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Lasso Meets Horseshoe: A Survey
Anindya Bhadra, Jyotishka Datta, Nicholas G. Polson and Brandon Willard

Abstract. The goal of this paper is to contrast and survey the major ad-
vances in two of the most commonly used high-dimensional techniques,
namely, the Lasso and horseshoe regularization. Lasso is a gold standard for
predictor selection while horseshoe is a state-of-the-art Bayesian estimator
for sparse signals. Lasso is fast and scalable and uses convex optimization
whilst the horseshoe is non-convex. Our novel perspective focuses on three
aspects: (i) theoretical optimality in high-dimensional inference for the Gaus-
sian sparse model and beyond, (ii) efficiency and scalability of computation
and (iii) methodological development and performance.

Key words and phrases: Global-local priors, horseshoe, horseshoe+, hyper-
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1. INTRODUCTION

High-dimensional predictor selection and sparse sig-
nal recovery are routine statistical and machine learn-
ing practices. There is a vast and growing literature
focusing on computational aspects of large scale in-
ference problems. Whilst this area is too large to re-
view here, we revisit two popular sparse parameter es-
timation techniques, the Lasso (Tibshirani, 1996) and
the horseshoe estimator (Carvalho, Polson and Scott,
2010). Specifically, we focus on three areas: perfor-
mance in high-dimensional data, theoretical optimality
and computational efficiency.

Sparsity relies on the property of a few large signals
among many (nearly) zero noisy observations. A com-
mon goal in high-dimensional inference is to recover
the low-dimensional signals observed in noisy obser-
vations. This problem encompasses four related areas:
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(i) Estimation of the underlying sparse parameter
vector.

(ii) Multiple testing where the # tests is much larger
than the sample size, n.

(iii) Regression subset selection where # of covari-
ates p is far larger than n.

(iv) Out-of-sample prediction.

There are a rich variety of methodologies for high-
dimensional regularization which implicitly or explic-
itly penalize model dimensionality. Lasso (Least Ab-
solute Shrinkage and Selection Operator) produces a
sparse estimate by constraining the �1 norm of the pa-
rameter vector. Lasso’s widespread popularity is due to
a multitude of factors, in particular due to the compu-
tational efficiency of the least angle regression (LARS)
(Efron et al., 2004) or the simple coordinate descent
approaches of Friedman et al. (2007), and its ability
to produce a sparse solution, with optimality (oracle)
properties for both estimation and variable selection
(vide Bühlmann and van de Geer, 2011, James et al.,
2013, Hastie, Tibshirani and Wainwright, 2015). Ta-
ble 1, adapted from Tibshirani (2014), gives a list of
popular regularization methods based on Lasso.

Bayes procedures, on the other hand, can be clas-
sified into two categories: two-groups model or spike-
and-slab priors (Johnstone and Silverman, 2004, Efron,
2008, 2010, Bogdan et al., 2011, Castillo and van der
Vaart, 2012) and global–local shrinkage priors
(Carvalho, Polson and Scott, 2009, 2010, Griffin and
Brown, 2010, Armagan, Clyde and Dunson, 2011,
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TABLE 1
Lasso regularization methods

Method Authors

Adaptive Lasso Zou (2006)
Compressive sensing Donoho (2006), Candès (2008)
Dantzig selector Candes and Tao (2007)
Elastic net Zou and Hastie (2005)
Fused Lasso Tibshirani et al. (2005)
Generalized Lasso Tibshirani and Taylor (2011)
Graphical Lasso Friedman, Hastie and Tibshirani (2008)
Grouped Lasso Yuan and Lin (2006)
Hierarchical interaction models Bien, Taylor and Tibshirani (2013)
Matrix completion Candès and Tao (2010), Mazumder, Hastie and Tibshirani (2010)
Multivariate methods Jolliffe, Trendafilov and Uddin (2003), Witten, Tibshirani and Hastie (2009)
Near-isotonic regression Tibshirani, Hoefling and Tibshirani (2011)
Square Root Lasso Belloni, Chernozhukov and Wang (2011)
Scaled Lasso Sun and Zhang (2012)
Minimum concave penalty Zhang (2010)
SparseNet Mazumder, Friedman and Hastie (2011)

Armagan, Dunson and Lee, 2013, Polson and Scott,
2011), with the horseshoe prior (Carvalho, Polson and
Scott, 2010) being one of the most popular methods.
The first class, spike-and-slab prior, places a discrete
mixture of a point mass at zero (the spike) and an ab-
solutely continuous density (the slab) on each param-
eter. The second entails placing absolutely continuous
shrinkage priors on the entire parameter vector that se-
lectively shrinks the small signals. Table 2 provides a
sampling of a few continuous shrinkage priors popu-
lar in the literature. Both these approaches have their
own advantages and caveats, which we discuss in turn.
A key duality is that the point estimate from a reg-
ularization approach can be interpreted as Bayesian

mode of the posterior distribution under an appropri-
ate shrinkage prior.

Both Lasso and horseshoe procedures come with
strong theoretical guarantees for estimation, predic-
tion and variable selection. Both procedures possess
asymptotic oracle properties, that is, identify the true
non-zero coefficients as well as achieve the optimal es-
timation rate. The behavior of the Lasso estimator in
terms of the risk properties has been studied in depth
and has resulted in many methods aiming to improve
certain features (see Table 1). On the other hand, horse-
shoe and other global–local priors have been shown to
achieve optimality in variable selection, estimation and
prediction, that we review in Section 4, although theo-

TABLE 2
A catalog of global–local shrinkage priors

Global-local shrinkage prior Authors

Normal Exponential Gamma Griffin and Brown (2010)
Horseshoe Carvalho, Polson and Scott (2010, 2009)
Hypergeometric Inverted Beta Polson and Scott (2010)
Generalized Double Pareto Armagan, Clyde and Dunson (2011)
Generalized Beta Armagan, Dunson and Lee (2013)
Dirichlet–Laplace Bhattacharya et al. (2015)
Horseshoe+ Bhadra et al. (2017b)
Horseshoe-like Bhadra et al. (2017a)
Spike-and-Slab Lasso Ročková and George (2018)
R2–D2 Zhang, Reich and Bondell (2016)
Inverse-Gamma–Gamma Bai and Ghosh (2017)
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retical studies of the continuous shrinkage priors is still
an active area.

The rest of the paper is organized as follows: Sec-
tion 2 provides historical background for the normal
means (a.k.a the Gaussian compound decision prob-
lem) and the sparse regression problems. Section 3
provides the link between regularization and opti-
mization perspectives viewed through a probabilistic
Bayesian lens. Section 4 compares and contrasts the
statistical risk properties of Lasso and the horseshoe
prior. Sections 5 and 6 discuss the issues of hyper-
parameter selection and computational strategies. Sec-
tion 7 provides two simulation experiments comparing
the horseshoe prior with penalized regression methods
for linear model and logistic regression with varying
degree of dependence between predictors. We discuss
applications of Lasso and the horseshoe in Section 8
and provide directions for future work in Section 9.

2. SPARSE NORMAL MEANS, REGRESSION AND
VARIABLE SELECTION

2.1 Sparse Normal Means

Suppose that we observe data from the probability

model (yi | θi)
ind∼ N (θi,1) for i = 1, . . . , n. Our pri-

mary inferential goal is to estimate the vector of nor-
mal means θ = (θ1, . . . , θn) and a secondary goal is
to simultaneously test if θi’s are coming from a null
distribution. We are interested in the sparse paradigm
where a large proportion of the parameter vector con-
tains zeros. The ‘nearly black’ (Donoho et al., 1992)
regime occurs when the parameter vector θ lies in the
set �0[pn] ≡ {θ : #(θi �= 0) ≤ pn} with the upper bound
on the number of non-zero parameter values pn = o(n)

as n → ∞.
A natural Bayesian solution for inference under spar-

sity is the two-groups model that puts a non-zero prob-
ability spike at zero and a suitable prior on the non-
zero θi’s (vide Appendix A). The inference is then
based on the posterior probabilities of non-zero θi’s
based on the discrete mixture model. The two-groups
model possesses a number of frequentist and Bayesian
optimality properties. Johnstone and Silverman (2004)
showed that a thresholding-based estimator for θ un-
der the two-groups model with an empirical Bayes es-
timate for the sparsity proportion attains the minimax
rate in �q norm for q ∈ (0,2] for θ that are either nearly
black or belong to an �p ball of ‘small’ radius. Castillo
and van der Vaart (2012) treated a full Bayes version of
the problem and again found an estimate that is mini-
max in �q norm for mean vectors that are either nearly
black or have bounded weak �p norm for p ∈ (0,2].

2.2 Sparse Linear Regression

A related inferential problem is high-dimensional
linear regression with sparsity constraints on the pa-
rameter vector θ . We are interested in the linear regres-
sion model:

Y = Xθ + ε,

where X = [X1, . . . ,Xp] is a n×p matrix of predictors
and ε ∼N (0, σ 2In).

Our focus is on the sparse solution where p 	 n

and most of θi ’s are zero. Similar to the sparse normal
means problem, our goal is to identify the non-zero en-
tries of θ as well as estimate it. There are a wide variety
of methods based on the penalized likelihood approach
that solves the following optimization problem:

(1)

min
θ

n∑
i=1

(
yi − θ0 −

p∑
j=1

θjxi,j

)2

+ penλ(θ),

where

penλ(θ) =
p∑

j=1

pλ(θj ) is a separable penalty.

Lasso uses an �1 penalty, pλ(θj ) = λ|θj |, and simul-
taneously performs variable selection while maintain-
ing estimation accuracy. Another notable variant is the
best subset selection procedure corresponding to the �0
penalty pλ(θj ) = λ1{θj �= 0}. There has been a recent
emphasis on non-concave separable penalties such as
the minimax concave penalty or MCP (Zhang, 2010)
or SCAD (Fan and Li, 2001), that act as a tool for vari-
able selection and estimation. We discuss the penaliza-
tion methods from a Bayesian viewpoint in the next
section.

2.3 Variable Selection

Variable or predictor selection is intimately related
to high-dimensional sparse linear regression. A sparse
model provides interpretability, computational effi-
ciency, and stability of inference. Lasso’s success has
inspired many estimation methods that rely on convex-
ity and sparsity in a penalized estimation framework.
The ‘bet on sparsity’ principle (Hastie, Tibshirani and
Friedman, 2009) dictates the use of methods favoring
sparsity, as no method uniformly dominates when the
true model is dense.

REMARK 1. The LAVA method by Chernozhukov,
Hansen and Liao (2017) strictly dominates both Lasso
and ridge in a ‘sparse + dense’ model. In fact, the
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LAVA estimator performs as well as Lasso in a sparse
regime and as well as ridge (Tikhonov, 1963) in a dense
regime. This questions the validity of the ‘bet on spar-
sity’ principle. Although there is no exact analogue of
LAVA in the Bayesian world, the one-group shrinkage
priors share a common philosophy. The horseshoe-type
priors are also designed to work when true θ has a
few large entries and very many small non-zero entries
and produces a ‘non-sparse’ estimator, but LAVA can
recover both the dense and sparse components unlike
horseshoe.

A parallel surge of Bayesian methodologies has
emerged for sparse regression problems with an un-
derlying variable selection procedure. Hierarchical
Bayesian modeling proceeds by selecting a model di-
mension s, selecting a random subset S of dimension
|S| = s and a prior πS on R

s . The prior can be writ-
ten as in Castillo, Schmidt-Hieber and van der Vaart
(2015):

(2) (S, θ) 
→
(

p

|S|
)−1

πp

(|S|)πS(θS)δ0(θSc).

Bayesian approaches for sparse linear regression in-
clude George (2000), George and Foster (2000),
Mitchell and Beauchamp (1988), Ishwaran and Rao
(2005) and more recently Ročková and George (2018),
who introduce the spike-and-slab Lasso prior, where
the hierarchical prior on the parameter and model
spaces assumes the form:

(3)
π(θ | γ ) =

p∏
i=1

[
γiπ1(θi) + (1 − γi)π0(θi)

]
,

γ ∼ p(·),
where γ indexes the 2p possible models, and π0, π1
model the null and non-null θi’s respectively using
two Laplace priors with different scales. However, the
spike-and-slab type priors lead to substantial compu-
tational challenges as exploring the full posterior using
point mass mixture priors is prohibitive due to a combi-
natorial complexity of updating the discrete indicators
and infeasibility of block updating of model parame-
ters.

The continuous shrinkage priors alleviate this by us-
ing efficient Gibbs sampling scheme based on block-
updating the model parameters. We also note that while
full posterior sampling remains a computational hur-
dle for the spike-and-slab prior, point estimates such
as posterior mean and posterior quantiles can be ob-
tained using a polynomial-time algorithm as shown

by Castillo and van der Vaart (2012). Ročková and
George (2018) discuss the inefficiency of stochastic
search algorithms for exploring the posterior even for
moderate dimensions and developed a deterministic
alternative to quickly find the maximum a-posteriori
model. Here (i) increasing the efficiency in compu-
tation in the spike-and-slab model remains an active
area of research (see, e.g., Ročková and George, 2018)
and (ii) some complicating factors in the spike-and-
slab model, such as a lack of suitable block updates,
have fairly easy solutions for their continuous global–
local shrinkage counterparts, facilitating posterior ex-
ploration.

Polson and Scott (2011, 2012b), Carvalho, Polson
and Scott (2010) introduced the ‘global–local’ shrink-
age priors that adjust to sparsity via global shrinkage,
and identify signals by local shrinkage parameters. The
global–local shrinkage idea has resulted in many dif-
ferent priors in the recent past, with varying degrees
of success in theoretical and numerical performance.
We compare these different priors and introduce a re-
cently proposed family of horseshoe-like priors in Sec-
tion 3.3.

The estimators resulting from the one-group shrink-
age priors are very different from the shrinkage es-
timator due to James and Stein (1961), who showed
that maximum likelihood estimators for multivariate
normal means are inadmissible beyond two dimen-
sions. The James–Stein estimator is primarily con-
cerned about the total squared error loss, without much
regard for the individual estimates. In problems involv-
ing observations lying far away on the tails this leads
to ‘over-shrinkage’ (Carvalho, Polson and Scott, 2010).
In reality, an ideal signal-recovery procedure should be
robust to large signals. Connections between the global
shrinkage of James–Stein and global–local shrinkage
of the horseshoe are discussed in more details in Sec-
tion 4.

3. LASSO AND HORSESHOE

Regularization requires the researcher to specify a
measure of fit, denoted by l(θ) and a penalty function,
denoted by penλ(θ). From a Bayesian perspective, l(θ)

and penλ(θ) correspond to the negative logarithms of
the likelihood and a suitable prior distribution, respec-
tively. While regularization leads to an optimization
problem of the form

(4) min
θ∈Rp

{
l(y | θ) + penλ(θ)

}
,
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the probabilistic approach leads to a Bayesian hierar-
chical model

(5)
p(y | θ) ∝ exp

{−l(y | θ)
}
,

πλ(θ) ∝ exp
{−penλ(θ)

}
.

For appropriate l(y | θ) and penλ(θ), the solution
to (4) corresponds to the posterior mode of (5), θ̂ =
argmaxθ p(θ | y), where p(θ | y) denotes the posterior
density. The properties of the penalty are then induced
by those of the prior. For example, regression with a
least squares log-likelihood subject to an �2 penalty or
ridge (Tikhonov, 1963, Hoerl and Kennard, 1970) cor-
responds to a Gaussian prior under the same observa-
tion distribution, and an �1 penalty (Lasso) corresponds
to a double-exponential prior (Tibshirani, 1996).

One interpretation of Lasso and related �1 penalties
is that these are methods designed to perform selec-
tion, while ridge and related �2 based methods perform
shrinkage. Selection-based methods such as the Lasso
are unstable in many situations, for example, in pres-
ence of multi-collinearity in the design (Hastie, Tibshi-
rani and Friedman, 2009, ch. 3).

Although ‘shrinkage’ and ‘selection’ are closely re-
lated, we tend to distinguish between them in the fol-
lowing sense. Shrinkage methods such as the horse-
shoe prior shrink towards 0 by thresholding the shrink-
age weights that behave like posterior inclusion prob-
abilities P(θi �= 0 | yi) to achieve variable selection. It
should be noted that the continuous nature of prior on
θi ensures a lack of exact zeros in the posterior, which
is often preferred over dichotomous models by some
practitioners (Stephens and Balding, 2009) as more re-
alistic. This is unlike the Lasso that performs explicit
selection by making some of estimates 0 and producing
a true sparse solution. Ultimately, both selection and
shrinkage have their advantages and disadvantages.

3.1 Lasso Penalty and Prior

As discussed before, the classical Lasso-based point
estimate is the same as the posterior mode under
component-wise Laplace prior, and the mode inherits
the optimal properties of Lasso. For example, the or-
acle inequality in Bühlmann and van de Geer (2011),
Eq. (2.8), Th. (6.1), states that with a proper choice
of λ of order σ

√
log(p)/n, the mean squared predic-

tion error of Lasso is of the same order as if one knew
active set S0 = {j : θ0

j �= 0}), up to O(log(p)) and a

compatibility constant φ2
0 . The compatibility (or re-

stricted eigenvalue) constant reflects the compatibility
between the design matrix and the �1 norm of θ , and is
defined as follows (Bühlmann and van de Geer, 2011,
Eq. (6.4)):

DEFINITION 2 (Compatibility condition). For S ⊂
{1,2, . . . , p} and θ ∈ R

p , let θ j,S
.= θj 1{j ∈ S} ∈ R

p

(with similar notation for θ j∈S ∈ R
|S|), and let θ−S =

θSc . Then the compatibility condition is satisfied for
the design X for the true support set S = supp(θ), if
letting s0 = |S| one has,

1

n
‖Xθ‖2

2 ≥ φ2
0

s0
‖θS‖2

1,

for all θ ∈ R
p such that ‖θS‖1 ≤ 3‖θ−S‖1.

The constant φ2
0 is called the compatibility (or re-

stricted eigenvalue) constant.

Lasso also exhibits other desirable properties such
as computational tractability, consistency of point es-
timates of θ for suitable λ, and optimality results on
variable selection.

3.2 Bayesian Lasso and Elastic Net

As discussed before, the posterior mean under the
double-exponential prior, which is the Bayes estimate
under squared error loss, does not satisfy the optimal-
ity properties of the posterior mode under the double-
exponential prior (i.e., the Lasso). Along these lines,
Castillo, Schmidt-Hieber and van der Vaart (2015) ar-
gue that the Lasso is essentially non-Bayesian, in that
the “full posterior distribution is useless for uncer-
tainty quantification, the central idea of Bayesian in-
ference.” Castillo, Schmidt-Hieber and van der Vaart
(2015) provide theoretical result that the full Lasso
posterior does not contract at the same speed as the
posterior mode.

Thus, there are a number of caveats related to the
use of a double-exponential prior for the general pur-
poses of shrinkage. An important example is found in
how it handles shrinkage for small observations and ro-
bustness to the large ones. This behavior is described
by various authors, including Polson and Scott (2011),
Datta and Ghosh (2013), and motivates the key proper-
ties of global–local priors. Figure 1(a) provides profile
plots as a diagnostic of shrinkage behavior for different
priors.

For correlated predictors, Zou and Hastie (2005) pro-
posed a family of convex penalties called ‘elastic net’,
which is a hybrid between Lasso and ridge. The penalty
term is

∑p
j=1 λpα(θj ), where

pα(θj ) = 1

2
(1 − α)θ2

j + α|θj |, j = 1, . . . , p.

Both Lasso and elastic net facilitate efficient
Bayesian computation via a global–local scale mix-
ture representation (Bhadra et al., 2016a). The Lasso
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FIG. 1. (a) Prior density of shrinkage weight κi for the horseshoe, horseshoe+, and Laplace prior, where {1−E(κi | yi)} can be interpreted
as the pseudo posterior inclusion probability that mimics P(θi �= 0 | yi), and (b) shrinkage function for LAVA, Lasso, ridge and the horseshoe
estimator. For LAVA shrinkage function, we have chosen λ1 = λl = 4 and λ2 = λr = 4, and for the horseshoe prior the value of global
shrinkage parameter τ is fixed at 0.1.

penalty arises as a Laplace global–local mixture
(Andrews and Mallows, 1974), while the elastic-net
regression can be recast as a global–local mixture with
a mixing density belonging to the orthant-normal fam-
ily of distributions (Hans, 2011). The orthant-normal
prior on θi , given hyper-parameters λ1 and λ2, has a
density function with the following form:

(6)

p(θi | λ1, λ2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ

(
θi

∣∣∣ λ1

2λ2
,
σ 2

λ2

)
/2

(
− λ1

2σλ
1/2
2

)
,

θi < 0,

φ

(
θi

∣∣∣ −λ1

2λ2
,
σ 2

λ2

)
/2

(
− λ1

2σλ
1/2
2

)
,

θi ≥ 0.

3.3 Horseshoe Penalty and Prior

The horseshoe prior is a continuous shrinkage rule
for sparse signal recovery. Here we discuss the moti-
vation behind the horseshoe prior for the Gaussian se-
quence model as it was developed in Carvalho, Polson
and Scott (2010), but note that it is applicable to sparse
signal recovery in regression models and beyond, as
we discuss in Section 4.4. Consider the normal means
model: yi | θi ∼ N (θi,1), θi | λi, τ ∼ N (0, λ2

i τ
2), i =

1,2, . . . , n. The horseshoe prior for θi , given a global
shrinkage parameter τ , is given by the hierarchical

model

(7)

(yi | θi) ∼N
(
θi, σ

2)
,

(θi | λi, τ ) ∼N
(
0, λ2

i τ
2)

,

λ2
i ∼ C+(0,1), i = 1, . . . , n.

As discussed before, the spike-and-slab prior or the
two-groups model (vide Appendix A) with two ded-
icated components for separating noise and signal is
a natural Bayesian solution but it leads to substantial
computational burden. The horseshoe prior takes a dif-
ferent approach: instead of placing a prior on the model
space to yield a sparse estimator, it models the poste-
rior inclusion probabilities P(θi �= 0 | yi) directly. To
see this, note that the posterior mean under the horse-
shoe prior can be written as a linear function of the
observation:

(8)
E(θi | yi) = {

1 −E(κi | yi)
}
yi

where κi = 1/
(
1 + λ2

i τ
2)

.

The name ‘horseshoe’ arises from the shape of the
beta prior density of the shrinkage weights κi . A com-
parison with the posterior mean obtained under the
two-groups model reveals that the shrinkage weights
perform the same function as the posterior inclusion
probability P(θi �= 0 | yi) for recovering a sparse sig-
nal. Since the shrinkage coefficients are not formal
Bayesian posterior quantities, we refer to them as
‘pseudo posterior inclusion probabilities.’
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Carvalho, Polson and Scott (2010) provided strong
numerical evidence that the shrinkage weights from
a one-group prior accurately approximates the inclu-
sion probabilities under a two-groups model, and used
this property to construct a multiple testing rule. The
thresholding rule rejects the ith null hypothesis H0i :
θi = 0 if the shrinkage weight 1 − κ̂i exceed 0.5. Datta
and Ghosh (2013) validated this theoretically by prov-
ing that the horseshoe multiple testing rule attains the
Bayes oracle up to a multiplicative constant under a 0–
1 additive loss.

The marginal likelihood after reparametrizing κi =
(1 + λ2

i τ
2)−1 is: p(yi | κi, τ ) = κ

1/2
i exp(−κiy

2
i /2).

The posterior density of κi identifies signals and noises
by letting κi → 0 and κi → 1 respectively. Since the
marginal likelihood is zero when κi = 0, it does not
help identify the signals. Intuitively, any prior that
drives the probability to either extremities should be
a good candidate for sparse signal reconstruction. The
horseshoe prior, with an induced prior density on κi

proportional to κ
−1/2
i (1 − κi)

−1/2 does exactly that: it

cancels the κ
1/2
i term in the marginal likelihood and

replaces it with (1 − κi)
−1/2 to enable κi → 1 in the

posterior. The horseshoe+ prior (Bhadra et al., 2017b)
takes this philosophy one step further, by creating a
U -shaped Jacobian for transformation from λi to κi-
scale. The double-exponential on the other hand, yields
a prior that decays at both ends with a mode near
κi = 1/4, thus leading to a posterior that is neither good
at adjusting to sparsity, nor at recovering large signals
(see Table 3).

Figure 1(a) plots the prior density p(κi) for the
horseshoe, horseshoe+, and the Laplace priors. Fig-
ure 1(b) shows the resulting shrinkage function by
plotting the input observations against the output es-
timates for horseshoe, horseshoe+, and Laplace priors,
along with the maximum likelihood estimator (θ̂ = y).
Both Lasso and horseshoe shrink the small observa-
tions, but while horseshoe and horseshoe+ leave the

TABLE 3
Priors for λi and κi for a few popular shrinkage rules

Prior for θi Prior for λi Prior for κi

Horseshoe 2/{πτ(1 + (λi/τ )2)} τ√
κi(1−κi )

1
(1+κi (τ

2−1))

Horseshoe+ 4 logλi/τ

{π2τ(λi/τ)2−1)}
τ√

κi (1−κi )

log{(1−κi )/κiτ
2}

(1−κi (τ
2+1))

Double Exponential λi exp(−λ2
i /2) κ−2

i exp− 1
2κi

large inputs unshrunk, Lasso shrinks them by a non-
vanishing amount, resulting in a non-zero bias. We also
plot the shrinkage function for the post-lava estima-
tor (Chernozhukov, Hansen and Liao, 2017) (vide Ap-
pendix C) which works well on dense + sparse signals,
and has the robustness property lacking in Bayesian
Lasso or the Laplace prior.

There are a number of closed-form results for the
posterior distribution under a horseshoe prior. Al-
though the prior density under the horseshoe prior does
not admit a closed form, we can write the horseshoe
posterior mean using the Tweedies’ formula E(θ | y) =
y + ∂ lnm(y)

∂y
σ 2, which is also the Bayes adjustment

that provides an optimal bias-variance trade-off. For
the horseshoe prior, Tweedies’ formula yields:

(9)

E(θi | yi, τ )

= yi

(
1 − 21(

1
2 ,1, 5

2 ,
y2
i

2σ 2 ,1 − 1
τ 2 )

31(
1
2 ,1, 3

2 ,
y2
i

2σ 2 ,1 − 1
τ 2 )

)
,

where 1 is the bivariate confluent hypergeometric
function (Gordy, 1998). A similar formula is available
for the posterior variance. This enables one to rapidly
calculate the posterior mean estimator under the horse-
shoe prior via a ‘plug-in’ approach with estimated val-
ues of the hyper-parameter τ . We discuss the different
approaches for handling τ in Section 5 and statistical
properties of horseshoe posterior mean estimator and
the induced decision rule in more details in Section 4.

The horseshoe prior is a member of a wider class
of global–local scale mixtures of normals that admit
following hierarchical form (Polson and Scott, 2011):

(y | θ) ∼ N
(
θ, σ 2I

); θi ∼ N
(
0, λ2

i τ
2)

,

λ2
i ∼ π

(
λ2

i

); (
τ, σ 2) ∼ π

(
τ 2, σ 2)

, i = 1, . . . , n.

These priors are collectively called global–local
shrinkage priors in Polson and Scott (2011), since they
recover signals by a local shrinkage parameter and
adapt to sparsity by a global shrinkage parameter. Ta-
ble 2 provides a list of the popular and recent global–
local shrinkage priors. A natural question is how do
we compare these priors? It is known due to several
authors (e.g., Polson and Scott, 2011, Bhadra et al.,
2016c) that the key features of a global–local shrink-
age prior is a peak at origin and heavy tails. An early
example of such a prior was proposed by Cutillo et al.
(2008) in the context of wavelet thresholding where
a heavier tail was attained by modeling θ ∼ N (0, τ 2)

and τ 2 ∼ (τ 2)−k where k > 1/2. We list a few popular
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TABLE 4
Origin and tail behaviors of different priors

Prior Origin Behavior Tails

Horseshoe − log(|θ |) |θ |−2

Horseshoe+ − log(|θ |) |θ |−1

Horseshoe-like −|θ |1−ε log(|θ |) |θ |1−ε ε ≥ 0
GDP Bounded at origin |θ |−(α+1), α ≥ 0

DLa (DL 1
n

) |θ |a−1 (|θ | 1
n
−1) exp(−b|θ |)

global–local shrinkage priors along with their behavior
near origin and the tails on Table 4 and plot the den-
sity functions on Fig. 2, and a discussion of the recent
extensions of global–local priors beyond the Gaussian
model is deferred to Section 8.

From a regularization view-point, one way to judge
a prior is by the penalty it imposes on a likelihood
(4), although in a strict Bayesian spirit, a prior should
be evaluated based on the whole posterior, as shown
by several authors including Castillo, Schmidt-Hieber
and van der Vaart (2015) and van der Pas, Szabó and
van der Vaart (2017). Although the horseshoe prior
leads to optimal performance as a shrinkage prior, the
induced penalty logπ(θ) does not admit a closed form
as the marginal prior π(θ) is not analytically tractable.
This poses a hindrance in learning via Expectation-
Maximization or other similar algorithms. The general-
ized double Pareto prior of Armagan, Clyde and Dun-
son (2011) admits a closed form solution, but it does
not have an infinite spike near zero needed for sparse
recovery. Motivated by this fact, Bhadra et al. (2017a)
recently proposed the ‘horseshoe-like’ prior by nor-
malizing the tight bounds for the horseshoe prior. Thus,
the horseshoe-like prior attains a unique status within

its class: it has a closed form marginal prior for θ , yet
with a spike at origin and heavy tails and more impor-
tantly, admits a global–local scale mixture representa-
tion. The scale mixture representation supports both a
traditional MCMC sampling for uncertainty quantifica-
tion in full Bayes inference and EM/MM or proximal
learning when computational efficiency is the primary
concern.

Since the aim of designing a sparsity prior is achiev-
ing higher spike near zero while maintaining regularly
varying tails, a useful strategy is to split the range of the
prior into disjoint intervals: [0,1) and [1,∞), and aim
for higher spike in one and heavier tail in the other. This
leads to a class of ‘horseshoe-like’ priors with more
flexibility in shape than any single shrinkage prior. We
provide the general form of horseshoe-like priors and a
key representation theorem. The proof that horseshoe-
like prior is a scale mixture with Slash normal mixing
density involves Frullani’s probabilistic identity (vide
Jeffreys and Swirles, 1972, pages 406–407), and to
save substantial additional space we refer the readers to
the proof in Section 5, Lemma 5.1 and Proposition 5.1
of Bhadra et al. (2017a).

Horseshoe-like priors: Bhadra et al. (2017a) have the
following marginal prior density for θi :

(10)
p̃H̃S

(
θi | τ 2) = 1

2πτ
log

(
1 + τ 2

θ2
i

)
,

θi ∈ R, τ > 0.

The general family of horseshoe-like priors can be con-
structed as a density split into disjoint intervals as fol-

FIG. 2. Marginal prior densities near the origin (left) and in the tail regions (right). The legends denote the horseshoe+ (HSPlus), horseshoe
(HS), Dirichlet-Laplace (DL), generalized double Pareto (GDP), Cauchy and Laplace priors.
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lows:

(11)

phs
(
θi | τ 2)

∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

θ1−ε
i

log
(

1 + τ 2

θ2
i

)
if |θi | < 1,

θ1−ε
i log

(
1 + τ 2

θ2
i

)
if |θi | ≥ 1,

ε ≥ 0, τ > 0.

Normal scale mixture: The horseshoe-like prior (10) is
a Gaussian scale mixture with a Slash Normal mixing
density, which is in turn another Gaussian scale mix-
ture of Pareto(1/2) density, yielding the following rep-
resentation theorem:

THEOREM 3 (Bhadra et al., 2017a). The horse-
shoe-like prior in (10) has the following global–local
scale mixture representation:

(12)

(θi | ti , τ ) ∼ N
(

0,
τ 2

t2
i

)
, (ti | si) ∼ N (0, si),

si ∼ Pareto
(

1

2

)
, ti ∈ R, τ ≥ 0.

4. STATISTICAL RISK PROPERTIES

4.1 Inadmissibility of MLE

We briefly discuss the Stein shrinkage phenomenon
as it provides an useful insight into the development of
global–local shrinkage estimators in high-dimensional
problems. The James–Stein (JS) estimator is θ̂ JS(y) =
{1 − (n − 2)/‖y‖2}y which is equivalent to the empir-
ical Bayes estimate θ̂Bayes = τ̂ 2/(τ̂ 2 + 1)y, under i.i.d.
N (0, τ 2) priors on θi and τ̂ being the empirical Bayes
estimate of τ from the data (Efron, 2010). Thus, the
James–Stein estimator corresponds to the Bayes risk
of nτ 2/(τ 2 + 1) + 2/(1 + τ 2). We argue below that
a global shrinkage rule such as the James–Stein esti-
mator or �2 regularization does not work in the sparse
regime as it lacks local parameters for handling spar-
sity.

The story of shrinkage estimation goes back to the
proof in Stein (1956) that the maximum likelihood es-
timators for normal data are inadmissible beyond R

2.
James and Stein (1961) proved that this estimator dom-
inates the MLE in terms of the expected total squared
error for every choice of θ , that is, it outperforms the
MLE no matter what the true θ is. To motivate the need
for developing a local shrinkage rule, consider the clas-
sic James–Stein (JS) ‘global’ shrinkage rule, θ̂ JS(y).

The JS estimator uniformly dominates the traditional
sample mean estimator, θ̂ . For all values of the true pa-
rameter θ and for n > 2, we have the classical mean
squared error (MSE) risk bound:

R(θ̂ JS, θ) := Ey|θ
∥∥θ̂ JS(y) − θ

∥∥2
< n

= Ey|θ‖y − θ‖2, ∀θ ∈ R
n, n ≥ 3.

For sparse signal problem the standard James–Stein
shrinkage rule, θ̂ JS, performs poorly. This is best seen
in the sparse setting for a r-spike parameter value
θr with r coordinates at

√
n/r which has ‖θ‖2 = n.

Johnstone and Silverman (2004) show that E‖θ̂ JS −
θ‖ ≤ n with risk 2 at the origin. This leads to a bound
(for σ 2 = 1)

n‖θ‖2

n + ‖θ‖2 ≤ R(θ̂ JS, θr) ≤ 2 + n‖θ‖2

n + ‖θ‖2 .

The lower bound is the risk of an ‘ideal’ linear es-
timator θ̂c(y) = cy. For an ‘ideal’ estimator, ‖θ‖ is
known and c is chosen to minimize the MSE, which
gives

(13) c̃(θ) = ‖θ‖2/
(
n + ‖θ‖2)

.

Theorem 5 of Donoho and Johnstone (1995) states
the following result, an oracle inequality for the
James–Stein estimator:

LEMMA 4. Consider the ‘ideal’ estimator θ̃ IS(y) =
c̃(θ)(y) in (13). For all p ≥ 2 and for all θ ∈R

p ,

R
(
θ̂ JS(y), θ r

) ≤ 2 + inf
c

R
(
θ̂c(y), θ r

)
= 2 + R

(
θ̃ IS(y), θ r

)
.

Here, θ̂ JS(y) for the r-spike parameter value has
risk at least R(θ̂ JS, θr) ≥ (n/2). This is nowhere near
optimal. As Donoho and Johnstone (1994) showed,
simpler rules such as the hard-thresholding and soft-

thresholding estimates given by θ̂
H

(y, λ) = yI {|y| ≥
λ} and θ̂

S
(y, λ) = sgn(y)(|y| − λ)+ satisfy an ora-

cle inequality. In particular, when the thresholding se-
quence is close to

√
2 logn (universal threshold), these

estimators attain the ‘oracle risk’ up to a factor of
2 log(n). Intuitively, this is not surprising as the high-
dimensional normal prior places most of its mass on
circular regions—and does not support sparse, spiky
vectors. The James–Stein estimator was not built for
sparse estimation and it is ambivalent to sparsity as-
sumptions, but the shrinkage phenomenon in lower di-
mensional regime paves the way for building shrinkage
rules for sparse regime, where one needs an additional
‘local’ shrinkage term to recover the signals.
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4.2 Near Minimax Risk

The asymptotically minimax risk rate in �2 for nearly
black objects is given by Donoho et al. (1992) to be
pn log(n/pn). Here an � bn means limn→∞ an/bn = 1.
Specifically, for any estimator δ(y), we have a lower
bound (σ 2 = 1):

(14)
sup

θ0∈�0[pn]
Eθ0

∥∥δ(Y ) − θ0
∥∥2

≥ 2pn log(n/pn)
(
1 + o(1)

)
.

The minimax rate, which is a frequentist criteria
for evaluating the convergence of point estimators to
the underlying true parameter, is a validation criteria
for posterior contraction as well. This result, due to
Ghosal, Ghosh and van der Vaart (2000), showed that
the minimax rate is the fastest that the posterior distri-
bution can contract.

A key advantage of the horseshoe estimators is
that they enjoy near-minimax rates in both an empiri-
cal Bayes and full Bayes approach, provided that the
hyper-parameters or the priors are suitably chosen–
as proved in a series of papers (van der Pas, Kleijn
and van der Vaart, 2014, van der Pas, Salomond and
Schmidt-Hieber, 2016, van der Pas, Szabó and van der
Vaart, 2016, 2017). Specifically, for σ 2 = 1, the horse-
shoe estimator achieves

(15) sup
θ∈�0[pn]

Ey|θ
∥∥θ̂HS(y) − θ

∥∥2 � pn log(n/pn),

van der Pas, Kleijn and van der Vaart (2014) showed
that the near-minimax rate can be achieved by setting
the global shrinkage parameter τ = (pn/n) log(n/pn).
In practice, τ is unknown and must either be estimated
from the data or handled via a fully Bayesian approach
by putting a suitable prior on τ . van der Pas, Szabó
and van der Vaart (2017) show that the theoretical opti-
mality properties for the popular horseshoe prior holds
true if the global shrinkage parameter τ is learned via
the maximum marginal likelihood estimator (MMLE)
or a full Bayes approach. Independently, van der Pas,
Salomond and Schmidt-Hieber (2016) and Ghosh and
Chakrabarti (2017) showed that these optimality prop-
erties are not unique features of the horseshoe prior and
they hold for a general class of global–local shrinkage
priors. While the results of van der Pas, Salomond and
Schmidt-Hieber (2016) apply to a wider class of priors,
including the horseshoe+ prior (Bhadra et al., 2017b)
and spike-and-slab Lasso (Ročková and George, 2018),
it is worth pointing out the difference between van der
Pas, Salomond and Schmidt-Hieber (2016) and Ghosh

and Chakrabarti (2017). van der Pas, Salomond and
Schmidt-Hieber (2016) prove ‘near-minimaxity’ un-
der ‘uniform regular variation’ conditions on the prior
on local shrinkage parameters for a general class of
global–local priors that allow exponential tails. On the
other hand, Ghosh and Chakrabarti (2017) attain ‘ex-
act’ minimaxity for ‘horseshoe-type’ priors under suit-
able conditions on the global parameter τ , but they al-
low only polynomial tails, leading to a narrower class.

4.3 Variable Selection: Frequentist and Bayes
Optimality

Here we compare the relative performance of horse-
shoe and Lasso for multiple testing under the two-
groups model and a 0–1 additive loss framework.
One of the main reasons behind the widespread pop-
ularity of Lasso is the in-built mechanism for per-
forming simultaneous shrinkage and selection. The
horseshoe estimator, on the other hand, is a shrinkage
rule that induces a selection rule through threshold-
ing the pseudo posterior inclusion probabilities. Datta
and Ghosh (2013) proved that for large scale testing
problems the horseshoe prior attains the oracle prop-
erty while double-exponential tails prove to be insuffi-
ciently heavy, leading to a higher misclassification rate
compared to the horseshoe prior. The main reasons be-
hind the horseshoe prior’s optimality are the posterior
density of shrinkage weights that concentrates near 0
and 1 and the adaptability of the global shrinkage pa-
rameter τ .

The posterior distribution under the horseshoe prior
leads to a natural model selection strategy under the
two-groups model. Carvalho, Polson and Scott (2010)
argued that the shrinkage coefficient 1 − κ̂i can be
viewed as a pseudo-inclusion probability P(θi �= 0 |
yi) and induces a multiple testing rule:

(16)
Reject the ith null hypothesis

H0i : θi = 0 if 1 − κ̂i >
1

2
.

Under the two-groups model (24), and a 0–1 loss, the
Bayes risk is

R =
n∑

i=1

{
(1 − π)t1i + πt2i

}
,

where t1i and t2i denote the probabilities of type 1 and
type 2 error corresponding to the ith hypothesis respec-
tively.

If we know the true proportion of sparsity and the
parameters of the non-null distribution, we can derive
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a decision rule that is impossible to outperform in the-
ory, which is called the Bayes oracle for multiple test-
ing (Bogdan et al., 2011). The oracle risk serves as
the lower bound for any multiple testing rule under the
two-groups model and thus provides an asymptotic op-
timality criteria when the number of tests go to infinity.
The framework of Bogdan et al. (2011) is:

(17)
πn → 0, un = ψ2

n → ∞, and

log(vn)/un → C ∈ (0,∞),

where vn = ψ2
n(1−πn

πn
)2. Dropping the subscript n from

parameters for notational simplicity, the Bayes risk for
the Bayes oracle under the above framework (17) is:

Roracle = nπ
(
2(

√
C) − 1

)(
1 + o(1)

)
.

A multiple testing rule is said to possess asymptotic
Bayes optimality under sparsity (ABOS) if it attains
the oracle risk as n → ∞. Bogdan et al. (2011) pro-
vided conditions for a few popular testing rules, for ex-
ample, Benjamini–Hochberg FDR controlling rule to
be ABOS. Datta and Ghosh (2013) first showed that
the horseshoe decision rule (16) is also ABOS up to
a multiplicative constant if τ is chosen suitably to re-
flect the sparsity, namely τ = O(π). The proof in Datta
and Ghosh (2013) hinges on the concentration of the
posterior distribution near 0 and 1, depending on the
trade-off between signal strength and sparsity. In nu-
merical experiments, Datta and Ghosh (2013) also con-
firmed that the horseshoe decision rule outperforms the
shrinkage rule induced by the double-exponential prior
under various levels of sparsity. Although τ is treated
as a tuning parameter that mimics π in the theoreti-
cal treatment, in practice, π is an unknown parameter.
Several authors (Datta and Ghosh, 2013, Ghosh and
Chakrabarti, 2017, Ghosh et al., 2016, van der Pas, Sz-
abó and van der Vaart, 2016) have shown that usual
estimates of τ adapts to sparsity, a condition that also
guarantees near-minimaxity in estimation. Ghosh et al.
(2016) extended the ABOS property to a wider class of
global–local shrinkage priors, with conditions on the
slowly varying tails of the local shrinkage prior. Ghosh
et al. (2016) prove a stronger result, namely, the test-
ing rule under a global–local prior attains the ABOS
property exactly, when the global shrinkage parameter
τ is of the same asymptotic order as the sparsity pro-
portion π .

4.4 Sparse Linear Regression

One of the major advantages of Lasso and other fre-
quentist penalized methods is their theoretical optimal-
ity properties in the regression setting Y ∼ Nn(Xθ ,

σ 2In) (Bühlmann and van de Geer, 2011), whereas
similar results for Bayesian methods using shrinkage
priors are relatively less common. We review extant
theoretical results for Bayesian sparse regression cov-
ering both point-mass mixture and continuous shrink-
age priors.

Point mass mixture priors: Arguably the most no-
table contribution is due to for example, Castillo,
Schmidt-Hieber and van der Vaart (2015), who showed
that the posterior under a point-mass mixture prior
contracts at the optimal rate for sparse parameter re-
covery and prediction, given a suitable ‘compatibil-
ity’ condition on the design matrix X is satisfied. Such
compatibility conditions also govern oracle properties
for Lasso-type methods, for example, ‘irrepresentabil-
ity’ and ‘mutual coherence’ conditions (Bühlmann and
van de Geer, 2011, vide Ch. 6) and (Zhao and Yu,
2006). Similarly, for recovery under point-mass mix-
ture priors, Castillo, Schmidt-Hieber and van der Vaart
(2015) define three local invertibility conditions on
the regression matrix: φ̄(s) (uniform compatibility in
sparse vectors), φ̃(s) (smallest scaled sparse singular
value), and mc(X) (mutual coherence), for recovery
with respect to �1 norm, �2 norm and �∞ norm re-
spectively. We define the irrepresentability and mutual
coherence condition below.

First, suppose the sample covariance matrix is de-
noted by �̂ = n−1XT X and the active set S = {j : θj �=
0} consists of first s0 elements of θ as in Definition 2.
One can partition the �̂ matrix as

�̂ =
[

�̂s0,s0 �̂s0,p−s0

�̂p−s0,s0 �̂p−s0,p−s0

]
,

where �̂s0,s0 is the s0 × s0 sub-matrix corresponding
to the active variables. The strong irrepresentable con-
dition for the variable selection consistency of Lasso
is:

(18)

∥∥�̂p−s0,s0�̂
−1
s0,s0

sign(θS)
∥∥∞

≤ 1 − η for positive constant vector η.

Zhao and Yu (2006) illustrated the importance of
strong irrepresentable condition on Lasso’s model se-
lection performance by showing that the probability of
selecting the true sparse model is an increasing func-
tion of the irrepresentability condition number, defined
as:

(19) η∞ = 1 − ∥∥�̂p−s0,s0�̂
−1
s0,s0

sign(θS)
∥∥∞.
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The strongest of these conditions, mutual coherence
(mc(X)), is defined as:

(20) mc(X) = max
1≤i �=j≤p

|〈X·,iX·,j 〉|
‖X·,i‖2‖X·,j‖2

.

Bühlmann and van de Geer (2011) establishes the
relationship between the different conditions (vide Fig-
ure 6.1). Clearly, these optimality results carry over to
the sparse normal means problem (‘sequence model’)
where the design matrix is identity or to regression
models with an orthogonal design matrix.

Continuous shrinkage priors: Polson and Scott
(2011) point out that the one-group priors mimic
Bayesian model averaging, where one achieves better
predictive performance by averaging over models sup-
ported by data, without the computational burden. Sev-
eral authors (Polson and Scott, 2011, 2012a, Datta and
Ghosh, 2015) have shown empirically horseshoe out-
performs Lasso (as well as Bayesian model averaging)
in terms of out-of-sample predictive sum-of-squares
error.

Armagan et al. (2013) proved posterior consistency
in p ≤ n situation for commonly used shrinkage prior
including generalized double Pareto and horseshoe-
type priors under simple sufficient conditions, for ex-
ample, boundedness of the eigenvalues of XT X/n and
the number of non-zero elements pn = o(n/ logn).
Under similar conditions, minimax posterior contrac-
tion rates for the Dirichlet–Laplace prior (Bhattacharya
et al., 2015) can be extended to the regression coeffi-
cients θ . Non-trivial extension to the high dimensional
setting is still an active area.

There are some recent developments on theoreti-
cal properties for predictive risk and variable selection
properties of the horseshoe posterior under a orthogo-
nal design matrix in p ≤ n situation. It is worth not-
ing that there are two slightly different approaches for
specifying the horseshoe prior. First, suppose a horse-
shoe prior is placed directly on the regression coeffi-
cient θ where p ≤ n under the model:

y = Xθ + ε, ε ∼ N
(
0, σ 2In

)
,

θj | λj , τ, σ ∼ N
(
0, λ2

j τ
2σ 2)

,

λj ∼ f (·), τ ∼ g(·), σ ∼ h(·).
Tang et al. (2018) proposed the half-thresholding es-

timator,

θ̂HT
i = θ̂PM

i I

(∣∣θ̂PM
i /θ̂OLS

i

∣∣ >
1

2

)
,

where θ̂PM
i and θ̂OLS

i are the posterior mean and the
OLS solution, respectively, and showed this estima-
tor achieves oracle property (variable selection consis-
tency and optimal estimation) if local shrinkage priors
have polynomial tails. On the other hand, Bhadra et al.
(2016b) specifies the prior on a reparametrized α fol-
lows (noting that α and θ are one-to-one functions for
a fixed design X):

(21)

y = Xθ + ε
reparameterize=⇒ y = Zα + ε,

where

X = UDWT , (singular value decomposition),

Z = UD, α = WT θ .
(
Rank(D) = n

)
.

Under assumption of an orthogonal design, Bhadra
et al. (2016b) investigated Stein’s unbiased risk esti-
mate for prediction, defined as SURE = ‖y − ỹ‖2 +
2σ 2 ∑n

i=1
∂ỹi

∂yi
for the horseshoe prior and proved that

it leads to improved finite sample prediction risk, over
ridge regression risk of 2nσ 2.

THEOREM 5. Prediction risk for the purely local
horseshoe regression (Bhadra et al., 2016b). Let D = I
in (21) and let the global shrinkage parameter in the
horseshoe regression be τ 2 = 1. When true αi = 0, an
upper bound of the component-wise risk of the purely
local horseshoe regression is 1.75σ 2 < 2σ 2.

As pointed out before, it remains to be settled
whether stronger theoretical results hold for the horse-
shoe or other GL priors, e.g. whether oracle properties
or minimaxity results under �2 or �1 norm carry over to
horseshoe prior in the high-dimensional set-up under
compatibility or coherence conditions on the design
matrix as used by Bühlmann and van de Geer (2011)
and Castillo, Schmidt-Hieber and van der Vaart (2015).

4.5 Uncertainty Quantification

Reliable uncertainty quantification is a key chal-
lenge in high-dimensional inference. While some au-
thors (e.g., Chatterjee and Lahiri, 2011) observed that
the Lasso-based estimates do not yield meaningful
standard errors for the parameter estimates, Castillo,
Schmidt-Hieber and van der Vaart (2015) showed poor
posterior contraction for the Bayesian Lasso. These re-
sults motivate Bayesian approaches with appropriately
heavy-tailed priors that produce automatic and reliable
uncertainty quantification.

Chatterjee and Lahiri (2011) also proposed a
bootstrap-based estimator for the limiting distribution
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of the Lasso that attains some non-uniform consis-
tency. Similarly, Liu and Yu (2013) argue that the
bootstrap could be used. But these attempts are ex-
posed to severe super-efficiency phenomena. In con-
trast, Zhang and Zhang (2014) pioneered the idea to
de-bias the Lasso for obtaining an asymptotic Gaussian
limiting distribution for single coordinates θi or other
low-dimensional parameters of interest. The de-biased
Lasso is of the form:

θ̂
d = θ̂

Lasso + 1

n
MXT (

y − Xθ̂
Lasso)

,

The matrix M is constructed from the node-wise
Lasso, as also advocated by van de Geer et al. (2014) or
using a convex program as proposed by Javanmard and
Montanari (2014). In both approaches, exploiting KKT
conditions for the node-wise Lasso or by construction,
the �∞ norm |M�̂ − I|∞ is controlling the bias and
[M�̂M]i,i is governing the variance of the de-biased
or de-sparsified Lasso.

Although one can always get confidence sets for
a fixed coefficient, arguably a more specific question
here is whether these credible sets (marginal credi-
ble intervals or credible �2 balls) have both the min-
imax radius and the correct coverage. At the heart of
these results is the impossibility theorem by Li (1989),
that says one can not construct confidence sets to be
both ‘honest’ and ‘adaptive’ uniformly for all θ0, be
it Bayesian or non-Bayesian. In particular, sparsity-
adaptive credible sets can not be ‘honest’ (Nickl and
van de Geer, 2013, Li, 1989) in the sense that it is im-
possible to construct credible sets that have both their
diameters adapt to the minimax rate for the unknown
sparsity π as well as provide nominal coverage proba-
bility over the full parameter space.

In the context of sequence models, as van der Pas,
Szabó and van der Vaart (2017) point out that since
the horseshoe prior achieves adaptive posterior con-
traction at the near-minimax rate pn log(n/pn) in (15)
for nearly-black objects, one needs additional condi-
tions, e.g., excessive bias-restriction (Belitser and Nu-
rushev, 2015) or self-similarity to ensure good cover-
age. In particular, they prove that credible balls pro-
vide uncertainty quantification up to a correct mul-
tiplicative factor, provided the sparsity proportion π

crosses the detectability threshold,
√

2 log(n/pn). We
refer the readers to Theorem 5 of van der Pas, Szabó
and van der Vaart (2017) for a precise statement con-
cerning the coverage and size of the horseshoe credible
sets. It appears that there is a trade-off between hon-
esty and adaptation, and Bayesian procedures such as

the horseshoe attain adaptation over honesty and de-
biased methods offer honesty, often by sacrificing the
optimal diameter criterion.

5. HYPER-PARAMETERS

Careful handling of the global shrinkage parame-
ter τ is critical for success of the horseshoe estimator
in a sparse regime as it captures the level of sparsity
in the data (Carvalho, Polson and Scott, 2010, Datta
and Ghosh, 2013, van der Pas, Salomond and Schmidt-
Hieber, 2016). However, in nearly black situations a
naïve estimate of τ could collapse to zero, and care
must be taken to prevent possible degeneracy in infer-
ence. There are two main approaches regarding choice
of τ : first, an empirical Bayesian approach that es-
timates τ from the data using a simple thresholding
or maximum marginal likelihood approach (MMLE)
and second, a fully Bayesian approach that specifies
a hyper-prior on τ .

5.1 Marginal Likelihood

We first take a closer look at how τ affects the
marginal likelihood under the horseshoe prior and the
maximum marginal likelihood approach of van der
Pas, Szabó and van der Vaart (2017). We can write
the marginal likelihood under the horseshoe prior after
marginalizing out θi in (7) for σ 2 = 1 from the model
as:

m(y | τ) =
n∏

i=1

(
1 + λ2

i τ
2)− 1

2 exp
{
− y2

i

2(1 + λ2
i τ

2)

}

× (
1 + λ2

i

)−1
dλi.

Tiao and Tan (1966) observe that the marginal like-
lihood is positive at τ = 0, hence the impropriety of
the prior of τ−2 at the origin translates to the poste-
rior. As a result, the maximum likelihood estimator of
τ could potentially collapse to zero in very sparse prob-
lems (Polson and Scott, 2011, Datta and Ghosh, 2013).
In van der Pas, Szabó and van der Vaart (2017), both
the empirical Bayes MMLE and the full Bayes solution
are restricted in the interval [1/n,1] to preempt this be-
havior. To get the MMLE of τ using the approach of
van der Pas, Szabó and van der Vaart (2017), we first
calculate the marginal prior of θi after integrating out
λ2

i in Equation (7):

pτ (θi) =
∫ ∞

0

1√
2π

exp
{
− θ2

i

2λ2τ 2

}
1

λτ

2

π(1 + λ2)
dλ.
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The MMLE is then obtained as the maximizer of the
marginal likelihood restricted to the interval [1/n,1]:

τ̂M = argmax
τ∈[1/n,1]

n∏
i=1

∫ ∞
−∞

1√
2π

exp
{
−(yi − θi)

2

2

}

× pτ (θi) dθi.

The lower bound of the maximization interval prevents
a degenerate solution of τ in the sparse case.

Handling τ is still an area of research: some pa-
pers (e.g., Carvalho, Polson and Scott, 2010, Datta and
Ghosh, 2013, Piironen and Vehtari, 2017b) advocate
using a full Bayes approach instead of a ‘plug-in’ maxi-
mum likelihood approach to avoid potential issues such
as τ̂ collapsing to zero. On the other hand, van der Pas,
Szabó and van der Vaart (2017) note the following:

“Piironen, Betancourt, Simpson and Vehtari close
with a warning against the marginal maximum like-
lihood estimator. They are not the first to do so. We
can only say that we have not noted problems, not in
the theory and not in the simulations. We also prefer
full Bayes, but the greater efficiency may weigh in the
other direction.” (van der Pas, Szabó and van der Vaart,
2017, vide Rejoinder p. 1274).

In practice, the MMLE approach of van der Pas, Sz-
abó and van der Vaart (2017) achieves both theoretical
optimality and good numerical performance. It is com-
puted over the interval [1/n,1], which connects to the
interpretation of τ as sparsity and prevents any compu-
tational issues.

5.2 Optimization and Cross-Validation

In a recent paper, van der Pas, Szabó and van der
Vaart (2017) have investigated the empirical Bayes and
full Bayes approach for τ , and have shown that the full
Bayes and the MMLE estimators achieve the near min-
imax rate, namely pn log(n), under similar conditions.
For the full Bayes estimator, these conditions are easily
seen to satisfied by a half-Cauchy prior truncated to the
interval [1/n,1], which also does well in numerical ex-
periments, both in ‘sparse’ and ‘less-sparse’ situations.

The MMLE estimator of van der Pas, Szabó and
van der Vaart (2017) outperforms the simple threshold-
ing estimator given by:

τ̂s(c1, c2) = max
{∑n

i=1 1{|yi | ≥ √
c1 log(n)}

c2n
,

1

n

}
.

Rather, the MMLE estimator can detect smaller non-
zero signals, even those below the threshold

√
2 log(n),

such as θi = 1 when n = 100.

A third approach could be treating τ as a tuning pa-
rameter and using a k-fold cross-validation to select τ .
As in the full Bayes and empirical Bayes approach,
the cross-validated choice of τ̂ can also converge to
zero and care should be taken to avoid such situa-
tions. Yet another approach for handling τ was pro-
posed by Piironen and Vehtari (2017a), who have in-
vestigated the choice of τ for a linear regression model
and have suggested choosing a prior for τ by studying
the prior for meff = ∑n

i=1(1 − κi), the effective num-
ber of non-zero parameters. When better prediction is
desired, Bhadra et al. (2016b) suggest selecting τ by
minimizing SURE, for which they provide an explicit
form under the model in (21).

6. COMPUTATION

Over the last few years, several different implemen-
tations of the horseshoe prior for the normal means and
regression models have been proposed. The MCMC
based implementations usually proceed via block-
updating θ , λ and τ using either a Gibbs, parameter
expansion or slice sampling strategy. The first R pack-
age to offer horseshoe prior for regression along with
Lasso, Bayesian Lasso and ridge was the monomvn
package by Gramacy and Pantaleo (2010). In an un-
published technical report, Scott (2010) proposed a pa-
rameter expansion strategy for the horseshoe prior and
studied its effect on the autocorrelation of τ . Further-
more, Scott (2010) pointed out that the solution to this
lies in marginalizing over the local shrinkage param-
eter λj ’s. On a somewhat similar route, Makalic and
Schmidt (2016) uses a inverse-gamma scale mixture
identity to construct a Gibbs sampling scheme for the
horseshoe and horseshoe+ priors for linear regression
as well as logistic and negative binomial regressions.

The horseshoe package implements the MMLE
and truncated prior approaches for handling τ pro-
posed in van der Pas, Szabó and van der Vaart (2017).
Hahn, He and Lopes (2016) proposed an elliptical slice
sampler and argue that it outperforms Gibbs strategies
for higher dimensional problems both in per-sample
speed and quality of samples (i.e. effective sam-
ple size). The state-of-the-art implementation for the
horseshoe prior in linear regression is by Bhattacharya,
Chakraborty and Mallick (2016) who used a Gaussian
sampling alternative to the naïve Cholesky decomposi-
tion to reduce the computational burden from O(p3) to
O(n2p). A very recent paper by Johndrow and Oren-
stein (2017) claims to improve this even further by im-
plementing a block update strategy but using a random
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TABLE 5
Implementations of the horseshoe and other shrinkage priors

Implementation (Package/URL) Authors

R package: monomvn Gramacy and Pantaleo (2010)
R code in paper Scott (2010)
R package: horseshoe van der Pas et al. (2016)
R package: fastHorseshoe Hahn, He and Lopes (2016)
MATLAB code Bhattacharya, Chakraborty and Mallick (2016)
GPU accelerated Gibbs sampling Terenin, Dong and Draper (2019)
bayesreg + MATLAB code in paper Makalic and Schmidt (2016)
MATLAB code Johndrow and Orenstein (2017)
R package:bayeslm Hahn, He and Lopes (2019)

walk Metropolis–Hastings algorithm on log(1/τ 2) for
block-updating τ | λ. We provide a list of all imple-
mentations known to us on Table 5.

Bayesian methods using MCMC are sequential in
nature. The methods are typically computation inten-
sive, but one is able to perform probabilistic uncer-
tainty quantification. However, sparse Bayesian meth-
ods including the horseshoe regression can be com-
puted for p ≈ 106, using parallel architecture of the
latent variable representation to be able to retain the
fully Bayesian nature via MCMC sampling. Terenin,
Dong and Draper (2019) implement a horseshoe-probit
regression using GPU that takes ≈ 2 minutes for cal-
culations involving a design matrix X of dimensions
106 ×103. If only point estimates are desired, of course
Bayesian posterior modes can be computed as fast as
penalized likelihood estimates (Bhadra et al., 2017a).

7. SIMULATION EXPERIMENTS

7.1 Effect of Correlated Predictors

As we discussed in Section 4.4, Lasso as well as
Bayesian spike-and-slab priors can recover regression
parameters under strong assumptions on the design
matrix such as ‘irrepresentability’ or ‘mutual coher-
ence’. As van der Pas, Szabó and van der Vaart (2017)
point out, such conditions are expected to be neces-
sary for optimal recovery as in the context of spike-
and-slab prior (Castillo, Schmidt-Hieber and van der
Vaart, 2015).

For this simulation study, we follow the set-up in
Zhao and Yu (2006) closely. Let S = {j : θj0 �= 0} be
the active set of predictors, and let s0 = |S|. We sim-
ulate data with n = 100, p = 60 and s0 = 7 with the
sparse coefficient vector θ∗

S = (7,5,5,4,4,3,3)T . The
error variance σ 2 was set to 0.1 to obey the asymptotic
properties of the Lasso.

We first draw the covariance matrix � from
Wishart(p, Ip) and then generate design matrix X from
N (0,�). Zhao and Yu (2006) showed that the Strong
Irrepresentability Condition (18) may not hold for such
a design matrix. We generate 100 such design matri-
ces to obtain a range of different η∞ values. In our
simulation studies the η∞ values in (19) for the 100
simulated designs were between [−0.86,0.38]. To see
how the irrepresentability condition affects probability
of selecting the correct model, 100 simulations were
conducted for each design matrix. We compare four
different methods: two penalized likelihood methods:
Lasso, SCAD (Smoothly Clipped Absolute Deviation)
(Fan and Li, 2001), and two Bayesian methods: horse-
shoe and Dirichlet–Laplace (Bhattacharya et al., 2015)
in terms of percentage of these methods selecting the
correct model. For model selection, we use the credible
intervals for the horseshoe prior and k-means cluster-
ing for the Dirichlet–Laplace prior, following the sim-
ulation study in Bhattacharya et al. (2015).

Like Zhao and Yu (2006), we expect the Lasso to
select the true model with a high probability when
η∞ > 0 and poorly when η∞ < 0, with the sharpest as-
cent around the origin. We also calculated the mutual
coherence (20) number for the same design matrices to
see the effect on these two methods. The mc(X) num-
bers were between [0.21,0.54].

Figure 3 shows the percentage of correctly selected
model as a function of the irrepresentable condition
number, η∞ and mutual coherence for the four candi-
dates: Lasso, SCAD, horseshoe and Dirichlet–Laplace.
For this simulation experiment, Lasso’s model selec-
tion performance is dependent on the irrepresentability
condition, deteriorating with decreasing η∞. Surpris-
ingly, the effect is weaker for SCAD as well as both
the horseshoe and the Dirichlet–Laplace priors.

https://cran.r-project.org/web/packages/monomvn/index.html
https://cran.r-project.org/web/packages/horseshoe/index.html
https://cran.r-project.org/web/packages/fastHorseshoe/index.html
https://github.com/antik015/Fast-Sampling-of-Gaussian-Posteriors
https://cran.r-project.org/web/packages/bayesreg/index.html
https://github.com/jamesjohndrow/horseshoe_jo
https://cran.r-project.org/web/packages/bayeslm/index.html
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FIG. 3. Effect of Strong Irrepresentability Condition η∞ (Panel A) and Mutual Coherence or maximum column correlation (Panel B) on
the percentage of selecting the correct model by Lasso and SCAD penalties as well as the horseshoe and Dirichlet–Laplace (DL) priors.

While the horseshoe almost always recovers the true
sparse θ vector irrespective of η∞, SCAD exhibits a
high percentage (mean = 0.75, range = [0.61,0.98]).
Since we have calculated mutual coherence for the
same design matrices, in this set-up it does not affect
the horseshoe prior’s variable selection, and its effect
shows no clear pattern on any other candidates, apart
from the Lasso.

7.2 Binary Response: Logistic Regression

We compare the performance of the horseshoe prior
and Lasso for logistic regression for varying degree of
dependence between the columns of a design matrix.
We generated n = 100 binary observations for the stan-
dard logistic regression. The true parameter θ∗ ∈ R

p

where p = 32, θ∗ is sparse and has 5 non-zero elements
(7,4,2,1,1), and σ 2 was set to 0.1. We set the covari-
ance matrix as �ij = ρ|i−j | and then generate design
matrix X from N (0,�) for 20 different values of ρ ∈
[0.1,0.9]. Since the original horseshoe prior was not
designed to handle the logistic likelihood, we use the
Gaussian approximation method by Piironen and Ve-
htari (2017b), where they use a second-order Taylor ex-
pansion for the log posterior distribution. Piironen and
Vehtari (2017b) also propose the regularized horseshoe
prior where one introduces an additional slab width c

to allow for shrinkage even on the extreme tails. Fol-
lowing the recommendations of Piironen and Vehtari
(2017b), we use the regularized horseshoe prior with a
hyper-prior c ∼ Inv-Gamma(2,8) that corresponds to a
Student-t(0,22) slab. We use 1000 posterior draws per
chain with the NUTS algorithm in Stan. For Lasso, we
use the glmnet package in R with a 10-folds cross-
validation.

To compare the two methods for classification and
predictive accuracy, we train the models on 80% of the
data, with the remaining as test set and average the
results over 50 random splits. We measure classifica-
tion accuracy by the number of misclassified response
yi ’s in test data. For predictive accuracy, we compare
the mean log predictive density (MLPD) proposed in
Gelman, Hwang and Vehtari (2014) as the mean of the
computed log pointwise predictive density, defined as
follows.

Let θ s ; s = 1, . . . , S be the posterior draws from
p(θ | y), and yj , j = 1, . . . ,m be the j th test data, then
MLPD is:

(22) MLPD = 1

m

m∑
j=1

log

(
1

S

S∑
s=1

p
(
yj | θ s)).

Figure 4(a) shows the average number of misclas-
sified observations by horseshoe is a little lower than
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FIG. 4. (a) Number of misclassified test data points and (b) mean log predictive density in (22) by the horseshoe and Lasso across different
values of correlation ρ, where a higher value of ρ represents higher dependence between the columns of X.

Lasso for all but two values of ρ. For the same values
of ρ, Figure 4(b) shows that the predictive accuracy un-
der the horseshoe prior is a little better than the Lasso.
We direct the readers to Piironen and Vehtari (2017b)
for a thorough comparison between the different vari-
ants of the horseshoe prior with Lasso for a few real
data set as well as a synthetic data-set with a separable
predictor.

8. FURTHER DEVELOPMENTS

8.1 Further Developments on Lasso

Since the inception of Lasso as a regularization
method for linear regression in 1996, a great deal
of extensions and applications have been proposed in
the literature. The combined effect of convex penalty
and sparsity of the final solution lead to huge com-
putational gains by using powerful convex optimiza-
tion methods on problems of massive dimensions. The
coordinate descent approach (Friedman et al., 2007,
Friedman, Hastie and Tibshirani, 2010) is one particu-
larly promising approach, that works by applying soft-
threshold to the least-squares solution obtained on par-
tial residuals, one at a time. The coordinate descent ap-
proach is flexible and easy and can be proved to con-
verge to the solution as long as the log-likelihood and
penalty are convex (Tseng, 2001), paving the way for
wide applicability of �1 penalty in generalized linear
models (GLM). The popular R package glmnet pro-
vides a nice and easy interface for applying Lasso and
elastic-net penalty for a general sparse GLM.

8.2 Further Developments on Horseshoe

As discussed in Section 3.3, the horseshoe prior be-
longs to a wider class of global–local shrinkage priors

(Polson and Scott, 2011) that are characterized by a
local shrinkage parameter for recovering large signals
and a global shrinkage parameter for adapting to over-
all sparsity. The class of global–local priors, although
differing in their specific goals and design, exhibit
some common features: heavy tails for tail-robustness
and appreciable mass near zero for sparsity, leading to
shared optimality properties.

Although the original horseshoe prior was developed
for signal recovery with sparse Gaussian means, the
idea of directly modeling the posterior inclusion prob-
abilities and the use of normal-scale mixtures to facil-
itate sparsity is very flexible and can be easily gen-
eralized to a wider class of problems. Bhadra et al.
(2016c) show that the horseshoe prior is a good can-
didate as a default prior for low-dimensional, possibly
non-linear functionals of high-dimensional parameter
and can resolve long-standing marginalization para-
doxes for such problems. Bhadra et al. (2016b) show
how to use global–local priors for prediction and pro-
vide theoretical and numerical evidence that it per-
forms better than a variety of competitors including
Lasso, ridge, PCR and sparse PLS.

Moving beyond Gaussianity, Datta and Dunson
(2016) re-discovered the Gauss hypergeometric prior
for flexible shrinkage needed for quasi-sparse count
data, with a tighter control on false discoveries.
Piironen and Vehtari (2017a) used a Gaussian approx-
imation using a second-order Taylor expansion for the
log-likelihood to apply the horseshoe prior in general-
ized linear models. Wang and Pillai (2013) proposed a
shrinkage prior based on a scale mixture of uniform for
covariance matrix estimation. Peltola et al. (2014) ap-
plied the horseshoe prior for Bayesian linear survival
regression for selecting covariates with highest predic-
tive values. A sample of the many applications of the
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TABLE 6
Applications of the horseshoe prior

Application Authors

Fadeout method for mean-field variational inference under non-centered parameterizations and
stochastic variational inference for undirected graphical model.

Ingraham and Marks (2016)

Linear regression for Causal inference and Instrumental variable models Hahn, He and Lopes (2018, 2016)
Multiclass prediction using DOLDA (Diagonally orthant Latent Dirichlet Allocation) Magnusson, Jonsson and Villani (2016)
Mendelian Randomization to detect causal effects of interest Berzuini et al. (2016)
Locally adaptive nonparametric curve fitting with shrinkage prior Markov random field (SPMRF) Faulkner and Minin (2015)
Quasi-Sparse Count Data Datta and Dunson (2016)
Variable Selection under the projection predictive framework Piironen and Vehtari (2015)
Dynamic shrinkage Process (dynamic linear model and trend filtering) Kowal, Matteson and Ruppert (2017)
Logistic regression with horseshoe prior Piironen and Vehtari (2017b), Wei (2017)
Tree ensembles with rule structured horseshoe regularization Nalenz and Villani (2018)
Bayesian compression for deep learning Louizos, Ullrich and Welling (2017)
Precision matrix estimation Li, Craig and Bhadra (2017)

horseshoe prior is given in Table 6. Given the explosive
growth of methodology in this area, we conjecture that
the horseshoe prior would be regarded as a key tool for
sparse signal recovery and as a default prior for objec-
tive Bayesian inference in many important problems.

9. DISCUSSION

Sparsity can be achieved with Lasso and horse-
shoe regularization, a member of the class of global–
local shrinkage priors. The horseshoe prior offers bet-
ter computational efficiency than the Bayesian two-
group priors, while still mimicking the inference and it
outperforms the estimator based on Laplace prior, the
Bayesian dual of Lasso. The intuitive reasons for better
performance by the horseshoe prior are its heavy tails
and probability spike at zero, which make it adaptive to
sparsity and robust to large signals. A number of com-
puting strategies have been proposed for both the Lasso
and the horseshoe prior, based on variants of coordinate
descent and MCMC respectively. We have outlined the
distinct algorithmic implementations in Section 6 and
Table 5. Since the goal of Lasso-based estimator is to
produce a point estimate, rather than samples from the
full posterior distribution of the underlying parame-
ter, Lasso-based methods are typically faster than the
horseshoe and related shrinkage priors.

The lack of speed can be overcome easily by em-
ploying a strategy based on expectation-maximization
or proximal algorithm, which is often faster than the
Lasso or other penalty based methods, for example
the EM algorithm proposed in Section 4 of Bhadra
et al. (2017a) is orders of magnitude faster than the
non-convex SCAD or MCP (Bhadra et al., 2017a, vide

Table 1). Another fruitful strategy is to employ prox-
imal algorithms similar to expectation-maximization
(Polson, Scott and Willard, 2015). These algorithms
can be specifically designed to achieve better estima-
tion and prediction error compared to Lasso (Bhadra
et al., 2017a) by using clever decompositions of the ob-
jective function and some convenient properties (e.g.,
strong convexity) of the resulting parts. As discussed
before, an active area of research is designing algo-
rithms to handle Bayesian shrinkage in big data prob-
lems, for example, using GPU-accelerated computing
(Terenin, Dong and Draper, 2019).

We have discussed the theoretical optimality prop-
erties for both Lasso and horseshoe estimators. The
optimality properties of Lasso in regression are well-
known and they depend on the ‘neighborhood stability’
or ‘irrepresentability’ condition (18) and the ‘beta-min’
condition. Similarly, adaptive posterior concentration
for horseshoe depends on ‘excessive bias restriction’,
a condition analogous to the ‘beta-min’ condition. Al-
though horseshoe regression has not been studied to
the same depth as penalized regression, it is expected
that optimality will depend on conditions that guaran-
tee against ill-posed design matrix and separability of
signal and noise parameters. For the sequence model,
the horseshoe posterior mean enjoys near-minimaxity
in estimation, and the induced decision rule achieves
asymptotic Bayes optimality for multiple testing as dis-
cussed in Section 4.

The horseshoe estimator of the sampling density
converges to the the true sampling density p(y | θ0)

at a super-efficient rate at θ0 = 0, compared to any
Bayes estimator with a bounded prior density at the
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origin (Carvalho, Polson and Scott, 2010, vide Theo-
rem 4). The rate of convergence of the Cesáro-average
Bayes risk at θ0 = 0 for horseshoe is O(n−1(logn −
b log logn)). This is called the ‘Kullback–Leibler
super-efficiency’ in true density recovery for the horse-
shoe estimator. The horseshoe priors are also good de-
fault priors for many-to-one functionals as shown in
Bhadra et al. (2016c), but a thorough study of horse-
shoe prior for default Bayes problems is still an unex-
plored area. We end the current article with a few other
possible directions for future investigations.

(i) The square-root Lasso (Belloni, Chernozhukov
and Wang, 2011) or scaled Lasso (Sun and Zhang,
2012) improves over the Lasso by making the infer-
ence ambivalent towards σ , while making the estima-
tor scale-invariant. It might be interesting to study the
effect of marginalizing the global parameters such as τ

and σ on inference from shrinkage priors. Our prelim-
inary investigation suggests that scaling the prior on τ

by σ or marginalizing out σ improves the robustness
of the shrinkage priors.

(ii) One promising area is to extend the inferen-
tial capacity for the exponential family, and whether
or not the optimality properties carry over to the non-
Gaussian cases. Some early research on this is Datta
and Dunson (2016) and Wei (2017).

(iii) Another interesting direction could include
structured sparsity under the horseshoe prior, such
as grouped variable selection and Gaussian graphical
models, as explored in Li, Craig and Bhadra (2017).

APPENDIX A: TWO-GROUPS MODEL

The two-groups model is a natural hierarchical
Bayesian model for the sparse signal-recovery prob-
lem. The two-groups solution to the signal detection
problem is as follows:

(i) Assume each θi is non-zero with some common
prior probability (1 −π), and that the nonzero θi come
from a common density N (0,ψ2).

(ii) Calculate the posterior probabilities that each yi

comes from N (0,ψ2).

The most important aspect of this model is that it au-
tomatically adjusts for multiplicity without any ad-hoc
regularization, i.e. it lets the data choose π and then
carry out the tests on the basis of the posterior inclu-
sion probabilities ωi = P(θi �= 0 | yi). Formally, in a
two-groups model θi’s are modeled as

(23) θi | π,ψ = (1 − π)δ0 + πN
(
0,ψ2)

,

where δ0 denotes a point mass at zero and the param-
eter ψ2 > 0 is the non-centrality parameter that deter-
mines the separation between the two groups. Under
these assumptions, the marginal distribution of (yi |
π,ψ) is given by:

(24) yi | π,ψ ∼ (1 − π)N (0,1) + πN
(
0,1 + ψ2)

.

From (24), we see that the two-groups model leads
to a sparse estimate, that is, it puts exact zeros in the
model.

APPENDIX B: PROOF OF EQUATION (3.5)

Assume σ 2 = 1 without loss of generality. The hi-
erarchical model for horseshoe prior is yi ∼ N (θi,1)

and θi ∼N (0, λ2
i τ

2). Using Bayes’ rule, posterior den-
sity of θi is Gaussian with mean (1 − κi)yi where
κi = 1/(1 + λ2

i τ
2). It follows from Fubini’s theorem:

E(θi | yi) =
∫ 1

0
(1 − κi)yip(κi | yi) dκi

= {
1 − E(κi | yi)

}
yi.

APPENDIX C: SHRINKAGE PROFILES

We compare the shrinkage functions for Lasso,
ridge, and the horseshoe estimator with that of the
post-lava estimator (Chernozhukov, Hansen and Liao,
2017). The shrinkage functions for these methods are
given below:

dlasso(z) = argmin
θ∈R

{
(z − θ)2 + λl|θ |}

= (|z| − λl/2
)
+ sgn(z),

(25)

dridge(z) = argmin
θ∈R

{
(z − θ)2 + λrθ

2}
= (1 + λr)

−1z,

(26)

dpost-lava(z) =
{
z |z| > λ1/2k,

(1 − k)z |z| ≤ λ1/2k,

where k = λ2/(1 + λ2),

(27)

dhorseshoe(z)

= z

(
1 − 21(1/2,1,5/2, z2/2,1 − 1/τ 2)

31(1/2,1,3/2, z2/2,1 − 1/τ 2)

)
.

(28)

Figure 1(b) shows the post-lava and the horseshoe
shrinkage function along with Lasso and ridge shrink-
age functions for z > 0. Although a theoretical analysis
is beyond the scope of the current article, we can see
the similarities between the lava and horseshoe shrink-
age. They both shrink aggressively for small values
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of z and provide robustness for large signals z, as the
shrinkage function becomes closer to the 45◦ line.
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