.1	40.0	40.0	25.4
547	20.0	10.4	41.1	41.7	26.5
548	22.0	10.4	41.1	41.7	26.5
899	17.0	10.8	42.2	43.3	27.6
900	18.0	9.3	37.3	36.0	22.9
901	18.0	9.1	36.7	35.0	22.3
902	20.0	10.5	41.4	42.1	26.8
903	18.0	11.6	44.6	46.9	29.8
904	18.0	8.7	35.4	33.1	21.1
905	20.0	9.9	39.4	39.1	24.9
906	20.0	5.4	21.0	11.7	7.4
907W	19.0	37.1	89.2	112.6	71.7
908	18.0	11.9	45.3	47.9	36.8
909	19.0	13.2	49.0	53.5	34.0
910	18.0	19.3	62.9	73.5	46.7

				÷	
			7		

Table II-1 (con't)

Sample #	Surface Temperature C	SiO ₂	Subsurface Temperature C	Heat Flow w/m ²	Geothermal Gradient OC/km
911	16.0	11.6	44.6	46.9	29.8
912	16.5	9.3	37.3	36.0	22.9
913	17.0	14.0	50.9	56.2	35.8
914	20.0	18.2	60.7	70.3	44.7
915	35.0	17.2	58.3	67.3	42.8
916W	18.0	34.9	91.2	115.4	89.5
917	18.0	11.6	44.6	46.9	29.8
918	20.0	8.7	35.4	33.1	21.1
919	21.0	17.3	58.4	67.5	43.0
920	20.0	22.9	68.8	83.0	63.8
921	30.0	10.5	41.4	42.1	26.8
922	10.0	7.8	31.8	27.8	17.7
923W	22.0	32.0	82.9	103.3	65.7
924	25.0	18.5	60.4	71.3	45.3
925	12.0	10.5	41.3	41.9	26.7
926	12.0	9.9	39.5	39.3	31.1
927W	18.5	21.0	65.7	78.3	49.8
928	16.0	27.2	75.8	93.4	59.4
929	10.0	10.5	41.3	41.9	26.7
930	11.0	7.2	29.3	24.0	15.3
931	11.0	4.8	17.4	6.3	4.0
932	13.0	25.7	73.4	89.9	57.2
933	10.0	7.6	31.0	26.5	16.9
934	12.0	7.4	30.1	25.2	16.0
935	10.0	6.6	26.8	20.3	12.9
936	11.0	23.5	70.0	84.8	53.9
937	8.0	12.1	46.0	48.9	31.1
938	12.0	9.9	39.5	39.3	25.0
939	19.0	13.2	49.0	53.4	34.0
940	16.0	9.2	37.0	35.4	22.5
941	17.0	13.2	49.0	53.4	34.0
942	15.0	7.8	31.8	27.8	17.7

		9	
	4)		

Table II-1 (con't)

Sample #	Surface Temperature C	SiO ₂	Subsurface Temperature OC	Heat Flow w/m²	Geothermal Gradient C/km
Sumpte #		<u> </u>			
943	15.0	11.4	44.1	46.1	29.3
944	18.5	10.8	42.2	43.3	27.6
945	23.0	11.1	43.1	44.7	28.4
946	16.0	13.6	50.0	55.0	35.0
947	18.0	12.5	47.0	50.4	32.1
948	16.0	8.0	32.7	29.1	18.5
949	13.0	16.0	55.6	63.3	40.3
950	18.0	12.5	47.0	50.4	32.1
951W	16.0	29.0	78.3	97.2	61.8
952	14.0	12.8	48.0	51.9	33.0
953	12.8	12.8	48.0	51.9	33.0
Mean	16.8	11.5	44.3	46.4	35.7

		П
q		
		l-and
		أمناه

Sá	ample No.		Anomalou	s Surface 1	Temperatu	^e	Anomalous	s SiO ₂ Geotem	perature
	503		ē4	-		-		60.4	
	513			•				63.2	
	523			22.0		9,811		-	38
	548	10		22.0				- 8	
	907W						85	89.2	24
84	910			-	7.5			62.9	
	914			-		7.0		60.7	
	915			35.0				-	
	916W			•				91.2	
	920			-	- 1			68.8	W
	⁼ 921			30.0				-	
	923W		20	22.0				82.9	
	924			25.0				60.4	
	927W			-				65.7	
	928			•				75.8	
	932			-				73.4	
	936			-				70.0	
	945			23.0				-	
	951W			-				78.3	
								10.5	

		8)	
			Laboret
			=

Summary of Anomalous Measurements

	į				Average Anomalous	Sample Numbers of
Measurement	<u>Area</u>	<u>Units</u>	<u>Median</u>	Threshold*		Anomalous Springs
рН	I I II	`pH units pH units pH units pH units	6.4 - 5.8	7.5 4.4 7.5 4.4	7.57 4.10 8.15 4.16	506,527,545,899 913 927,937 904,906,948
Specific conduc- tance at 25°C	I	umhos/cm	107	320	364	503,526,527
Specific conductance at 25°C	ΙΙ	umhos/cm	61	500	563	937
Total alkalinity NO ₃ as N NH ₃ as N PO ₄ as P Sulfate Chloride		Mg CaCO ₃ /L Mg CaCO ₃ /L ppm ppm ppm ppm ppm ppm ppm ppm ppm	60 15 0.66 1.00 0.10 0.20 0.07 0.10 2.3 3.2 2.3	290 200 3.1 12.0 0.51 1.40 0.24 0.35 9.0 20.0 4.4	291 265 7.4 14.3 0.95 1.52 0.36 0.41 16.8 42.2	501 937 922,939,945 904 520,526,913,930 925,926 517,911,913 951 503,517,916,917 927,951 526,527,922,953
Chloride	ΙΙ	ррт	3.5	6.8	8.7	904,948
Fe Mn Zn Cu Co Ni Hg Pb Ba Sr Li K			56 49 19 14 18 9.5 4.0 3.0 5 11 9 20 <0.1 0.2 10 30 <15 40 55 30 2.5 2.3 0.56	5000 580 900 220 100 33 11 7 20 32 28 37 <0.3 0.6 31 42 320 320 380 150 18 54	5222 6399 1220 353 134 46 34 12 27 38 36 54 2.0 1.1 35 59 420 915 987 857 46 72 2.0 8.5	916 908,928,932,937 517 924,928,936, 536,537,900,911 904,948 511,513,517,523 904,919,920 916,938,939,943 908,936 517,916,938,943 936 528,544 909,910,937 520,916 932 520 929,944 501W,526,527,911,913 927W,951W 501,520,526,527 927,937 506,520W,922

^{* 95%} frequency value from cumulative frequency curve (Lepeltier, 1969), except Hg=1 ppb ** Anomalous values are those exceeding threshold

			k *	

Anomalous Springs

AREA I

```
Measurement (Value) for Which Spring is Anomalous
Spring No.
                        Alkalinity(291), Sr(501 ppb), Li(21 ppb)
  501W
                        Specific conductance (324), SO_4 (32 ppm), SiO_2, subsurface T(60.4°C)
  503
                        pH(7.5), K(1.7 ppm)
  506
                        Cu(85 ppb)
  511
                        Cu(15 \text{ ppb}), SiO_2, subsurface T(62.2^{\circ}C)
  513
                        PO<sub>4</sub>(0.54 ppm), $O<sub>4</sub>(12 ppm), Mn(1220 ppb), Cu(21 ppb), Ni(29 ppb) NH<sub>3</sub>(0.64 ppm), Pb(33 ppb), Li(23 ppb), Ba(420 ppb), K(1.4 ppm) Cu(14 ppb), surface T(22°C)
  517
  520W
  523
                        Specific conductance(353), NH<sub>3</sub>(0.54 ppm), C1(86 ppm), Sr(838 ppb),
  526
                        Li(70 ppb)
                        pH(7.6), specific conductance(385), C1(87 ppm), Sr(802 ppb), Li(70 ppb)
  527
  528
                        Hg(2.1 ppb)
                        Zn(143 ppb)
  536
  537
                        Zn(110 ppb)
  544
                        Hg(1.9 ppb)
                        pH(7.6)
  545
                        pH(7.9)
  899
                        Zn (137 ppb)
  900
                        PO4(0.28 ppm), Zn(144 ppb), Sr(500 ppb)
  911
                        NH<sub>3</sub>(1.08 ppm), PO<sub>4</sub>(0.25 ppm), Sr(2200 ppb), pH(4.1)
  913
                        SO<sub>4</sub>(13.1 ppm), Fe(5222 ppb), Co(23 ppb), Ni(39 ppb), Pb(37 ppb), SiO<sub>2</sub>, SO<sub>4</sub>(10.2 ppm) subsurface T(91.2°C)
  916W
                        SO_4(10.2 ppm)
  917
                        NO_3(12 \text{ ppm}), C1(13 \text{ ppm}), K(2.9 \text{ ppm})
  922
                        NH_3(1.52 ppm)
  930
                        Co(22 ppb), Ni(36 ppb)
  938
                        NO_3(4.8 \text{ ppm}), Co(30 \text{ ppb})
  939
                        Co(31 ppb), Ni(39 ppb)
  943
                        NO_3(5.5 \text{ ppm}), surface T(23^{\circ}C)
  945
  953
                        C1(6 ppm)
```

```
\Sigma(\text{anomalous springs}) = 28, \% \text{ anomalous} = (\frac{28}{71})100 = 39
\Sigma(\text{springs}) = 71
\Sigma(\text{anomalous springs}), \text{ cations only } = 21, \% " = (\frac{21}{71})100 = 30
```

.9.		ghtrq

Anomalous Springs AREA II

```
Measurement (Value) for Which Spring is Anomalous
Spring No.
   904
                          pH(4.1 \text{ units}), NO_3(14.3 \text{ ppm}), CI(9.5 \text{ ppm}), Zn(48 \text{ ppb}), Cu(14 \text{ ppb})
                          pH(4.3 units)
   906
   908
                          Fe(10082 ppb), Co(39 ppb)
                          Hg(1.1 ppb)
   909
                          Hg(1.2 \text{ ppb}), SiO_2, subsurface T(62.9^{\circ}\text{C})
   910
                          Cu(13 ppb), Cu(9 ppb), SiO<sub>2</sub>, subsurface T(68.8^{\circ}C) Mn(345 ppb), SiO<sub>2</sub>, surface T(25^{\circ}C), subsurface T(60.4^{\circ}C)
   919
   920
   924
                          NH_3(1.52 ppm)
   925
   926
                          NH_3(1.52 ppm)
                          pH(7.6 units), SO_4(29.5 ppm), Sr(1440 \text{ ppb}), Li(58 \text{ ppb}), SiO_2, subsurface T(65.7^{\circ}C)
   927W
                          Fe(4218 ppb), Mn(345 ppb), SiO<sub>2</sub>, subsurface T(75.8^{\circ}C)
   928
   929
                          Ba(910 ppb)
                          Fe(1375 ppb), Pb(59 ppb), SiO<sub>2</sub>, subsurface T(73.4°C)
Mn(370 ppb), Co(38 ppb), Ni(54 ppb), SiO<sub>2</sub>, subsurface T(70.0°C)
pH(8.7 units), specific conductance(563 umhos), alkalinity
   932
   936
   937
                          (265 mg/L CaCO<sub>3</sub>) Fe(9930 ppb), Li(86 ppb), Hg(1.1 ppb)
   944
                          Ba(920 ppb)
                          pH(4.1 units), C1(8.0 ppm), Zn(45 ppb), K(8.5 ppm) PO_4(0.41 ppm), SO_4(55 ppm), Sr(275 ppb), SiO_2, subsurface T(78.3^{\circ}C)
   948
   951W
```

```
\Sigma (anomalous springs) = 19, % anomalous = (\frac{19}{31})100 = 61 \Sigma (anomalous springs), cations only = 16, % anomalous = (\frac{16}{31})100 = 52
```

2.			

Table III-4 Location and Date of Collection of Spring Samples

<u>S</u> .	ample No.	Name	Location	Area	County	Topo Quad	Date
	501**	Iron	NE ¹ 4, SW ¹ 4, sec. 6, T1N, R9N	I	Garland	Nimrod	3/2/78
	502	Iron	NE ¹ 4, SW ¹ 4, sec. 6, TlN, R19W	I	Garland	Nimrod	44 44
	503	Black	SW4, SE4, sec. 19, T3S, R25W	I	Montgomery	G1 enwood	3/3/78
	504	Collier	SE¼, NW¼, sec. 17, T3S, R24W	I	Montgomery	Glenwood*	u u
	505	Caddo Valley	SW4, SW4, sec. 25, T3S, R27W	I	Montgomery	Athens*	40 14
	506	Crystal A	SE¼, SW¼, sec. 28, T2S, R22W	1	Garland *	Crystal Spring	ii u
	507	Goat Brown	NW¼, NW¼, sec. 22, T3S, R31W	I	Polk	Cove	3/6/78
	508	Bogg	NW¼, NW¼, sec. 16, T5S, R32W	II	Polk =	Cove*	11 11
82	509	Queen Wilhelmina	SE¼, NE¼, sec. 11, T1S, R32W	I	Polk	Rich Mtn.	3/7/78
~	510	Queen Wilhelmina	SE¼, SE¼, sec. 11, T1S, R32W	I	Polk	Rich Mtn.	in n
	511	Silver World	NE¼, SW¼, sec. 14, T3S, R29W	I	Polk	Umpire	0 0
	512	Abernathy	NW4, SW4, sec. 24, T3S, R28W	I	Polk	Athens*	0 0 0
	513	Three Sisters	NW4, NW4, sec. 29, T1S, R2OW	I	Garland	Mtn. Pine	4/8/78
	514	(No Name)	NE¼, SW¼, sec. 16, T3S, R22W	I	Garland	Percy	11 11
	515	(No Name)	NE¼, SW¼, sec. 16, T3S, R22W	I	Garland	Percy	61 64
	516	(No Name)	NE¼, SW¼, sec. 16, T3S, R22W	I	Garland	Percy	66 13
	517	Wyatt	SW4, NE4, sec. 22, T3S, R23W	\geq I	Montgomery	Bonnerdale*	H 125 H
	518	(No Name)	NE¼, NW¼, sec. 24, T4S, R24W	I	Montgomery	Glenwood	4/9/78
	519	(No Name)	SW4, SW4, sec. 20, T4S, R23W	I	Montgomery	Amity	et N
	520***,****	Pigeon Roost (W)	SW ¹ 4, SW ¹ 4, sec. 20, T4S, R23W	I H	Montgomery	Amity	11 11
	521 🗈	Dripping	SE¼, NW¼, sec. 11, T5S, R25W	I	Pike	Glenwood*	6 A
	522	Strawn	SE¼, NW¼, sec. 18, T4S, R24W	I	Montgomery	Glenwood*	81 81
	523	(No Name)	SE¼, NE¼, sec. 16, T1S, R28W	I	Po1k	Oden .	5/16/78
	524	(No Name)	SE¼, SE¼, sec. 26, T4S, R32W	I	Polk	Cove	41 11

i4	

Location and Date of Collection of Spring Samples (con't)

Sample No.	Name	Location	<u>A</u> 1	rea	County	Topo Quad	Date
525	(No Name)	SW ¹ 4, SW ¹ 4, sec. 3, T2S, R32W		I	Polk	Cove*	5/17/78
526	Gilham A	SW4, NW4, sec. 22, T4S, R30W		I	Polk	Umpire*	и и
527	Gilham B	SW_{4} , NW_{4} , sec. 22, T4S, R3OW		I	Polk	Umpire*	14 11
528	Bard	SW¼, NE¼, sec. 20, T4S, R28W		I 35	Po1k	Umpire	11 11
529	(No Name)	NW4, NW4, sec. 27, T4S, R27W		I	Montgomery	Athens	41 11
530	(No Name)	NW4, SW4, sec. 22, T4S, R27W		I	Montgomery	Athens	u u
531	McClaine A	SW¼, NE¼, sec. 18, T4S, R24W		I	Montgomery	Gl enwood	5/18/78
532	McClaine B	SW4, NE4, sec. 18, T4S, R24W		I	Montgomery	G1 enwood	11 11
533	McClaine C	SW14, NE14, sec. 18, T4S, R24W		1	Montgomery	Glenwood	и п
534	McClaine D	SW ¹ 4, NE ¹ 4, sec. 18, T4S, R24W	H 12	I	Montgomery	G1 enwood	H H
<u>ස</u> 535	W. Jones	NE¼, SE¼, sec. 18, T4S, R24W		I	Montgomery	Glenwood	u u
536	Jones Valley	NE14, SE14, sec. 18, T4S, R24W		I	Montgomery	Glenwood	11 11
537	Buttermilk A	NW ¹ 4, NE ¹ 4, sec. 6, T4S, R24W		I	Montgomery	Glenwood	11 11
538	Buttermilk B	NW4, NE4, sec. 6, T4S, R24W		I	Montgomery	Glenwood	n ñ
539	(No Name)	NW4, NE4, sec. 6, T4S, R24W		I	Montgomery	Glenwood	n n
540	McEllhanan	SW4, SW4, sec. 7, T4S, R24W		I	Montgomery	Glenwood	16 18
541	(No Name)	NW4, NW4, sec. 18, T4S, R24W		I	Montgomery	G1 enwood	n H
542	(No Name)	NW4, NW4, sec. 18, T4S, R24W		I	Montgomery	G1 enwood	11 11
543	Crystal B	SE¼, NE¼, sec. 34, T2S, R22W		I	Garland	Crystal Spring	5/19/78
544	Brogdams A	SW4, NE4, sec. 34, T2S, R22W		I	Garland	Crystal Spring	10 10
545	Brogdams B	SW4, NE4, sec. 34, T2S, R22W		I =	Garland	Crystal Spring	'н ө
546	Brogdams C	SW4, NE4, sec. 34, T2S, R22W		I	Garland	Crystal Spring	# #

*			
	樹		
			- Control of the Cont

Location and Date of Collection of Spring Samples (con't).

Sa	mple No.	Name Name	Location	Area	County	Topo Quad Date
	547	Brogdams D	SW¼, NE¼, sec. 34, T2S, R22W	I	Garland	Crystal 5/19/78 Spring
	548	Brogdams E	SW¼, NE¼, sec. 34, T2S, R22W	I	Garland	Crystal " " " Spring
	899	Burrows	SE¼, SE¼, sec. 6, T5S, R22W	I	Clark	Amity 7/13/78
	900	Lead Mine Road	SW ¹ 4, SW ¹ 4, sec. 30, T4S, R21W	1	Hot Spring	Point Cedar " "
	901	Lead Mine Road	SW ¹ 4, SW ¹ 4, sec. 30, T4S, R21W	I	Hot Spring	Point Cedar " "
	902	(No Name)	SE ¹ 4, NW ¹ 4, sec. 31, T4S, R21W	I	Hot Spring	Point Cedar* " "
12.	903	te și	SW4, NW4, sec. 36, T4S, R21W	I	Hot Spring	Point Cedar " "
	904	u u	SE ¹ 4, NE ¹ 4, sec. 35, T7S, R25W	H	Pike	Murfreesboro*7/14/78
84	905**	Womack	NW¼, SW¼, sec. 25, T7S, R25W	11	Pike	Delight " "
	906	Womack	SE ¹ 4, SW ¹ 4, sec. 25, T7S, R25W	II	Pike	Delight " "
	907**	Lolla Bell	NW4, NE4, sec. 3, T7S, R25W	∈ II	Pike	Narrows Dam " "
	908	(No Name)	NW ¹ 4, SE ¹ 4, sec. 26, T6S, R24W	II	Pike	Murfreesboro " " NE
	909	31 IS	SE¼, SW¼, sec. 32, T6S, R24W	ω ΙΙ	Pike	Murfreesboro " " NE
	910	, II II	SE ₄ , SE ₄ , sec. 31, T7S, R25W	I	Pike	Murfreesboro 7/15/78
- 20	911	и и	SE ¹ 4, SE ¹ 4, sec. 20, T3S, R26W	I	Montgomery	Athens " "
	912	46 60	SW¼, NE¼, sec. 33, T3S, R26W	I	Montgomery	Athens " "
	913	Sul fur	SW4, SW4, sec. 10, T3S, R27W	I	Montgomery	Athens " "
	914	Elliott	NE¼, SE¼, sec. 21, T2S, R29W	I	Polk	Board Camp 7/18/78
	915	Caddo River	NW4, NE4, sec. 19, T4S, R24W	I I	Montgomery	Glenwood ""
	916***,****	Artesian Well	SE¼, SW¼, sec. 19, T4S, R26W	ľ	Montgomery	Athens
	917***,****	Artesian Well	SW14, NE14, sec. 19, T4S, R26W	I	Montgomery	Athens " "
	918	(No Name)	NE ₄ , NE ₄ , sec. 28, T4S, R26W	I	Montgomery	Athens " "
	919	(No Name)	SW4, NW4, sec. 16, T6S, R27W	II	Pike	Newhope " "

			П
	E		

Location and Date of Collection of Spring Samples (con't)

Sai	nple No.	Name	Location	Area	County	Topo Quad	Date
	920	(No Name)	SE ₄ , NE ₄ , sec. 20, T7S, R27W	II	Howard	Newhope	7/18/78
	921	(No Name)	SW ₄ , NW ₄ , sec. 26, T4S, R25W	I	Montgomery	Glenwood	11 11
	922	Chalybeate	NE ¹ 4, SE ¹ 4, sec. 20, T4N, R24W	Ι.	Yell	Gravelly	3/3/79
	923	Caddo Gap Well	SE14, NW14, sec. 26, T4S, R25W	I	Montgomery	Glenwood	u a
	924	Redland Mtn.	SW4, NW4, sec. 12, T5S, R26W	I	Pike	Glenwood	3/4/79
50	925	Lolla Bell A	NW ¹ 4, NE ¹ 4, sec. 3, T7S, R25W	П	Pike	Narrows Dam	ri er
	926	" " B	SW4, NE4, sec. 3, T7S, R25W	11	Pike	Narrows Dam	63 65
	927**,****	Artesian Well	SE4, NE4, sec. 3, T10S, R27W	11	Howa rd	Nashville	11 11
	928	Mineral	SW4, NE4, sec. 19, T10S, R27W	II	Howard	Mineral Springs S	10 13
	929	Barite Pit	NE¼, NE¼, sec. 24, T7S, R28W	a II	Howard	Newhope	# 11
<u>&</u>	930	Murfreesboro Area	NE ¹ 4, NE ¹ 4, sec. 4, T8S, R25W	II	Pike	Murfreesbor	0 " "
	931	Murfreesboro Area	NE ₄ , SE ₄ , sec. 10, T7S, R25W	11	Pike	Narrows Dam	3/5/79
	932	Lake Greeson Area	NE ¹ 4, NW ¹ 4, sec. 24, T6S, R27W	II	Pike	Center Pt.	NE " "
	933	Dierks Area	NE ₄ , NW ₄ , sec. 4, T8S, R29W	II	Sevier	Dierks	61 16
	934	Cox Residence	SE ₄ , SW ₄ , sec. 33, T7S, R29W	II	Sevier	Dierks	C 65 16
	935	Dierks Area	SW4, NE4, sec. 34, T7S, R29W	II.	Howard	Dierks	11 11
	936	L. Greeson, Sulfur	SW14, NW14, sec. 34, T6S, R26W	11	Pike	Center Pt. NE	3/6/79
	937	L. Greeson, Possum	NW ¹ 4, NW ¹ 4, sec. 34, T6S, R26W	$\Pi =$	Pike	Center Pt.	NE " "
	938	Salem Area	NE¼, NE¼, sec. 7, T5S, R24W	I	Pike	Glenwood	ti li
	939	Bethesda	NW4, SE4, sec. 31, T2S, R30W	I	Polk	Mena	5/15/79
	940	Mine Creek	SW4, NW4, sec. 14, T3S, R28W	I	Po1k	Athens	et 16
	941	Rock	SW4, SE4, sec. 25, T2S, R27W	I	Montgomery	Oden*	61 - 45
	942	West	SE¼, NE¼, sec. 2, T2S, R25W	I	Montgomery	Mt. Ida*	11 11
	943	Pigeon Roost	SW4, SW4, sec. 20, T4S, R23W	I	Montgomery	Amity	5/16/79
	944	Barite Pit	NE¼, NE¼, sec. 24, T7S, R28W	II	Howard	Newhope	16 (1

			П
į.			. 0
			A
			- []
		4	

Location and Date of Collection of Spring Samples (con't)

Sample No.	<u>Name</u>	Location	Area	County	Topo Quad	Date
945	"Wa'rm"	SW ¹ 4, SE ¹ 4, sec. 8, T4S, R27W	I	Montgomery	Athens	5/17/79
946	Athens Area	SW4, SE4, sec. 16, T5S, R28W	II	Howard	Athens	40 81
947	Umpire Area	SW4, SW4, sec. 13, T5S, R30W	11	Howard	Umpire	в в
948	S. Cox	SW4, SW4, sec. 33, T7S, R29W	II	Sevier	Dierks	0 0
949	Cossatot	NW4, NE4, sec. 19, T7S, R3OW	H	Sevier	Gillham Dam	
950	Church	NW4, SW4, sec. 16, T7S, R31W	II	Sevier	Gillham*	11 16
951	Defore Well	NE¼, SW¼, sec. 20, T7S, R31W	11	Sevier	Gillham	5/18/79
952	(No Name)	SE4, NE4, sec. 6, T7S, R31W	H	Sevier	Gillham*	0 U
953	Mena Park	NE ₄ , NW ₄ , sec. 18, T2S, R30W	I ©	Polk	Mena	

^{*} spring is shown on map

NOTE: 944 and 929 are duplicate collections of the same site.

^{**} well with metal pipe

^{****} artesian well

		:: .	
		ι.	
		±,	
].
		l.]
		ن ا	
		l and	-

Spring Water Surface and Subsurface Temperatures And Corresponding % Saturations of the Waters with ${\rm BaSO}_4$ and ${\rm SrSO}_4$

		Water Temp	erature (^O C)	% BaSO ₄	Saturation ^C	% SrSO ₄	Saturationd
Spring	Area	Surface (T_1)	Subsurface ^b (T ₂)	•	Subsurface	•	Subsurface
501	I	15.0	31.7	0.51	0.30	0.0077	0.0089
502	I	5.0	7.1	<0.47	<0.38	0.0001	0.0001
503	I	15.0	60.9	<14.4	<5.38	0.504	0.867
504	I	16.5	46.1	1.37	0.67	0.0014	0.0022
505	I	15.0	31.7	<0.80	<0.47	0.0097	0.0113
506	I	18.0	46.1	<0.50	<0.25	0.0035	0.0052
507	I	13.0	50.2	<0.76	<0.28	0.0020	0.0032
508 -	II	13.0	31.7	<1.4	<0.73	0.0072	0.0086
509	I	10.0	40.6	<2.5	<0.93	0.0024	0.0034
510	I	9.0	26.7	1.33	0.59	0.0004	0.0005
511	I	16.0	40.3	<2.60	<1.31	0.0311	0.0401
512	I	16.0	36.0	<1.10	<0.61	0.0152	0.0185
513	I	16.0	63.2	<3.40	<1.31	0.0303	0.0531
514	I	18.0	40.3	<0.62	<0.34	.<0.0001	<0.0002
515	I	17.0	38.5	<0.92	<0.50	<0.0001	<0.0001
516	I	21.0	45.6	<1.95	<1.11	0.0069	0.0097
517	I	17.0	45.6	<8.0	<3.90	<0.0016	<0.0024
518	I	15.0	41.7	<0.46	<0.22	0.0002	0.0003
519	I	18.0	37.9	16.5	9.41	0.0733	0.0210
520	I	17.0	49.7	52.8	24.3	0.0424	0.0652
521	I	17.0	38.5	<1.3	<0.71	0.0011	0.0014
522	I	18.0	37.9	<1.8	<0.97	0.0469	0.0565
523	I	22.0	45.6	<0.32	<0.19	<0.0002	<0.0004
524	I	15.5	54.5	<0.21	<0.08	<0.0002	<0.0004
525	I	15.0	38.8	<2.0	<0.99	0.0063	0.0081
526	I	17.0	57.5	2.71	1.14	0.0111	0.0180
527	I	17.5	57.5	<2.60	<1.12	<0.0102	<0.0166
528	I	15.5	56.1	<3.8	<1.5	0.0517	0.0857
529	I	17.5	37.0	<0.19	<0.11	<0.0002	<0.0004

		14	
			П
			[27]
.			

Spring	Area	Water Temperature (0 C) ea Surface a (T_{1}) Subsurface b (T_{2})		•	Saturation ^C Subsurface	•	Saturation ^d Subsurface	
530	I	15.0	37.0	<1.83	<0.95	0.0032	0.0040	
531	Ī	17.5	40.0	2.16	1.18	0.0327		
532	I	18.0	38.8	1.90	1.07	0.0150		
533	Ī	17.5	40.0	<2.20	<1.21	0.0390		
534	Ī	15.5	28.7	2.96	1.87	0.0025	0.0028	
535	I	16.0	30.8	<0.20	<0.12	0.0007	0.0008	
536	^{/2} I	18.0	37.0	<2.76		0.0592		
537	I	15.0	33.8	1.57	0.87	0.0026	0.0032	
538	I	19.0	34.6	<3.17	<2.05	0.0563	0.0644	
539	I	17.0	30.8	1.65	1.06	0.0025	0.0028	
540	I	18.0	29.6	<0.20	<0.14	0.0003	0.0003	
541	I	16.0	35.8	0.86	0.48	0.0003	0.0003	
542	I	16.0	34.6	0.16	0.09	0.0001	0.0003	
543	I	20.0	38.8	<3.47	<2.16	0.0354	0.0419	
544	I	18.0	40.0	<0.99	<0.55	0.0169	0.0209	
545	I	20.0	38.8	<0.98	<0.61	0.0107	0.0126	
546	I	21.0	40.0	<4.40	<2.75	0.0417	0.0493	
547	I	20.0	41.1	<2.65	<1.58	0.0240	0.0293	
548	I	22.0	41.1	<2.94	<1.86	0.0325	0.0385	
899	I	17.0	42.2	<0.41	<0.21	<0.0015	<0.0022	
900	I	18.0	.37.3	1.29	0.74	0.0002	0.0003	
901	I	18.0	36.7	0.66	0.39	0.0066	0.0078	
902	I	20.0	41.4	1.70	1.01	0.0002	0.0002	
903	I	18.0	44.6	0.49	0.25	0.0026	0.0039	
904	II	18.0	35.4	35.0	21.0	0.0131	0.0155	
905	II	20.0	39.4	2.27	1.39	0.0222	0.0266	
906	II	20.0	21.0	6.66	6.48	0.0019	0.0019	
907W	II	19.0	89.2	68.7	25.2	0.0314	0.0647	
908	ΙΙ	18.0	45.3	8.00	3.80	0.0005	0.0008	
909	ΙΙ	19.0	49.0	3.67	1.85	0.0004	0.0006	
910	II	18.0	62.9	63.8	25.2	0.0094	0.0164	
911	I	16.0	44.6	13.4	6.35	0.1170	0.1730	

	П
	land.
	الديا

Spring	Area		erature (^O C) Subsurface ^b (T ₂)		Saturation ^C Subsurface	,	Saturation ^d Subsurface
912	I	16.5	37.3	4.09	2.23	0.0367	0.0451
913	I	17.0	50.9	4.52	2.05	0.1520	0.2360
914	Ī	20.0	60.7	0.36	0.17	0.0003	0.0005
915	Ī	35.0	58.3	0.60	0.42	0.0021	0.0031
916W	I	18.0	91.2	96.0	34.7	0.0207	0.0480
917	I	18.0	44.6	51.6	26.3	0.0237	0.0349
918	I	20.0	35.4	11.3	7.46	0.0055	0.0063
919	ΙΙ	21.0	58.4	1.10	0.54	0.0022	0.0036
920	ΙΙ	20.0	68.8	0.37	0.20	0.0016	0.0024
921	I	30.0	41.4	<0.96	<0.77	0.0171	0.0205
922	I	10.0	31.8	54.2	23.8	0.0196	0.0245
923W	I	22.0	82.9	22.4	9.46	0.0264	0.0529
924	11	25.0	60.4	5.90	3.17	0.0343	0.0511
925	II	12.0	41.3	9.29	3.77	0.0057	0.0080
926	II	12.0	39.5	17.8	7.34	0.0049	0.0067
927W	ΙΙ	18.5	65.7	92.0	37.8	1.97	3.38
928	ΙΙ	16.0	75.8	. 3.93	1.36	0.0186	0.0456
929	ΙΙ	10.0	41.3	45.1	16.5	0.0011	0.0015
930	I	11.0	29.3	23.3	11.3	0.0036	0.0043
931	ΙΙ	11.0	17.4	16.4	11.6	0:0036	0.0043
932	II.	13.0	73.4	96.7	28.7	0.0128	0.0261
933	II	10.0	31.0	16.8	7.54	0.0023	0.0028
934	ΙΙ	12.0	30.1	13.1	6.64	0.0079	0.0094
935	ΙΙ	10.0	26.8	8.41	4.20	0.0025	0.0029
936	II	11.0	70.0	50.8	13.8	0.0092	0.0187
937	ΙΙ	8.0	46.0	7.50	2.09	0.0045	0.0075
938	I	12.0	39.5	23.6	9.73	0.0081	0.0110
939	I	19.0	48.8	<1.96	<1.00	0.0096	0.0141
940	I	16.0	36.9	<2.73	<1.48	0.0444	0.0532
941	I	17.0	49.0	<3.60	<1.69	0.0211	0.0318
942	I	15.0	31.8	1.91	1.10	0.0017	0.0020
943	I	15.0	44.1	86.0	39.3	0.0280	0.0424

		The state of the s
	D	

Table III-5 Con't

			Water Temp	perature (°C)	% BaSO ₄	Saturation ^C	% SrSO ₄	Saturation ^d
	Spring	Area	Surface ^a (T ₁)	Subsurface ^b (T ₂)	Surface	Subsurface	Surface	Subsurface
	944	II	18.5	42.2	63.10	34.3	0.0015	0.0022
0.0	945	I	23.0	43.1	<2.30	<1.46	0.0056	0.0073
	946	II	16.0	50.0	3.71	1.63	<0.0018	<0.0030
	947	ΙΙ	18.0	47.0	<0.68	<0.34	0.0004	0.0006
	948	ΙΙ	16.0	32.7	15.20	9.00	0.0057	0.0065
	949	II	13.0	55.6	<2.50	<0.86	0.0033	0.0059
	950	E II	18.0	47.0	<3.20	<1.59	0.0047	0.0070
	951W	II	16.0	78.3	43.5	14.8	0.606	1.22
*	952	ΙΙ	14.0	48.0	2.22	0.90	0.0016	0.0018
	953	I	16.0	48.0	<11.1	<5.00	0.0110	0.0171

^a Measured in flowing spring at surface

b Calculated from T ${}^{\circ}$ C = 1315/ $\Big[$ 5.205 - $\log_{10}(\text{ppm SiO}_2)\Big]$ - 273.15

 $^{^{}c}$ $_{a_{Ba}}$ \cdot $_{a_{S0_4}}/(solubility\ product)_{T_1}$ \times 100

 $^{^{\}rm d}$ $^{\rm a}$ Sr $^{\rm a}$ SO₄/(solubility product)_T x 100 where a = activity = activity coefficient x concentrations (mofality)

					7
					LI
					grama,
	37				
					П
		×			
¥2,					
			E		graduan , i
					[1]
					Ш

FIGURES

94°00′

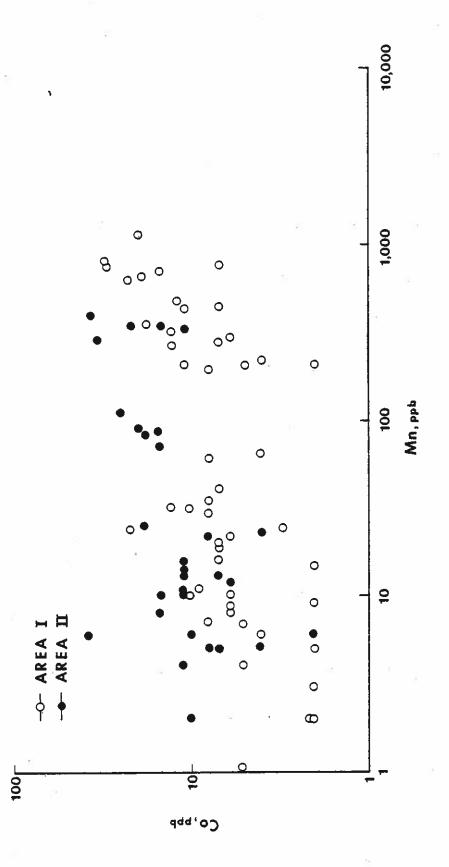
94*00'

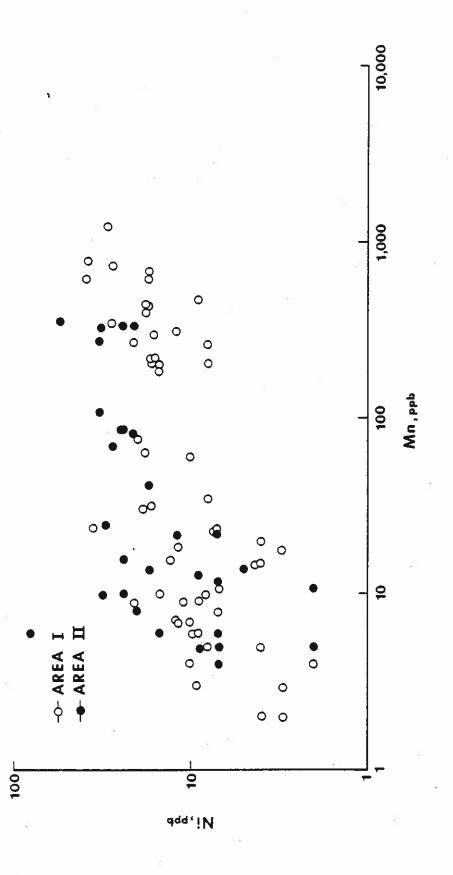
35°00'_SEBASTIAN

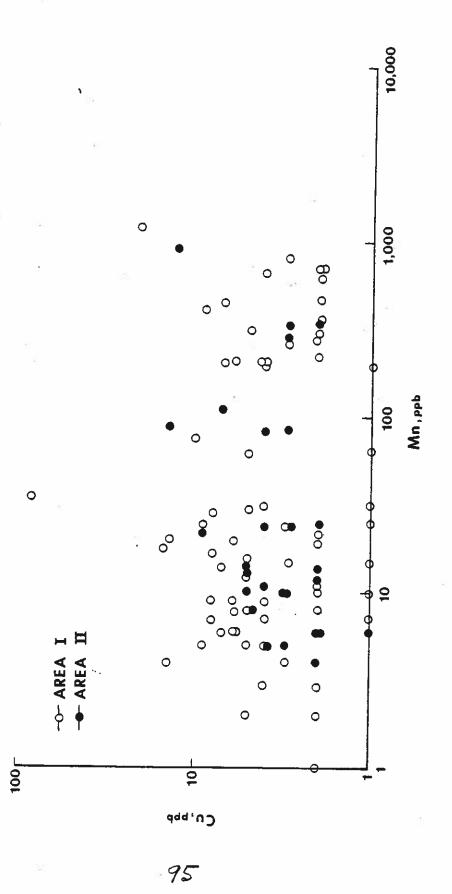
LOGAN

93*00'

93.00


-35*****00′


Figure 1-1
Location Map of Study Area and Spring Sites


		· · · · · · · · · · · · · · · · · · ·				61
SYSTEM	SERIES	FORMATION	MEMBER		XNESS	LITHOLOGY
QUATERNARY		*FF0A10#				SILT, SAND, AND GRAVEL ALONG STREAM CHARNELS.
	1	TERRAGE DEPOSITS				ERAVEL, SAMD, AND SILT OCCURING ALONG MAJOR STREAMS.
CRETACEOUS	:	TRIMITY PORMATION		-		GRAVEL, SILT, CLAY, SILTSTORE, AND SANOSTONE WITH SOME BARITE IN WESTERN PART OF ITS OUTCROR
			UPPER			MALE, LIGHT STAT, SILTY, MICACEGUS AND SILVER TO
z	ATQKAR	ATOKA	MOOFE	╡ .	000+	INTERSCOOLD FINE TO COARSE -GRAINED, MICACEDUS SAND- STONE WITH VERY ABUNDANT SOLE MARKINGS. THIN SIL! — CEDUS SMALES NEAS BASE AND IN LOWER PART OF FORMATION.
PENNSYLVANIAN	MORROWAN	JOHNS VALLEY SHALE	LOWER	2300		SMALE, LIGHT GRAY TO TAN. DARK GRAY MEAR BASE, AND THIN SEED OF SANDSTONE AND LINESTONE, LARGE ERRATIC MASSES OF LIMESTONE OR SMALE ARE FOUND NEAR THE BASE OF THE FORMATION, AND EXOTIC BOULDERS, PERGLES, AND GRANULES OCCUR AT NUMEROUS HORIZONS.
PE		JACKPORK SAMOSTOME				SAMOSTONE, WEDIUM TO COARSE SPAINED, HARD, WITH IN- TERBEDDED SMALE. SOLE MARKINGS ARE ABUNDANT IN THE SAMOSTONES. FOUR BEDS OF SILICEDUS SWALE AND ONE BED OF MARCON TO GREEN SMALE ARE IDENTIFICALE OVER LONG DISTANCES AND FORM MARKER BEDS.
PIAN	CHESTERIAN		CHICRASAW CREEK	ij.		SHALE, CARE COLORED, MOSTLY SHAY, INTERSECOED WITH CARE SHAY LARKLACTOMS SILTSTONE AND VERY POORLY SORTED FIRE- TO VERY FINE-SHAIMED AREILLACEOUS CHLOR—ITIG SANDSTONE, BEDS OF SILICEOUS SHALE ARE IDENTIFIABLE OVER LONG DISTANCES IN SEVERAL MORIZONS, COME—IN—CORE COMMERCIONS ARE ADMODATED TRACES.
SSIP		STANLEY	HATTON TUFF	0-30	4000	FELSIC VITRIC TUFF
MISSISSIPPIAN	WERAMECIAM		NOT SPRINGS SANOSTONE	0- 10		SANOSTOME, MARO, QUARTZOSE, FINE TO VERY FINE GRAINED. SMALL ANDURTS OF INTERSEDUED SHALE AND LOCALLY COM- SLOMERATIC NEAR BASE, CROPS OUT ONLY IN RELATIVELY SMALL ARCA NEAR NOT SPRINGS.
	PASPARO		UPPER			SPEEM, BROWN, AND GRAY RADIOLARIAN CHERT AND RADIO-
	KIMOERHOOKIAN	4		ł		LARIAN SMALE.
N.	UPPER AND MIGOLE	APRANSAS HOVACULITE	THEN MINE	Ι,		RED AND GREEN ANDIQUARIAN SMALE SILICEGUS SMALE ANDIQUARIAN CHERT AND BITUMINGUS CHERT.
DEVONIAN			LOWER MICOLE	ĺ		LIGHT GRAY TO BLACK BITUMINOUS SPORE-BEARING CHERT AND BLACK PAPERY BITUMINOUS SHALE
			LOWER			SHITE TO GREEN MASSIVE SPICULITIC CHERT AND SHEEN LABINATED SILICEOUS SHALE
NA	HARARAM	WISSOUM WOUNTAIN SHALE		Ģ	×	SMALE, MARG, GREEN SILICEOUS, SARRY IN PART. THIN BEDS OF FINELY LAMINATED CHERT AND QUARTEDSE SAMO- STONE AND LOCAL LENSES OF SAMOY CHERT COMMIGNERATE.
SILURIAN	ALEXANORIAN	Blavlock Samostòme	100	500		SAMOSTOME, GRAY TO GREER, THIN SECOED, FINE GRAINED, WITH INTERMEDOED SHALEY MICACEDUS SILTSTOME AND DARK FISSILE SHALES. VEINS OF GUARTZ AND SMORY QUARTZ ARE ASSUMDANT. PORMERTON PRESENT ONLY IN PART OF SHOKEN BOW-GENTON UPLIFT.
D UPPER	CINGINATIAN SHALE		_	50		SHALE, SOFT, BROWN, PLATY IN MOST OF FORMATION; HARO, BLACK, BITUMINOUS, AND SILICEOUS MEAR BASE, ABUNDANT GRAPTOLITES, THIN STREAMS OF QUARTZITIC SAMOSTOME AND OOLITIC LIMESTOME.
MIDDLE AND	Œ.	916 FQRK	UPPER	20		SLACK, NONCALCAREOUS, BITUMINOUS CHERT AND SLACK BITUMINOUS PAPERT SHALE.
90 FE	TRENTONIAN	CHERT	LOWER			STAY TO SHOWS CALCAREOUS CHERT, SILICEOUS LIMESTONE, CLASTIC LIMESTONE AND CHERTY SHALE,
3	BLACKRIVERIAN	#OWEL£				SHALE, SLACK TO SHEER, WITH THIN INTERBEOS OF GUARTZ-
z	CHAZYAN	100		116	0	OZE SAMOSTONE AND LIMESTONE. SOME SILICEOUS BITUMI- HOUS SHALE NEAR CONTACT WITH BIOFORM CHERT.
OOVICIA		BLAHELT SAMOSTONE		130 [SMALE, SLACK TO GREEN, INTERMEDOED STTM FINE TO MED- IUM SRAINED QUARTZOSE SANDSTONE, SOME YEINS OF SMOKY QUARTZ.
LOWER ORDOVICIAN	CANADI AN	MAZARN SMALE		100	ю	SMALE. BLACK TO SREEN, SANOED, CLATET, "FTSBILE, WITH THIN LAYERS OF SREEN SANOSTONE AND BLUMM-BLACK LIME- STONE. YEINS OF GUARTZ AND CALCITE.
DWE		CRYSTAL MOUN- TAIN SANOSTONE		20	•	SANGSTORE, MASSIVE, LIBHT SRAY, CALCARGUS TO QUARTZ- LTIC. MARY QUARTZ YEIRS AND CRYSTALS.
		COLLIER SMALE		3.3	•	SHALE, BLACK, GRAPHITIC, AND DARK-COLORED SLICEOUS

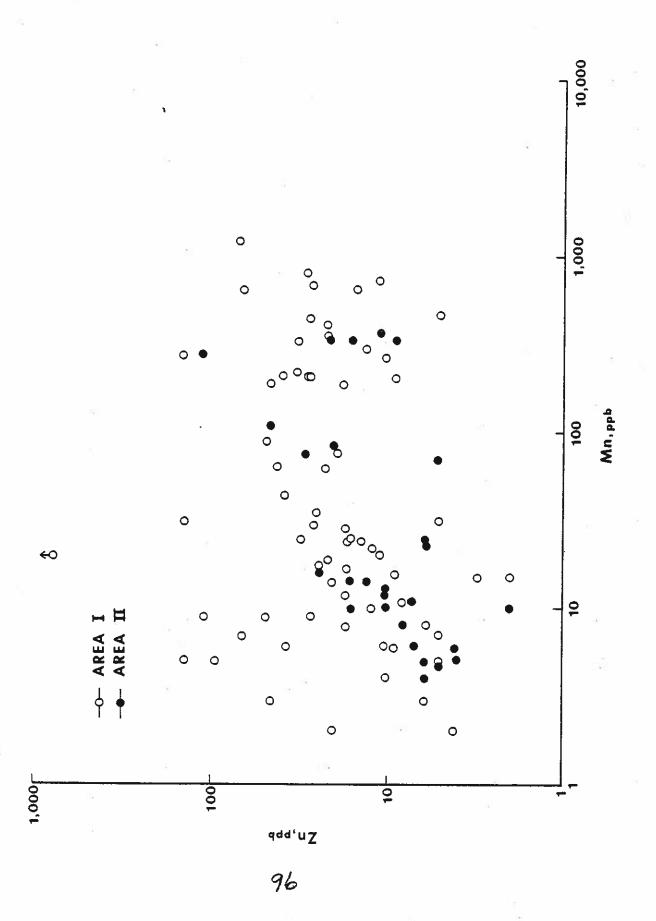

Figure 1-1. Stratigraphic column for study Area I. After Vogelpohl (1977).

Figure 1-2 Stratigraphic Column for Study Area

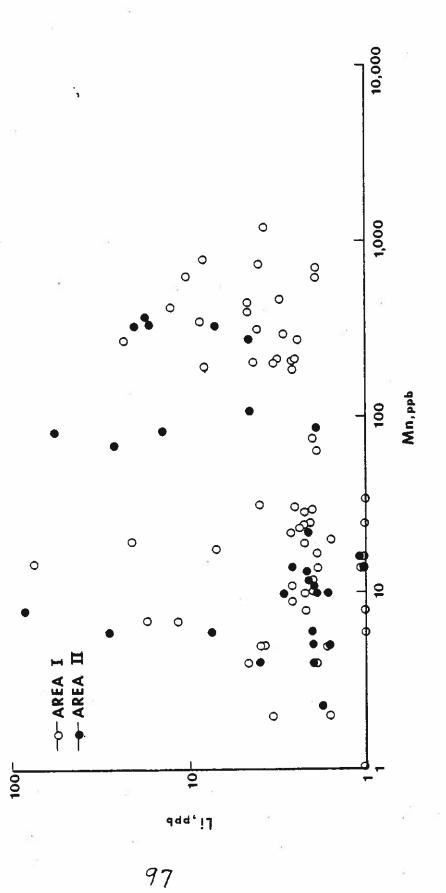
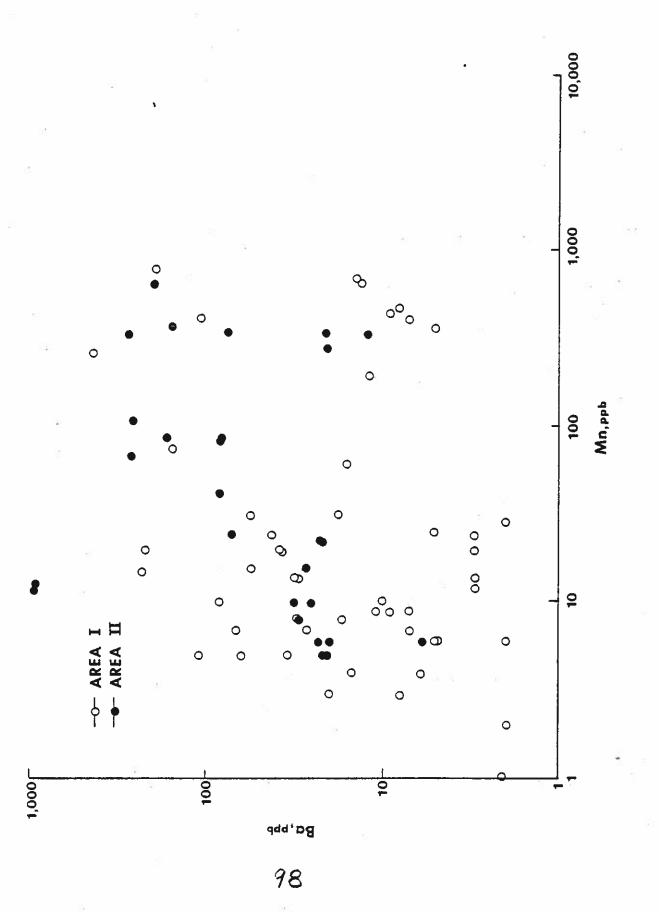
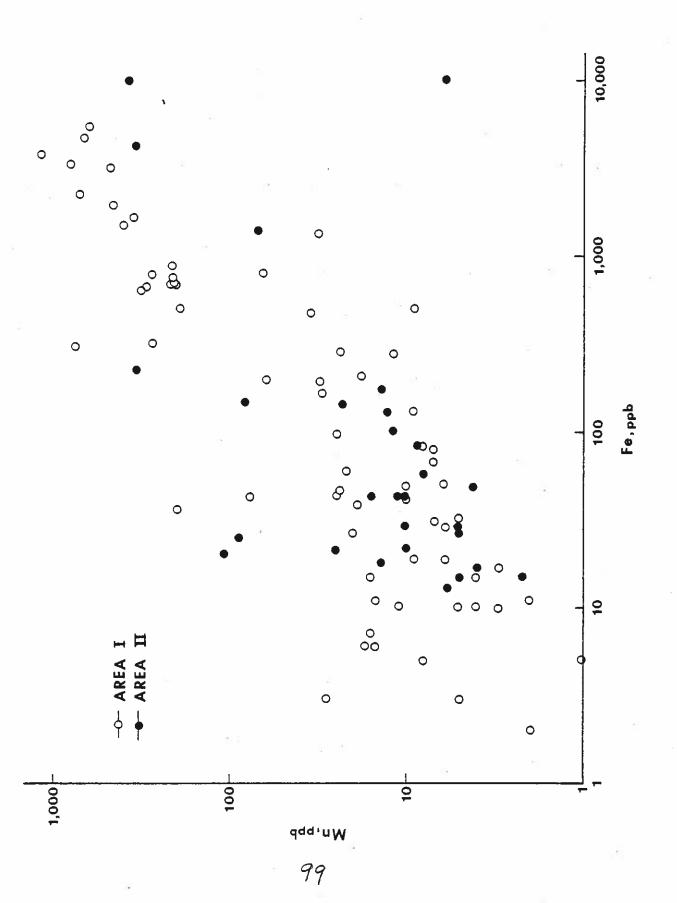




Figure I-5
Correlation Plot for Li vs Mn, Areas I and II

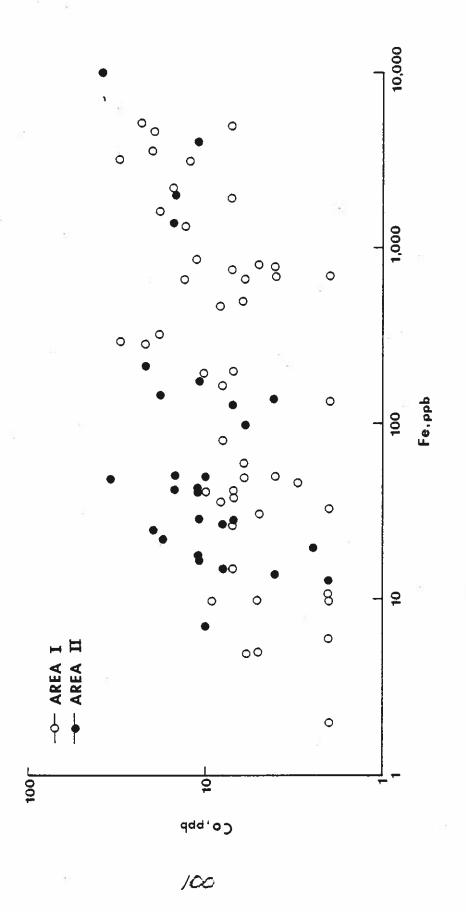


Figure I-8
Correlation Plot for Co vs Fe, Areas I and II

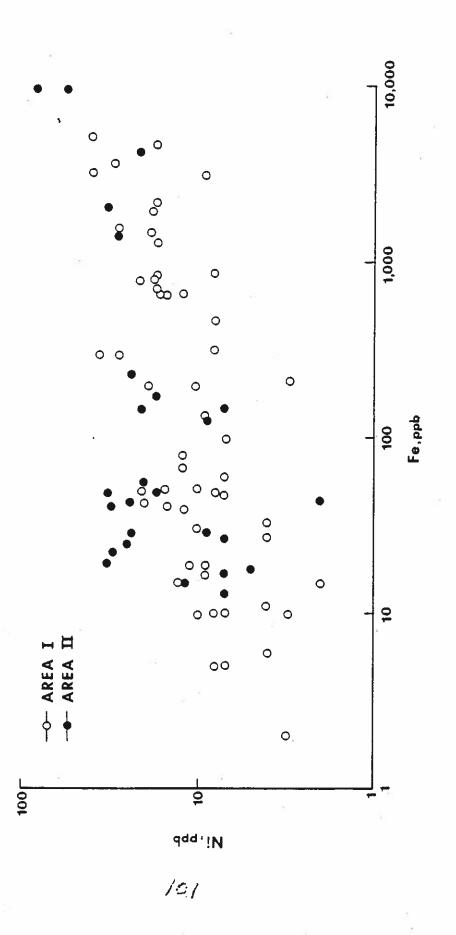
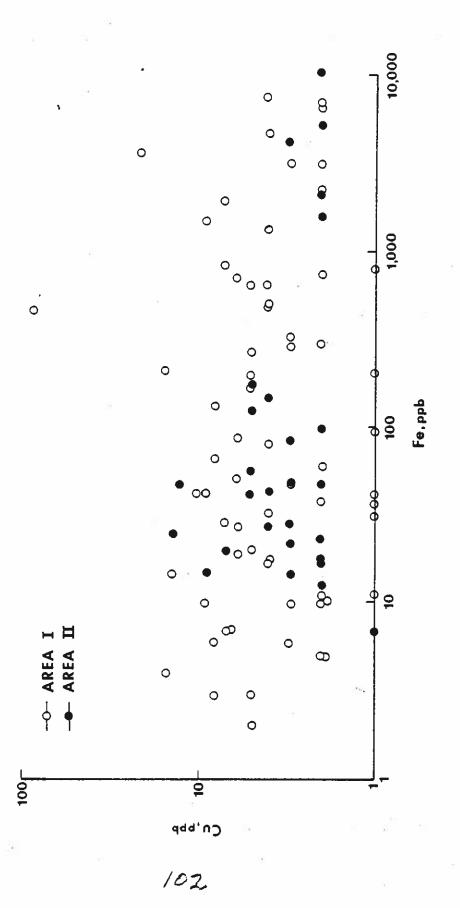
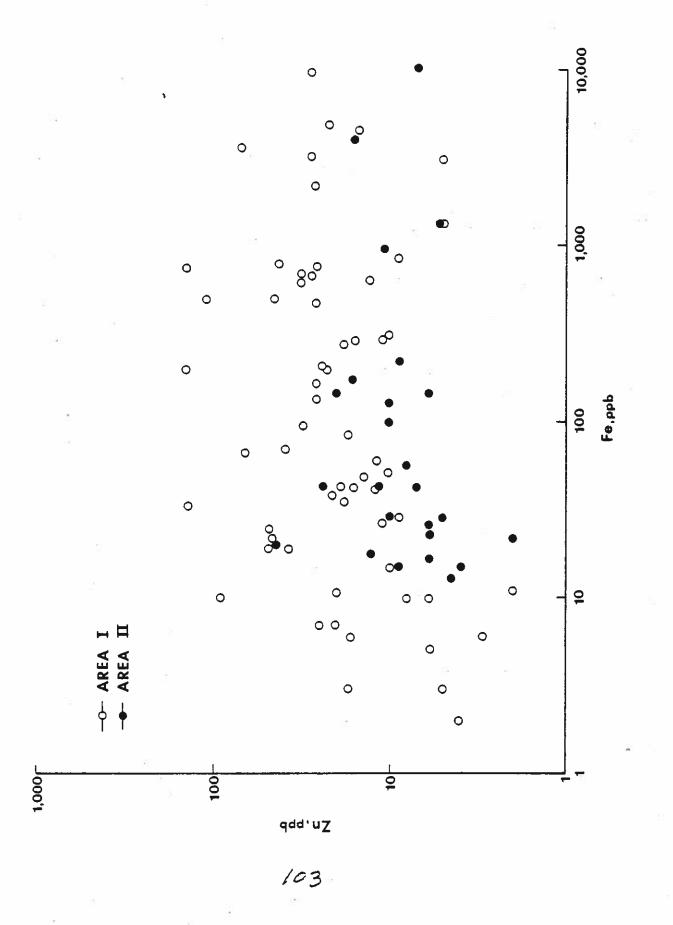




Figure I-9
Correlation Plot for Ni vs Fe, Areas I and II

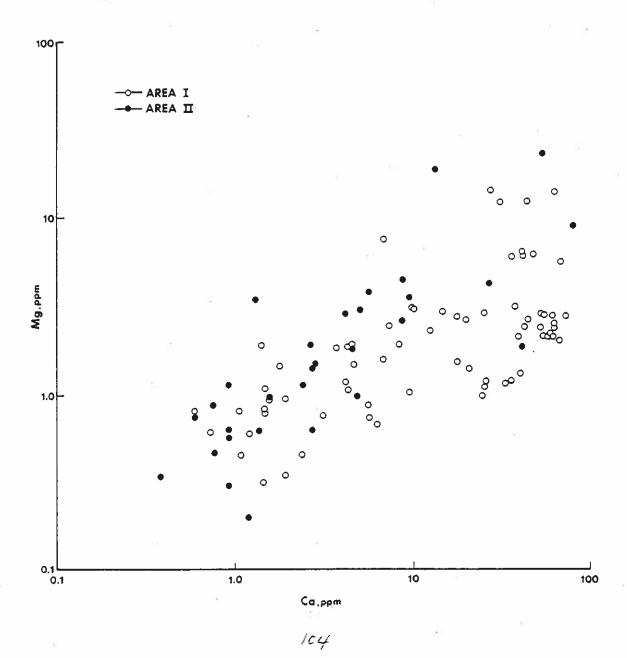
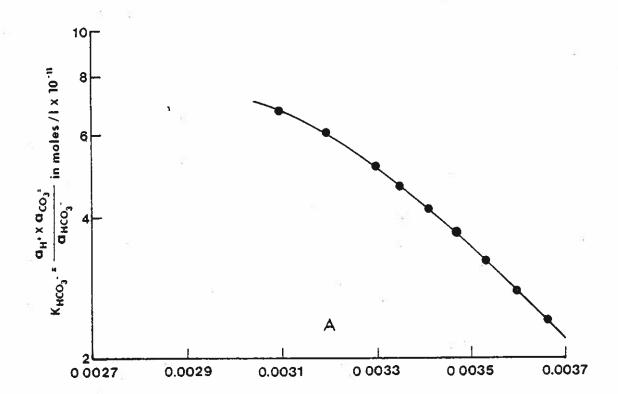



Figure I-12
Correlation Plot for Mg vs Ca, Areas I and II

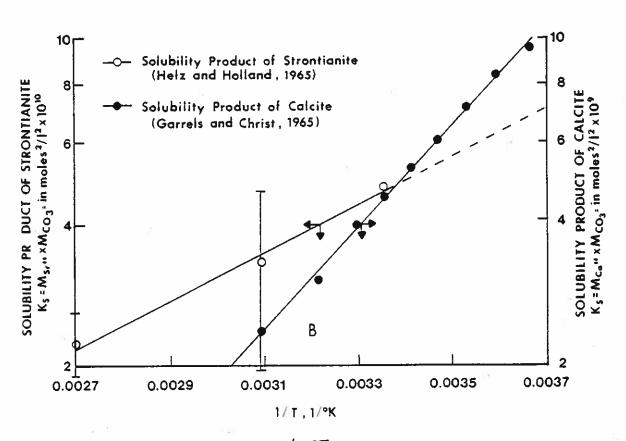


Figure I-13A

Equilibrium Constant for ${\rm HCO}_3^-$ vs T

Figure I-13B

Solubility Product of Calcite ($CaCO_3$) and Strontianite ($SrCO_3$) vs T

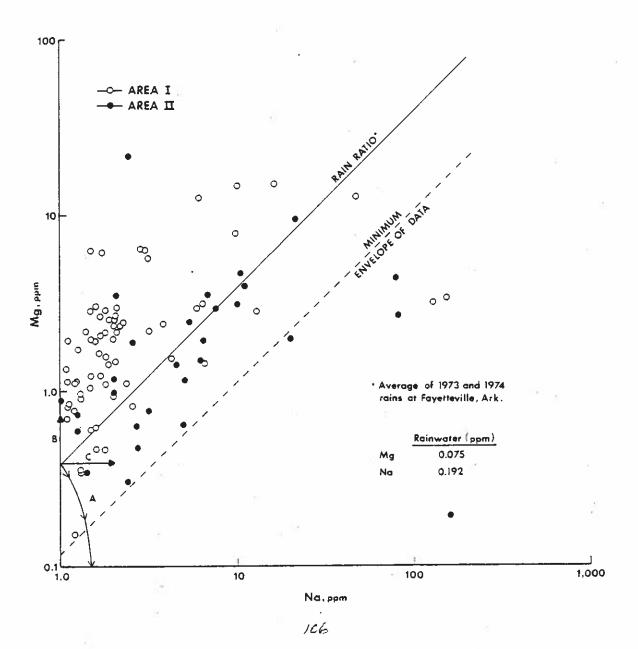
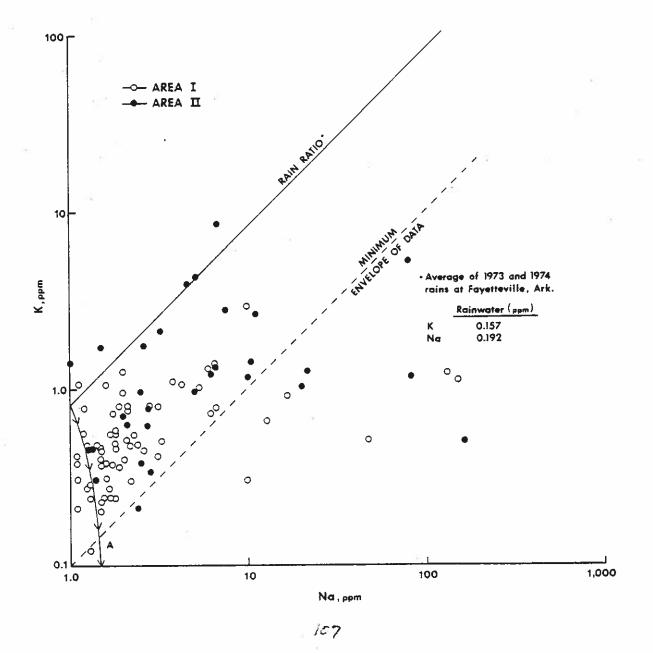



Figure I-14

Concentration of Mg vs Concentration of Na for Areas I and II

 $\label{eq:Figure I-15}$ Concentration of K vs Concentration of Na for Areas I and II

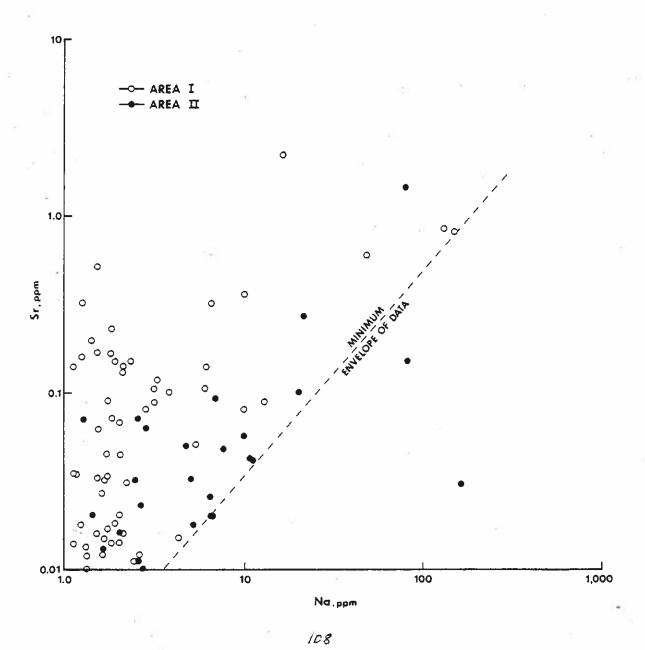


Figure I-16

Concentration of Sr vs Concentration of Na for Areas I and II $^\circ$

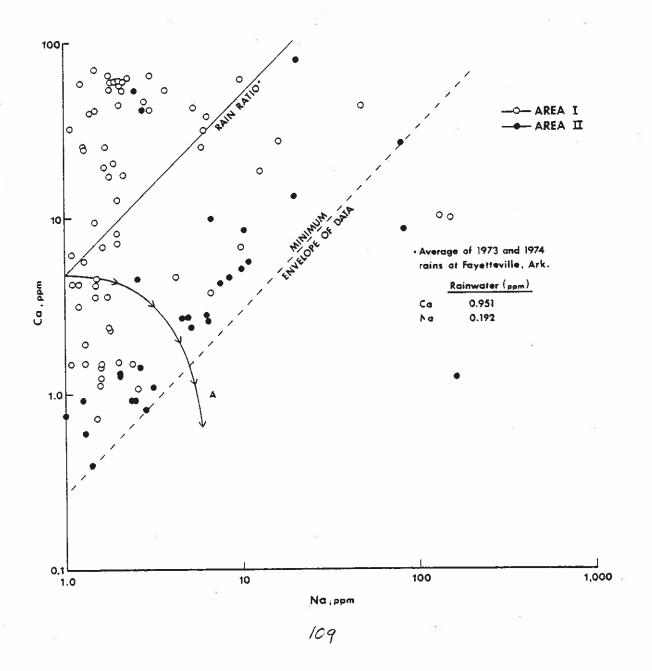


Figure I-17

Concentration of Ca vs Concentration of Na for Areas I and II

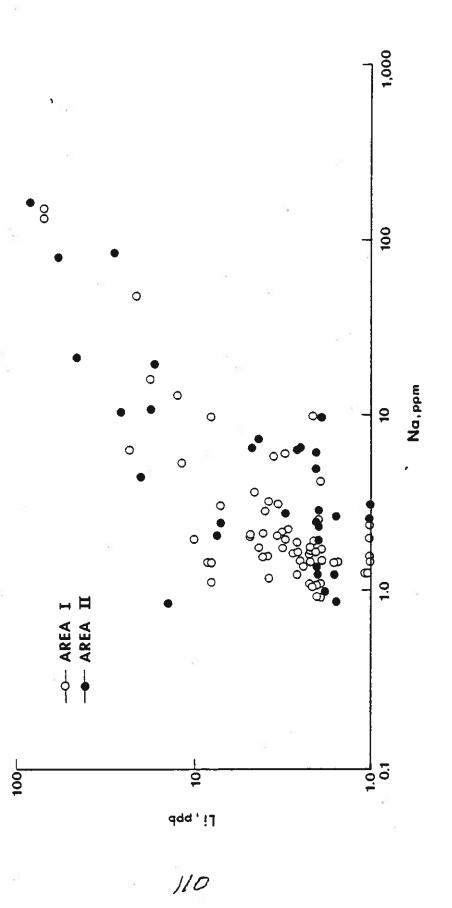
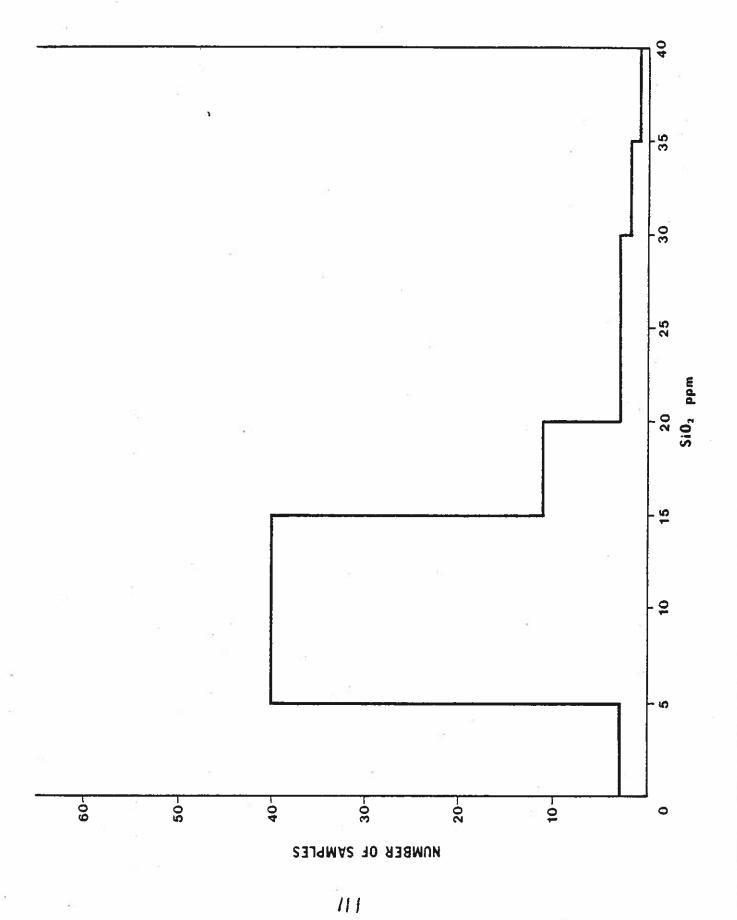
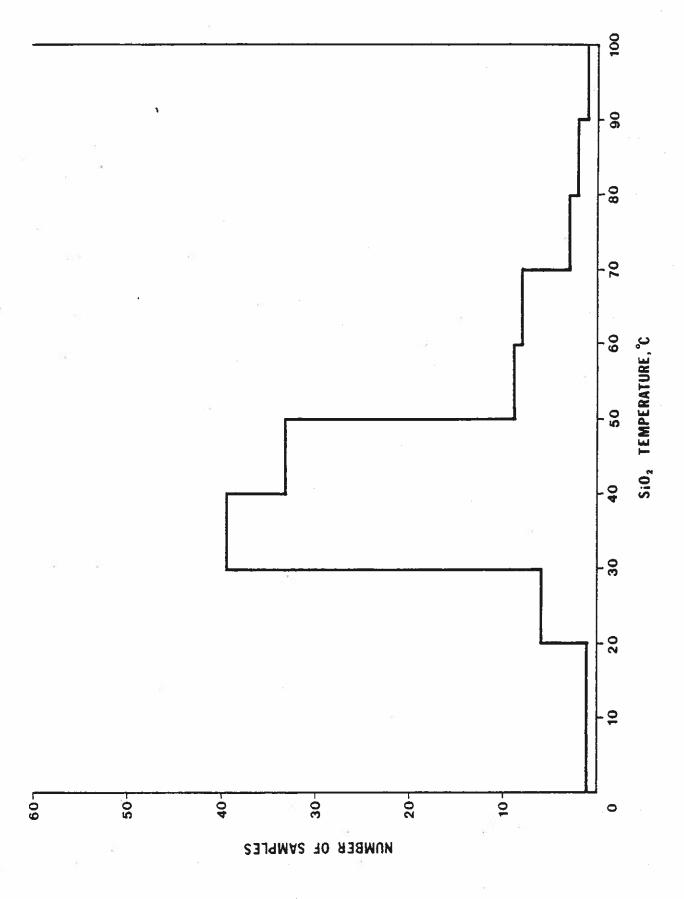




Figure I-18

Concentration of Li vs Concentration of Na for Areas I and II

Histogram of Silica Concentration in Spring Waters of Areas I and II Combined

Histogram of Silica Geotemperatures of Spring Waters for Areas I and II Combined

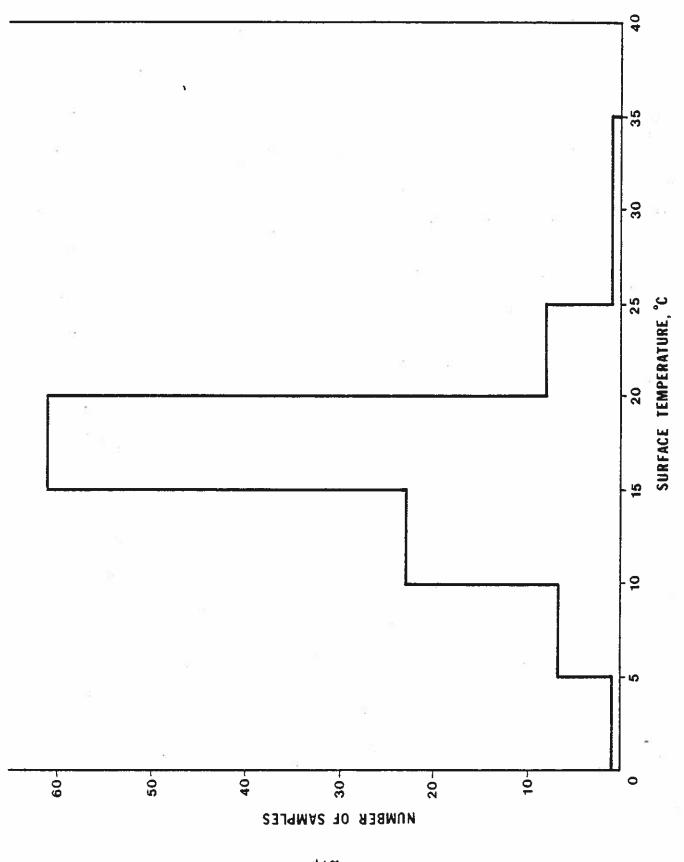


Figure II-3

Histogram of Surface Temperatures of Spring Waters for Areas I and II Combined

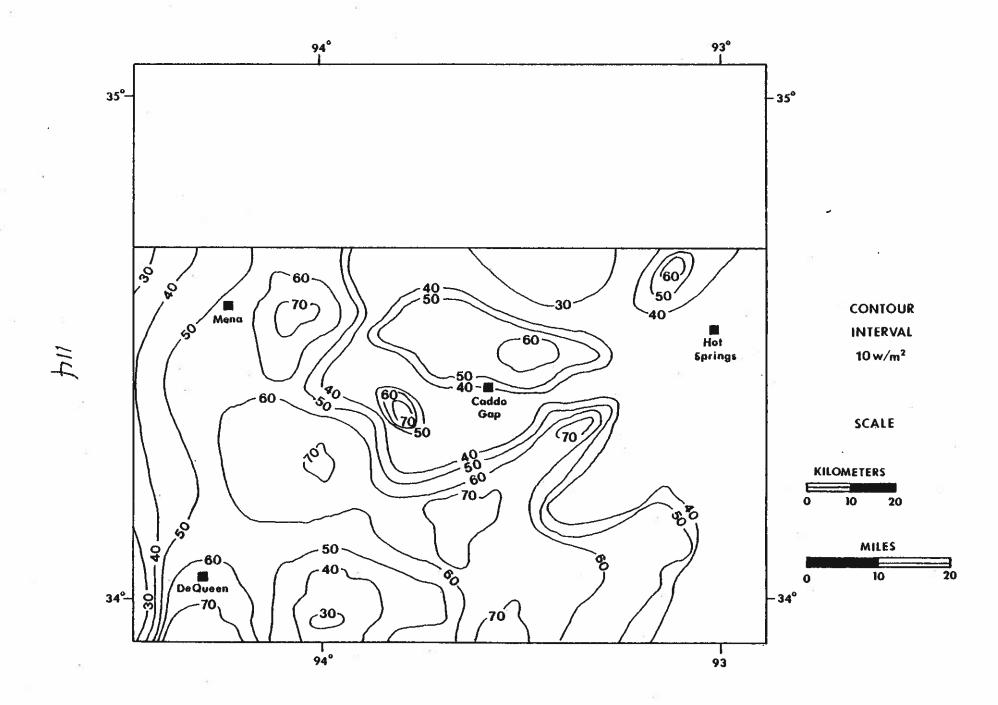


Figure II-4
Contour Map of Heat Flow

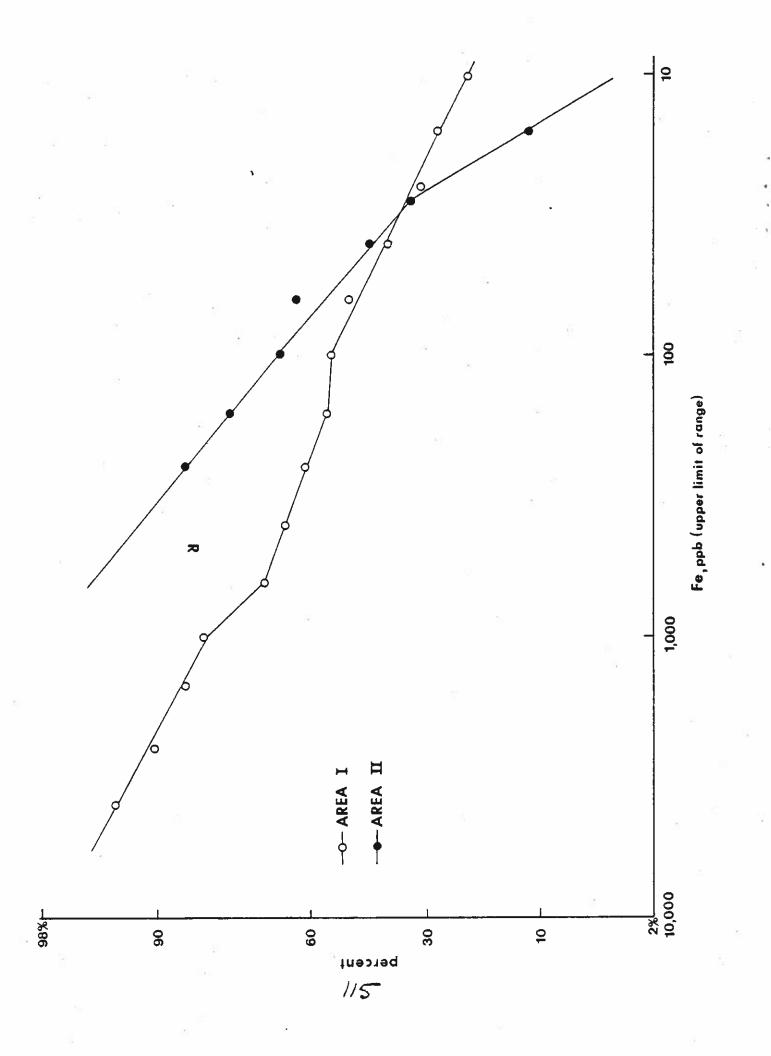


Figure III-1
Cumulative Frequency Curve for Fe, Areas I and II

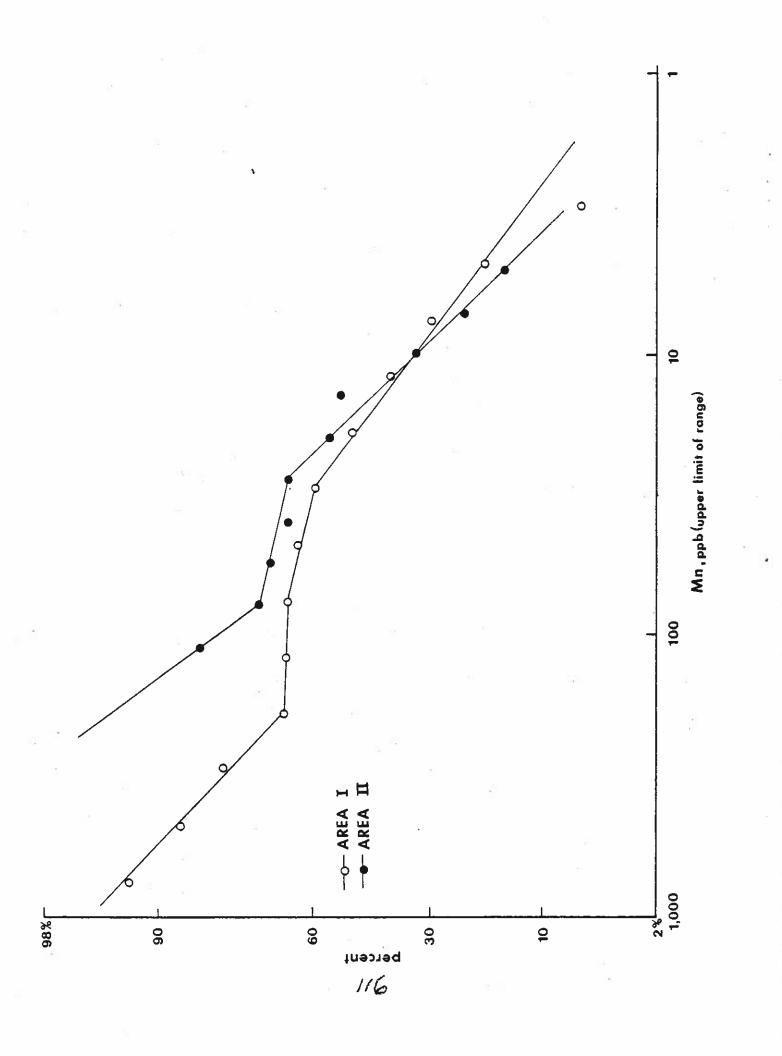


Figure III-2
Cumulative Frequency Curve for Mn, Areas I and II

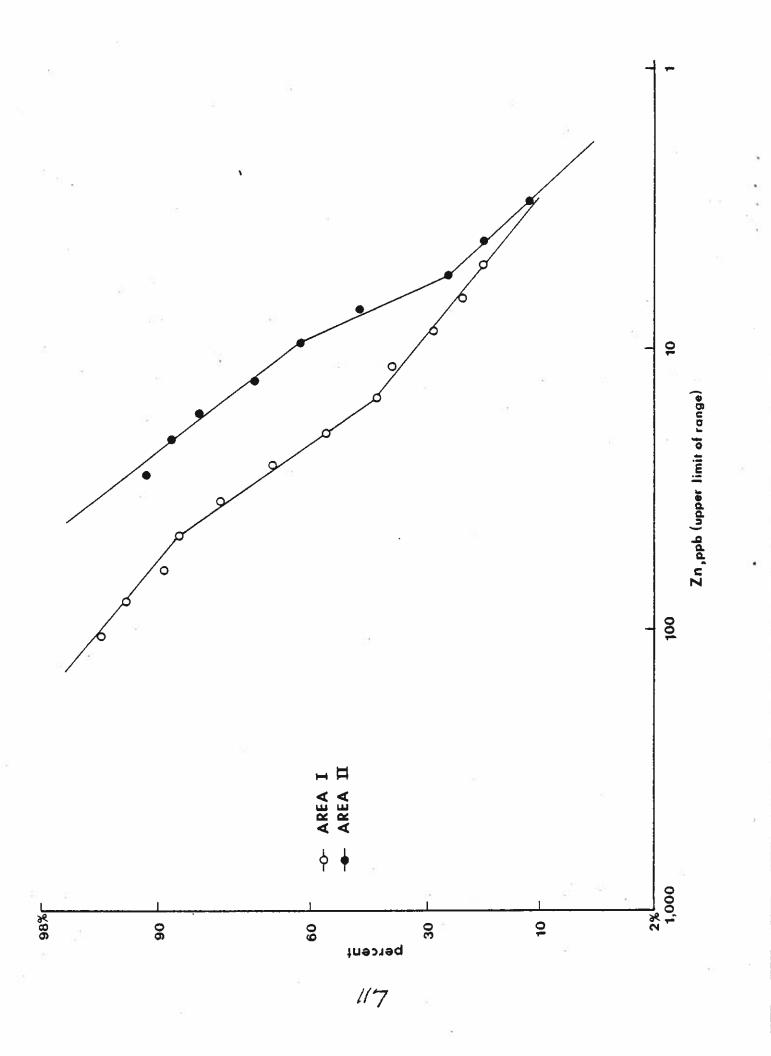


Figure III-3
Cumulative Frequency Curve for Zn, Areas I and II

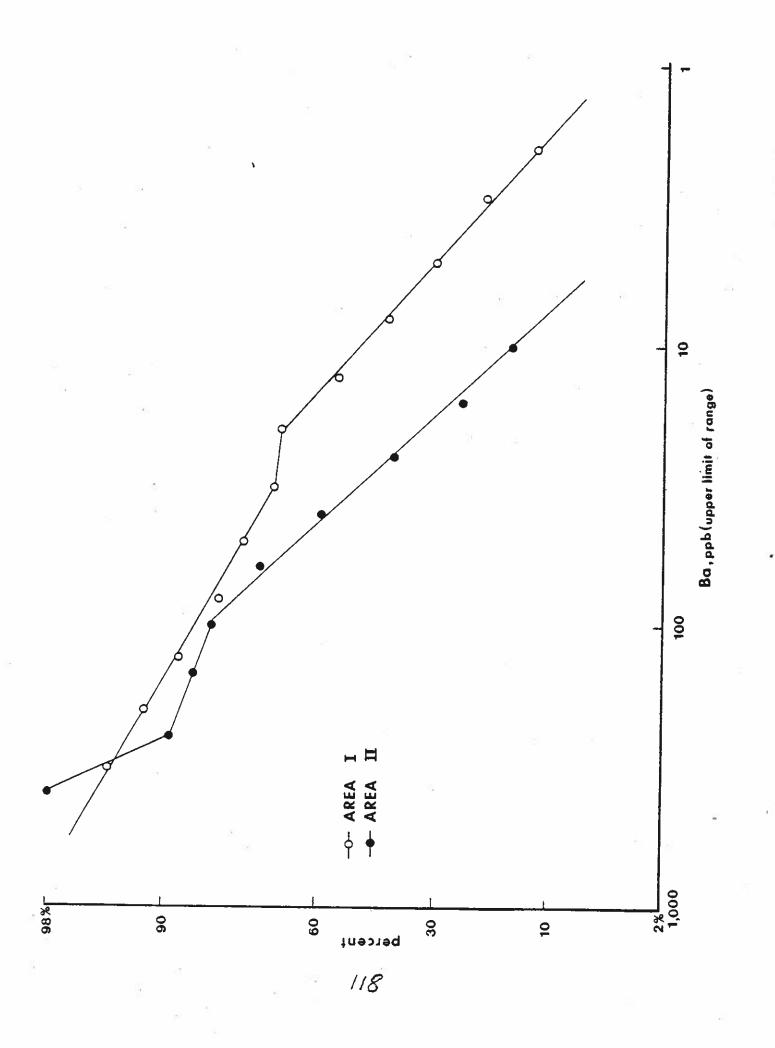


Figure III-4
Cumulative Frequency Curve for Ba, Areas I and II

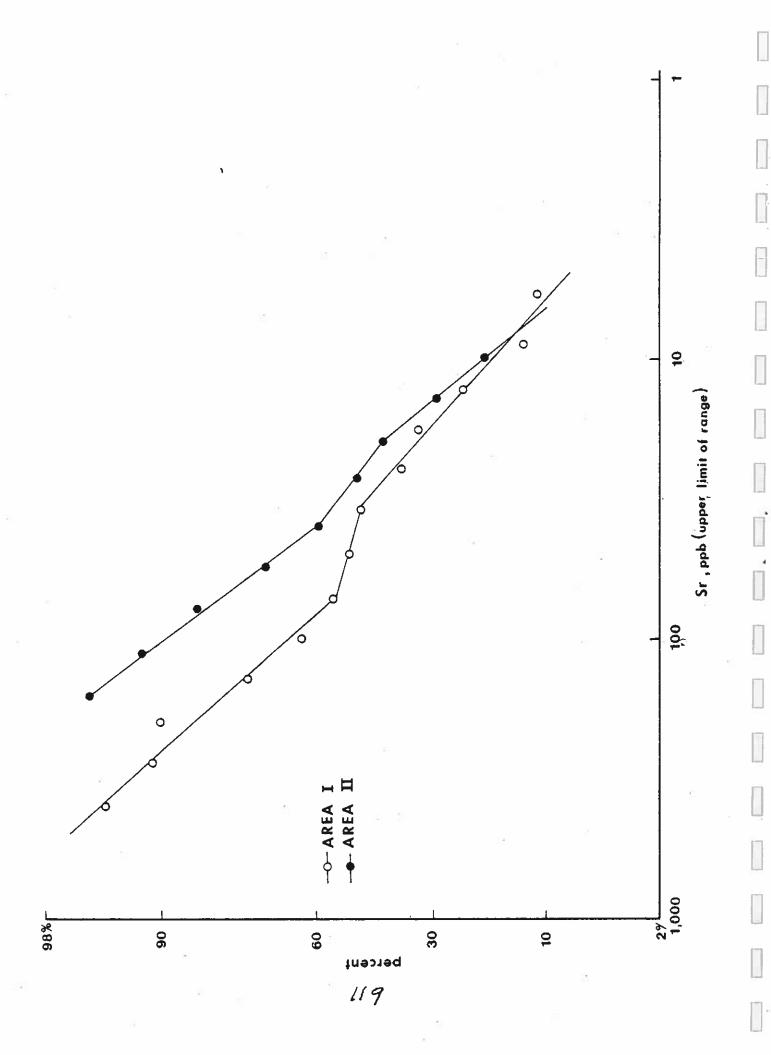


Figure III-5
Cumulative Frequency Curve for Sr, Areas I and II

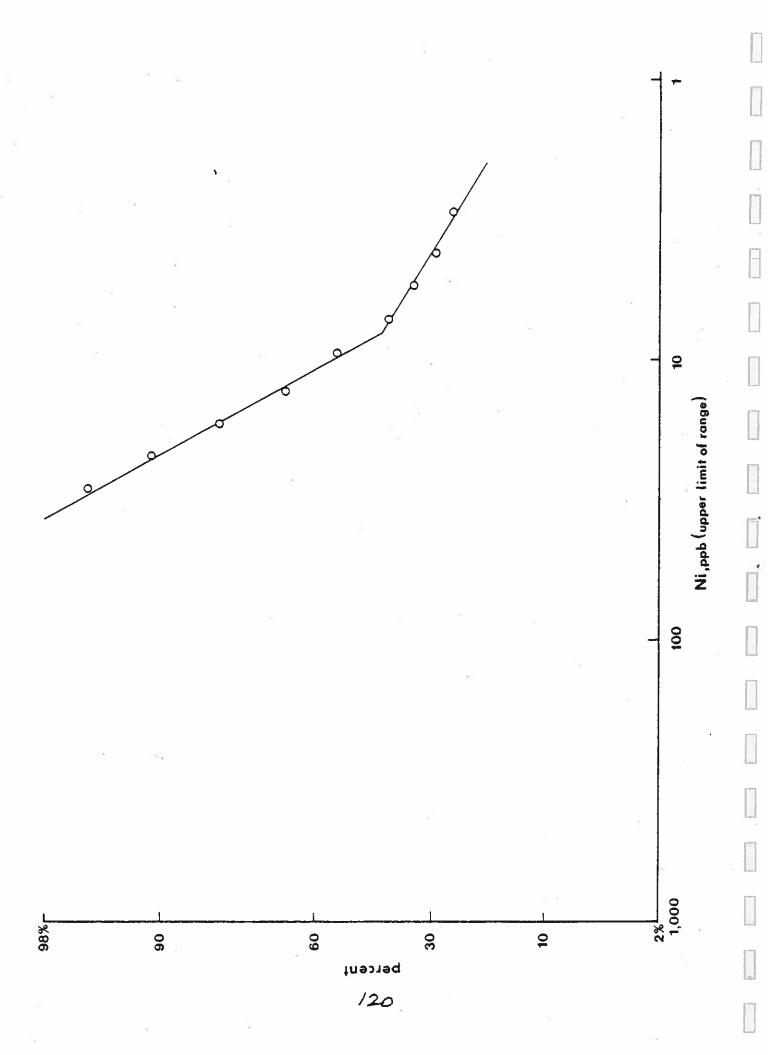
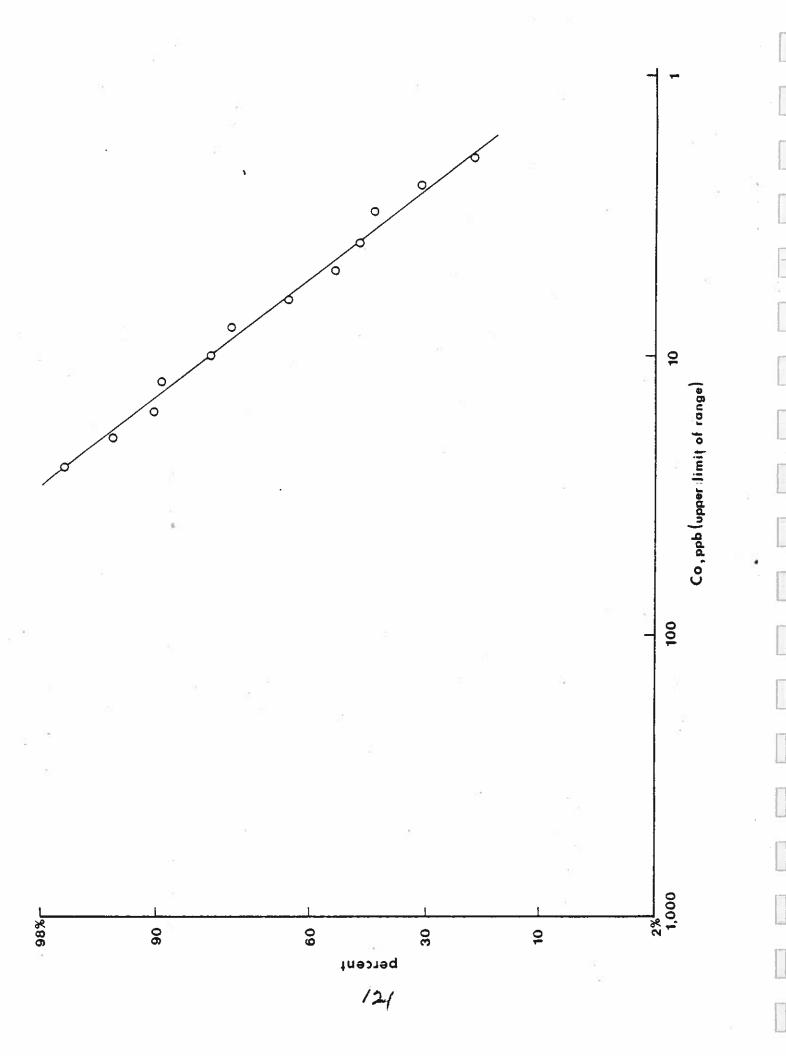
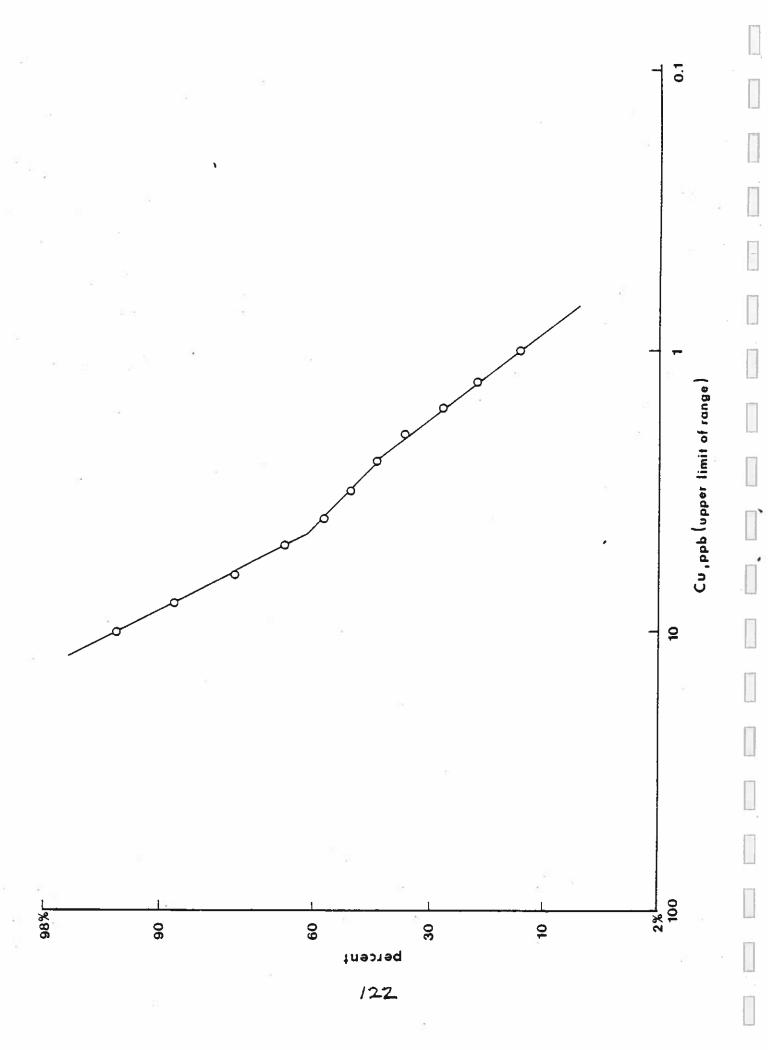
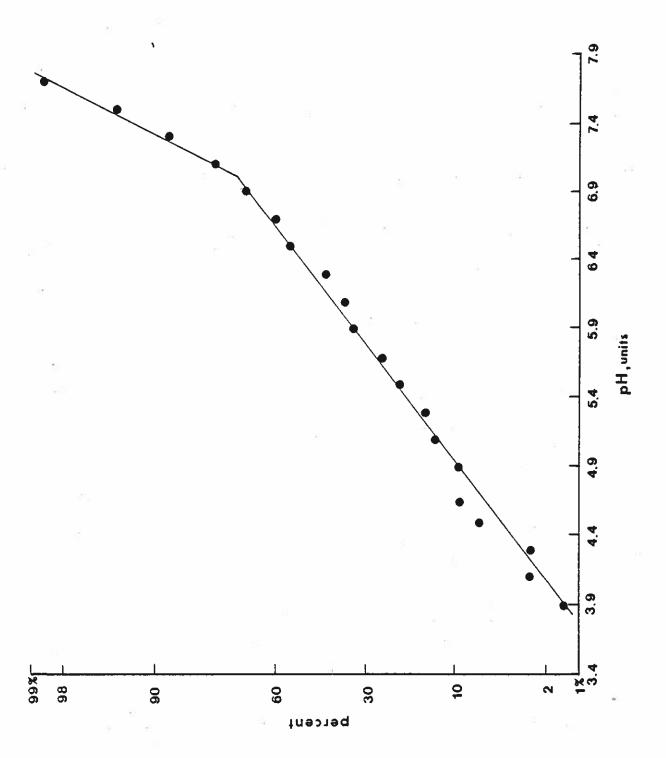





Figure III-6
Cumulative Frequency Curve for Ni, Area I

Cumulative Frequency Curve for pH, Area I

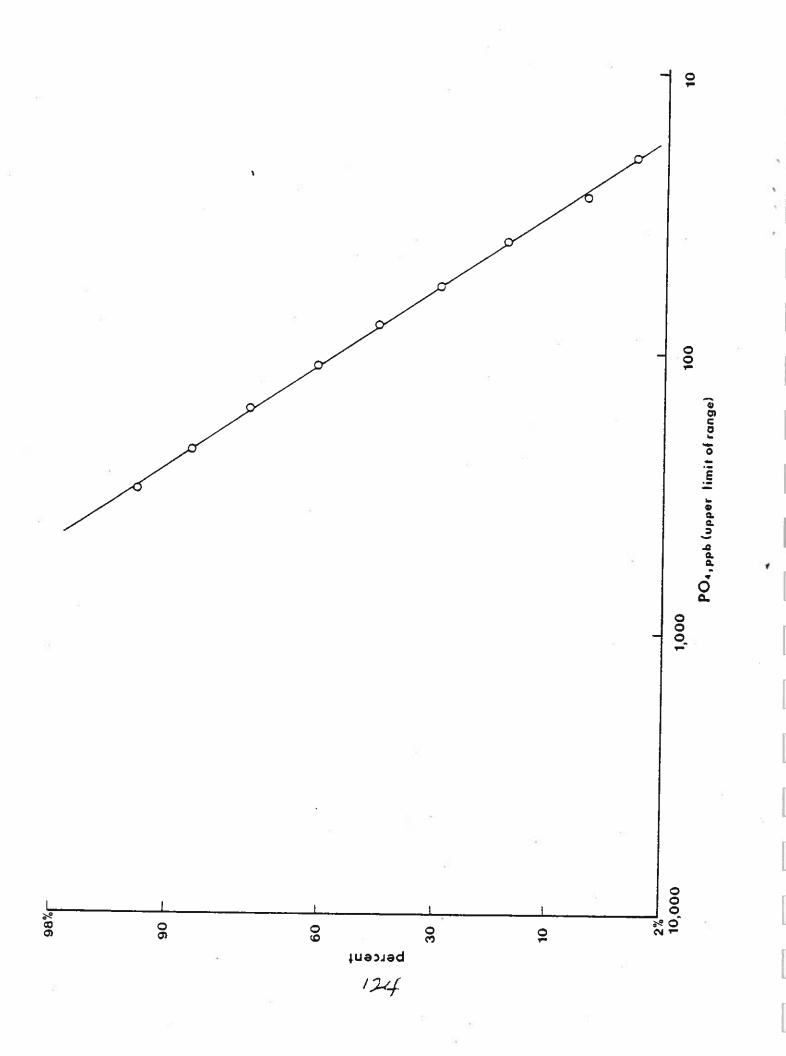
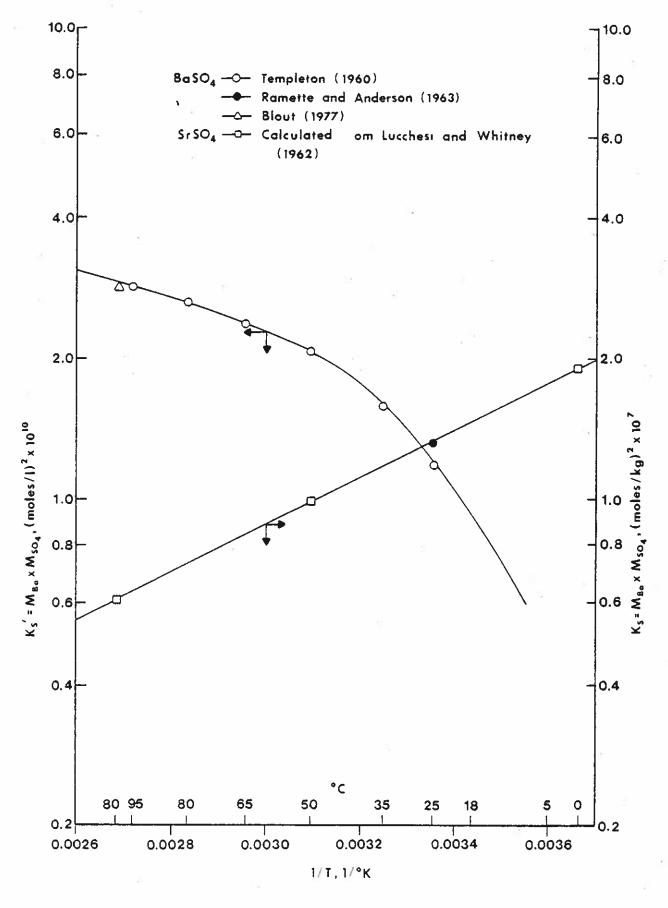
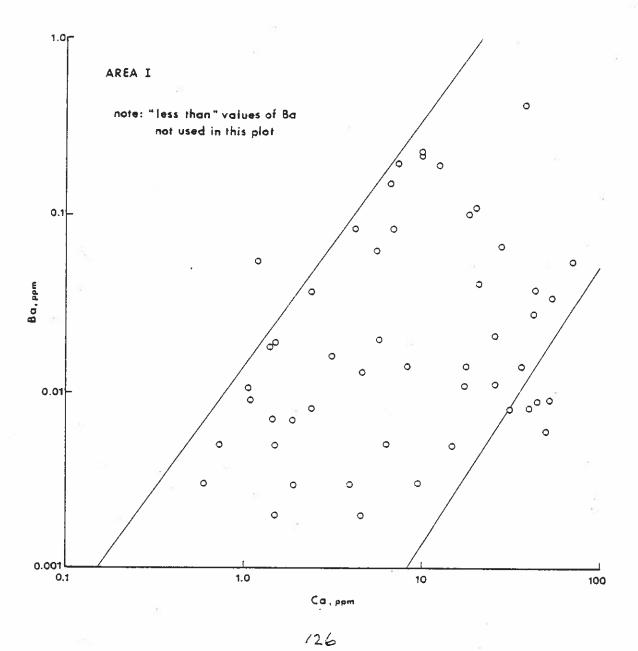
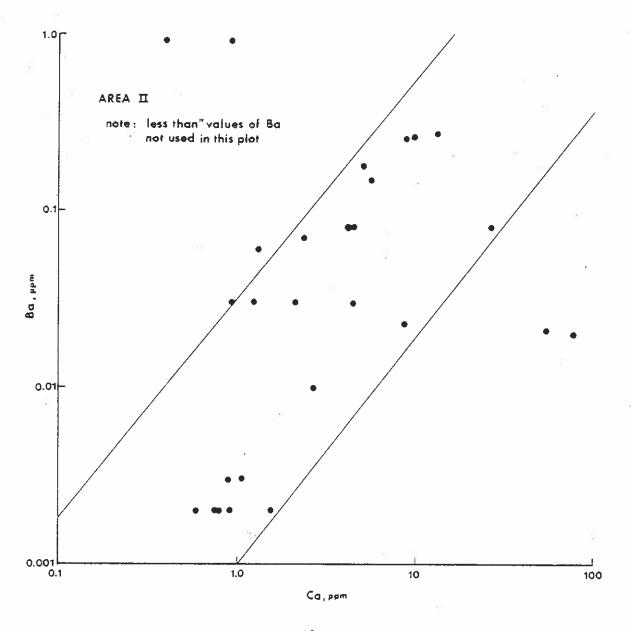
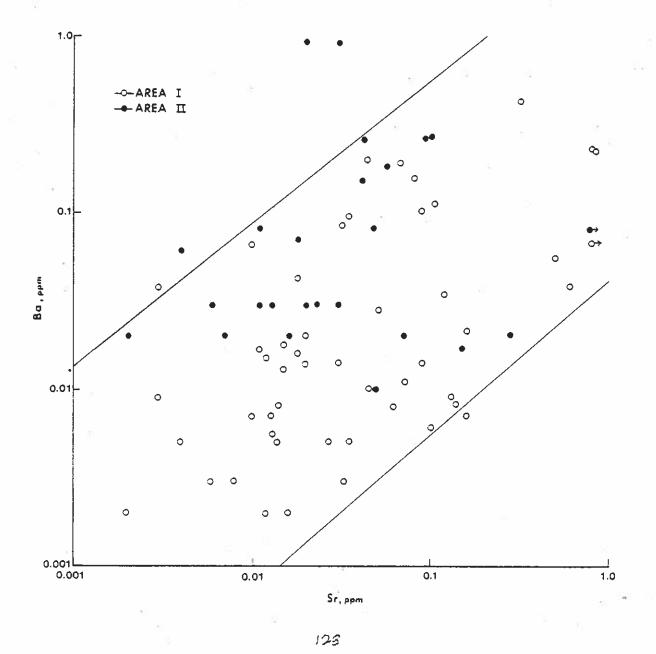
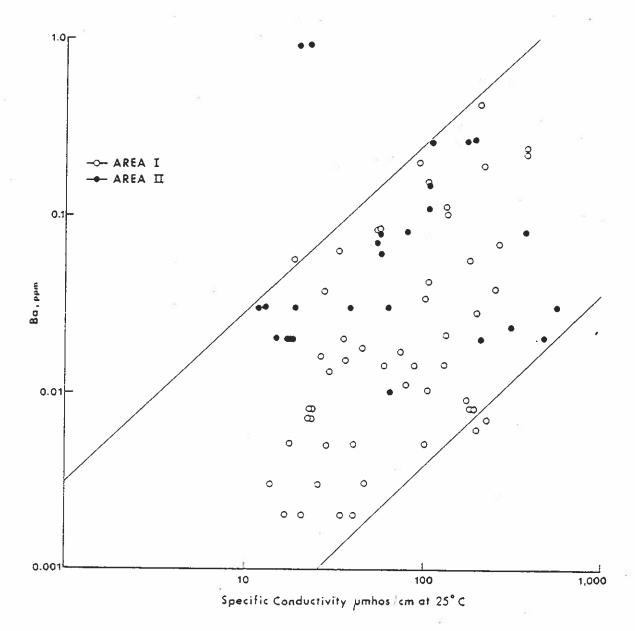
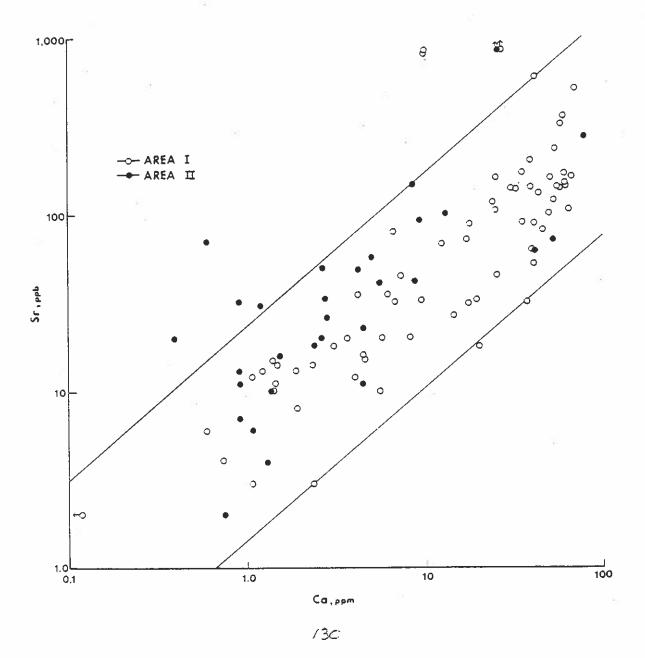


Figure III-10 $\label{eq:Cumulative Frequency Curve for PO_4, Area II}$


Figure III-11 Solubility Product of Barite (BaSO $_4$) and Celestite (SrSO $_4$) vs Temperature


Ba⁺⁺ Concentration vs Ca⁺⁺ Concentration For Ouachita Spring Waters of Area I


Ba⁺⁺ Concentration vs Ca⁺⁺ Concentration For Ouachita Spring Waters of Area II

 \mbox{Ba}^{++} Concentration vs \mbox{Sr}^{++} Concentration For Ouachita Spring Waters of Areas I and II

Ba⁺⁺ Concentration vs Specific Conductivity For Ouachita Spring Waters in Areas I and II

 Sr^{++} Concentration vs Ca^{++} Concentration For Ouachita Spring Waters in Areas I and II

							П
	W						
	pi.		8				
	dii.			9		u u	,
			!				
						92	
		eg 1					
					i.		
		·			54	S	[]
							•
					0		
x *							
	2 2					€) 31.	
g *						12	
ti				ii.			
	20		A				
	at .						
*			1.0		30 33		