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Abstract
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they
have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has
attracted considerable attention in diverse areas of physics due to their extraordinary properties,
especially in optical systems based on solid-state materials, such as coupled gain–loss
waveguides and microcavities. Considering the desired refractive index can be effectively
manipulated through atomic coherence, it is important to realize such non-Hermitian optical
potentials and further investigate their distinct properties in atomic systems. In this paper, we
review the recent theoretical and experimental progress of non-Hermitian optics with coherently
prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with
different schemes have extensively demonstrated the special optical properties of non-Hermitian
optical systems with atomic coherence.
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(Some figures may appear in colour only in the online journal)

1. Introduction

It was discovered with fundamental importance that a wide
class of complex non-Hermitian Hamiltonians obeying parity-
time (PT) symmetry can possess entirely real eigenvalues,
which was generally viewed as an exclusive property in
Hermitian systems [1]. This counter-intuitive claim has ren-
dered a great success in the theoretical development of non-
Hermitian Hamiltonians related to PT symmetry [1–3]. One
intriguing property of such PT-symmetric systems is an
abrupt phase transition at a certain critical threshold. Once a
parameter controlling the degree of non-Hermiticity goes
beyond the PT-symmetry breaking threshold, namely, the
phase transition point, the corresponding spectrum ceases to
be real and starts to become complex [4–6]. The notion of PT

symmetry was experimentally demonstrated only after
recognizing that the refractive index in optics can provide an
effective solution to implement the required potential for PT-
symmetric concepts [4, 5, 7–9]. What facilitates this possi-
bility is the mathematical similarity between the quantum–

mechanical Schrödinger equation and the paraxial optical
wave equation, in which the spatially symmetric (even) real
and anti-symmetric (odd) imaginary parts of the complex PT-
symmetric potential exactly correspond to the real (disper-
sion) and imaginary (gain/absorption) parts of the refractive
index profiles in optics, respectively. Consequently, a neces-
sary, but not sufficient, condition for realizing PT symmetry
in optics is that the real part and its imaginary counterpart of
the refractive index n must be even and odd functions of the
spatial position (n(x)=n*(−x)), respectively [3, 5]. The odd
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imaginary index indicates the spatially extended gain and
loss, which are responsible for introducing the non-Hermiti-
city into the optical systems.

In recent years, significant progresses regarding PT
symmetry physics have been theoretically and experimentally
achieved in various optical settings by balancing the simul-
taneous gain and loss [8–30]. The related studies have
revealed many striking properties including non-Hermiticity-
modulated Bloch oscillation [8, 9], unidirectional invisibility
[15–18], perfect absorbers [21, 22], non-Hermitian solitons
[23], topological insulators [24], enhancement of the sensi-
tivity of optical detectors [27], and building lasers [28, 29] in
PT-symmetric optical configurations. Most of these achieve-
ments, particularly in experiment, are finished in solid-state
materials.

Inspired by the recent academic achievements of PT-
symmetric optics and considering that coherent multi-level
atomic gases are quite efficient in synthesizing desired
refractive index profiles [31, 32], the constructions of PT-
symmetric optical potentials have been predicted based on
different atomic configurations [33–37]. Due to their natural
attributes such as the laser-induced atomic coherence
(introducing modifiable absorption, gain, and dispersion/
nonlinearity), PT symmetry established in atomic media can
have certain advantages over solid-state materials. On one
hand, PT symmetry in atomic media can possess real-time
observations, reconfigurable capability and effective con-
trollability with multiple tunable parameters, and the
underlying physical mechanisms can be investigated under
various parametric conditions. On the other hand, by taking
advantage of the interactions between non-Hermatian optical

potential and coherence-induced nonlinearity, many exotic
effects have been theoretically studied, covering defect
modes [38], solitons in nonlinear lattices [39] and uni-
directional light transmission [40], Particularly, the devel-
opment of electromagnetically induced transparency (EIT)
[41] technique has made such traveling effects of light
through non-Hermitian nonlinear optical systems be rela-
tively easy to be observed and controlled in multi-level
atomic systems [42].

In this article, we present a comprehensive review on the
recent achievements of non-Hermitian optics in coherently-
prepared atomic gases. In theory, we summarize the different
physical schemes for realizing non-Hermitian optical systems
and the predicted interesting optical properties in corresp-
onding atomic settings. In experiment, we discuss two
exciting progresses including the gain–loss modulated PT-
symmetric optical lattices and anti-PT-symmetric potential
(where n(x)=−n*(−x)) generated in two optically-induced
waveguides coupled via moving atoms. Particularly, in order
to clearly explain how to experimentally construct PT-sym-
metric lattices, we also introduce the spatially periodical
coherent optical effect in atomic settings. Finally, we end the
review with a short summary.

2. Non-Hermitian optical potentials in multi-level
atomic configurations

By utilizing the coherent nature of multi-level atomic media,
various schemes based on different physical mechanisms
(with different energy-level structures) such as Raman reso-
nances and EIT technique are adopted to construct desired
non-Hermitian optical potentials. In the following, we will
present the features of non-Hermitian optical potentials gen-
erated in different atomic settings.

2.1. PT symmetry in a system of three-level atoms

The first scheme for creating PT symmetry based on atomic
coherence is suggested in a three-level medium with a mixture
of 85Rb and 87Rb, as shown in figure 1(a). The isotopes of
rubidium atoms are coherently driven into a Λ-type config-
uration by one probe field Ep (frequency ωp, electric-field
intensity Ep) together with a controlling field Es (ωs, Es) (s=1,
2 represents the respective level in 85Rb and 87Rb). The Λ-type
system consists of two ground-state levels (|a, s〉 and |g, s〉) and
one excited level |e, s〉. The weak Ep and strong Es (propa-
gating along the same z direction) are introduced to connect the
transitions |g, s〉↔ |e, s〉 and |a, s〉↔ |e, s〉, respectively. The
controlling field is far from the resonance and the condition
Δs?Ωs is satisfied, where Ωs is the half Rabi frequency of Es

and Δs =ωe,s −ωa,s −ωs is one-photon detuning. By prop-
erly setting the two-photon detuning defined as δs =ωe,s −ωg,s

−(ωp −ωs), the respective absorption and gain can be
obtained on the probe field in 85Rb and 87Rb. The desired
gain–loss profile is generated by modulating the spatial dis-
tribution of the one-photon detuning with a Stark field
introduced.

Figure 1. (a) Two Λ-type three-level excitation schemes for
achieving a PT-symmetric potential. The initially populated states
(i.e. |g, 1〉 and |a, 2〉) are indicated by the black dots. (b) Proposed
experimental arrangement. Reprinted figure with permission from
[34], Copyright (2013) by the American Physical Society.
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Next, the proper parameters are chosen to balance the
gain and loss coefficients to satisfy the requirement condition
n(x)=n*(−x) for PT symmetry. For achieving the desired
spatial distribution of the index experienced by Ep, a strong
far-detuned Stark field is incident into the medium to
manipulate the one-photon detuning Δs(x) by controlling the
Stark shifts of energy levels, considering that the controlling
field affects both the one- and two-photon detunings. During
the calculation, the difference of Stark shifts between the two
ground sublevels is assumed to have no effect on the results.
Then the two-photon detuning δs is immune to the influence
from the Stark field, while the one-photon detuning is mod-
ified as a aD = D - -( ) ( ) ( ) ( )x E x 4 .s s e s g s S, ,

2 As a result,
the Stark field can effectively modulate the spatial arrange-
ment of Δs without affecting the two-photon detuning.

The susceptibility χ of the medium can be obtained
through the density-matrix equations (describing the interac-
tion between the incident lasers and the medium) under the
rotating-wave approximation and the paraxial approximation
[43]. Considering the relations c c c c= ¢ +  = +i n, 1
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original index of the medium. The first step is to choose
proper Ωs(x) and Δs(x) by defining a ‘seed’ shape of the
susceptibility χsd(x, εj, η) and then computing the analytical
solutions for Ωs

sd(x, εj, η) and Δs
sd(x, εj, η), where εj and η are

the permittivity and the ratio between species densities,
respectively. Based on the obtained χp, one can construct the
spatial distribution of the n(x) with the positive and negative
imaginary parts representing respective loss and gain. The
second step is to minimize the error by the controlling para-
meters εj and η. Due to the strong Doppler broadening effect
[41], the far-off-resonant co-propagating controlling beams
with the same frequency are adopted to establish the non-
Hermitian structure. In the theoretical computation, the
authors take the assumption that the controlling fields are two
parallel plane waves with the same wavevector (x-component)
of ka =2π/λa, (i.e. the Stark field wavevector). As a result,
the finally obtained seed solution is χsd=ε0+ ε1cosξ+
iε2sinξ, where ξ=kax. The final step is to solve the
expressions of the Rabi frequency Ωs and the Stark-field
amplitude Ea from equation χp(Ωs

sd, Δs
sd). As a result, the

desired index satisfying n(x)=n*(−x) is established in the
mixture of 85Rb and 87Rb. By changing the mutual con-
centration of the species, the described procedure can be
‘structurally stable’.

By properly setting the sign of the two-photon detuning,
which can modify the absorption/dispersion features of the
probe field, the system can be PT-symmetric or non-PT-
symmetric one. The propagation of an input Gaussian beam
can be distinctly different for the two cases. One clear dif-
ference is that the propagation distance is longer in the PT-
symmetric system, as shown in figure 2. The rapid con-
sumption of the probe field in the non-PT-symmetric case is
that its energy is exhausted in the dissipative medium.

Further, by adding more controlling parameters, the system
can also be potentially employed to demonstrate the nonlinear
PT-symmetric properties [39, 44], as well as the combined
linear and nonlinear ones [45].

2.2. PT symmetry in four-level coherent atomic media

Then, the creation of PT-symmetry was considered in a four-
level atomic system by Sheng et al as shown in figure 3(a)
[46]. In this proposal, a signal field Es (frequency ωs, electric-
field intensity Es), a coupling field Ec (ωc, Ec), and a pump field
Ep (ωp, Ep) excite transitions |1〉↔|3〉, |2〉↔|3〉, |1〉↔|4〉,
respectively, which forms an N-type four-level configuration.
To achieve the PT-symmetry requirement, two coupled
waveguide structures are established under the EIT condition.
One of the waveguides provides Raman gain [47] while the
other one provides loss/absorption by setting proper para-
metric conditions for the coupling and pump beams. All the
beams propagate along the z direction, as shown in figure 3(b).

The susceptibility of the atomic medium can be obtained
through c r= m

e
,

N

E

2
31

s

13

0
where the density-matrix element ρ31

describes the transition property between |1〉↔|3〉 driven by
the signal field. The real and imaginary refractive indices for
the signal field can be obtained through nR≈χ′/2 and
nI≈χ″/2 respectively. First, the authors realize a standard
PT-symmetric potential with a pair of waveguides coupled.
They arrange two coupling fields (with an identical Gaussian
intensity profile) from two independent laser sources side by
side (along the transverse x direction), and the susceptibility
experienced by the signal field Es is modulated as a function
of the intensities of the two coupling fields. By choosing
different coupling frequency (Δc =ωs −ω32) for each

Figure 2. Propagation patterns of the probe light in the gases with
(a) and without (b) PT-symmetric refractive indices. Reprinted figure
with permission from [34], Copyright (2013) by the American
Physical Society.

Figure 3. (a) The four-level N-type atomic configuration for
obtaining PT-symmetric refractive index. (b) The spatial arrange-
ment of the involved three fields inside the medium. z represents the
propagation direction of lights, and x is transverse direction.
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waveguide, as a consequence, the required gain can be gen-
erated inside in one waveguide while loss/absorption in the
other one. Based on the two coupled optical waveguides with
respective gain and loss, PT-symmetric potentials can be
promisingly realized.

To this end, it is very important to identify the depen-
dency of the modulated susceptibility on the frequency
detuning of the coupling field on account that the different
coupling frequency detunings can lead to different dispersion
and gain/loss properties in the two channels. Figures 4(a) and
(b) show the evolutions of real and imaginary parts of χ,
respectively, by varying the coupling detuning at different
coupling intensities. The imaginary component χ″ is
approximately 0 (no gain and no absorption) when the cou-
pling detuning is about −2.939MHz, as shown in figure 4(b),
and the absorption (positive susceptibility) and gain (negative
susceptibility) can be induced on the left point and right point
near this zero location, respectively. Consequently, with the
other parameters being the same, the difference between the
coupling frequency detuning in the two channels can result in
the susceptibilities with different signs for the two coupled
waveguides. Also, the dependency of χ on the coupling
intensity is shown in figures 4(c) and (d), where the real parts
at two selected coupling frequency overlap quite well, while
the imaginary parts are not matched perfectly. This implies
that one can also construct a perfect PT-symmetry potential
by choosing certain Rabi frequency for the coupling fields.

Based on the above analysis, one can achieve the desired
spatial modulation on the refractive index. According to the
evolution curves in figures 4(c) and (d), one can obtain the
corresponding index landscapes as figure 5, in which the real
and imaginary parts behave as even and odd functions of the
transverse coordinate x. It is worth mentioning that the
absolute values of the real and imaginary parts can increase
equally with the atomic population, which is set as 1012 cm−3

in the current work. To demonstrating the different behaviors
for the lights traveling through the waveguide system below
and above the PT-symmetric threshold, the ratio nR/nI should
be effectively controlled [4].

To change the ratio between the real and imaginary indices,
the coupling frequency detunings at the two channels are tuned to
modify the real and imaginary indices simultaneously as deter-
mined by the Kramers–Kronig relations [48]. When detunings
Δc is set away from Δc/2π=−2.992MHz, the system can be
operated in the cases of below (figure 5(a)), above (figure 5(b))
threshold and a non-PT-symmetric one (figure 5(c)), corresp-
onding to the ratio of nR/nI=38, 15 and 410, respectively.

The corresponding field modes (eigenvectors) in the
coupled waveguide system shown in figures 5(a)–(c) are
depicted as figures 5(d)–(f), respectively. The modes for the
case below threshold (figure 5(a)) should be symmetric and
the corresponding eigenvalues should be real. However, due
to the imperfect symmetry of the real and imaginary indices
of the system, the two modes are slightly asymmetric, as
shown in figure 5(d), and the eigenvalues have a tiny ima-
ginary part. Such asymmetric modes are not caused by the PT
symmetry breaking. When the PT symmetric condition is
broken, i.e., the case above the threshold, as shown in
figure 5(b), the modes become severely asymmetric and each
mode is confined in its corresponding waveguide, i.e., gain or
absorption waveguide, respectively, as shown in figure 5(e).
Meanwhile, the eigenvalues become complex and the
corresponding imaginary part gives the gain or absorption for

Figure 4. Dependence curves of the real (a) and imaginary (b) parts
of the susceptibility χ on the frequency detuning Δc at different Rabi
frequency Ωc. The other parameters are taken as Δs=Δp=0,
Ωs/2π=0.1 MHz, Ωp/2π=6 MHz, Γ31/2π=Γ32/2π=Γ41/2π
=Γ42/2π=3 MHz, Γ21=Γ43=0. Dependence curves of the real
part χ′ (c) and imaginary part χ″ (d) on the coupling intensity. The
adopted frequency detuning isΔc/2π=−2.939 MHz (−3.045MHz)
for the gain (loss) waveguides. Figure 5. Constructed refractive indices as a function of x for cases

of (a) below, (b) above the symmetry-breaking threshold, and
(c) non-PT-symmetric one. The coupling detunings are Δc/2π=
− 2.97 MHz and −3.01 MHz for the respective gain and loss
channels in (a); Δc/2π=−2.94 (gain channel) and −3.04 MHz
(loss channel) in (b); and Δc/2π=−2.992 MHz in (c). Other
parameters are the identical as in figure 4 except that the atomic
density is set as ∼1013 cm−3. Pictures (d)–(f) and (g)–(i) give the
field modes and propagation features of the injected signal beam
corresponding to the situations in (a)–(c), respectively.
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each mode. For the passive case (figure 5(c)), the modes are
perfectly symmetric, as shown in figure 5(f).

The propagation characteristics of the signal beam
through the index structures in figures 5(a)–(c) are given as
figures 5(g)–(i), respectively. For the case of below threshold,
as shown in figure 5(g), the injected beam oscillates peri-
odically between the two coupled waveguides, similarly to
the beam dynamics in a passive coupler. By gradually
increasing the gain/loss contrast to operate the system above
the symmetry breaking threshold, the light dynamics (an
exponentially growing mode) is shown as figure 5(h). Finally,
figure 5(i) depicts the light dynamics in a pair of coupled
passive waveguides (without gain or loss). One can see that
the periods of oscillation are different in the PT-symmetric
and passive potentials.

To theoretically design an exact PT-symmetric optical
potential, perfectly symmetric real index and anti-symmetric
imaginary index are required to demonstrate corresponding
optical properties. However, in practical experiment, such an
ideal PT-symmetry system is not easy to be obtained. Here, we
would like to consider how imperfect symmetric and anti-
symmetric parts of the index will affect the desired PT-sym-
metric properties. The deviation from a perfect symmetry/anti-
symmetric function is defined as Δ(x)=n(x)−n*(−x).

Based on the above analysis, the aim is to make the
deviation Δ(x) be close to 0 by properly choosing parameters.
Figure 6 shows the deviation from the symmetric/anti-sym-
metric functions for the real index and imaginary index shown
in figures 5(a) and (b), respectively. From figure 6, one can
see that the degrees of deviation for the real and imaginary
parts are several percents. Therefore, it should not have sig-
nificant impact in practical experiments.

Next, additional laser beams are introduced to form a
periodical optical potential, as shown in figure 7(a). Here, the
case for positive coupling detuning is considered, so that the
real part of the refractive index becomes smaller as the cou-
pling intensity increases. The ratio nR/nI in figure 7(a) is
approximately 6.9, which is below PT-symmetric threshold.
In figure 7(a), the coupling detuning is simply moved far
away from the zero point, which can unfortunately increase
the asymmetry of the real index.

Different pump intensities are adopted in the gain and
loss channels to minimize the asymmetry Δ(x) in the lattice
potential. The corresponding parameters for generating the
gain (absorption) in figure 7(a) are Δc/2π=2.882 (3.102)
MHz and Ωp/2π=6MHz, while others are the same as that
in figure 5. Figure 7(b) shows the case above threshold and
the ratio nR/nI is about 0.5, which can be manipulated by
properly setting different coupling detunings and the pump
intensities.

An other way to generate this peoridical PT-symmetric
optical potentials is employing contiously-vaying coupling
and pump intensities in order to construct the desired real and
imaginary parts as shown in figure 8, where each waveguide
is filled with half gain and half absorption and the ratio nR/nI
is about 1.5, which can be modified by the coupling and pump
intensities to be below and above the threshold.

In addition, with the intensities of the coupling and pump
fields modulated in a two-dimention (2D) manner (along both
the x and y directions), one can obtain an extended 2D PT-
symmetric lattice potential shown in figure 9 by utilizing of
the parametric regimes in figure 8.

In the meanwhile, Wu and his colleagues theoretically
constructed the periodic PT symmetry with atomic lattices
driven in a four-level cold atomic cloud [36]. The four-level

Figure 6. The asymmetric function for the real (solid curves) and
imaginary (dashed curves) parts of the refractive index calculated
using realistic parameters for (a) below and (b) above threshold
cases, as shown in figures 5(a) and (b), respectively.

Figure 7. The distribution of the refractive index for periodic PT-
symmetric potential with both the intensity and detuning of the
coupling field spatially modified. (a) and (b) are the cases below and
above PT symmetric threshold, respectively.

Figure 8. The real (nR) and imaginary (nI) parts of the refractive
index for PT-symmetric lattice by spatially modulating the coupling-
and pump-field intensities.

5

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 072001 Topical Review



system shown in figure 10 is consisted of two ground
states |1〉 and |2〉 and two excited states |3〉 and |4〉. A probe
field Ep couples the transition |1〉↔|4〉, and two strong pump
fields Ec and Ed connect |1〉↔|3〉 and |2↔|4〉, respectively.
Given that the density of cold atoms possesses a Gaussian
distribution in each channel of the lattice for trapping the 1D
periodical atomic distribution, this PT-symmetric lattice is
constructed by modulating intensity or frequency detuning of
one driving field in a sinusoidal manner (inducing a spatially
periodic Stark shift of |2〉) [49].

In their work, the authors study the real (χp′) and ima-
ginary (χp″) components of the susceptibility for the probe
field (shown in figure 11) in two neighboring channels of the

optical lattice for modulating the atomic population. The 2D
pictures at the upper two panels in figure 11 clearly show that
χp″ and χp′ can be modified in the z direction. One can find
that, from the 1D plots at the two lower panels, χp″ and χp′

obey odd and even profiles, respectively, with respected to the
lattice (numbered i) center z=zi when the detuning is set as
Δp=3.284MHz. This directly advocates that the PT-sym-
metric optical potential is realized in terms of χp. The alter-
nation of χp″> 0 in one half period and χp″< 0 in another
half period indicate a simultaneously gain and loss. Accord-
ingly, by choosing proper coupling parameters, the induced
gain and loss can be balanced for desired PT symmetry.

Based on the above analyzation, the researchers theore-
tically proposed two different schemes for realizing periodical
PT-symmetric optical potential in four-level atomic config-
urations. These four-level configurations can be potentially
applied to construct PT-symmetry potential in experiment by
making some modifications according to the practical exper-
imental requirements.

2.3. Anti-PT symmetry with atoms

With the notion of PT symmetry extensively investigated in
various optical settings, its counterpart anti-PT symmetry,
which obeys n(x)=−n*(−x), is also demonstrated in optics.
Anti-PT symmetry requiring no optical gain can display many
fascinating features, such as spontaneous phase transition of the
scattering matrix, a flat total transmission band, a continuous
lasing spectrum [50] and unidirectional reflectionlessness [33],
which may open up new opportunities for manipulating light
and form a complementary probe in non-Hermitian optics.
Recently, anti-PT symmetry with a pair of coupled components
was firstly implemented in a multi-level atomic configuration
depending on the multi-parameter tunable property and
coherent nature [51]. Considering that controlling the coupling
strength between two optical modes in an atomic system is
much more difficult than in a solid-state system, Xiao’s group

Figure 9. Distribution of the refractive index for a 2D PT-symmetric
optical lattice. Reprinted figure with permission from [46],
Copyright (2013) by the American Physical Society.

Figure 10. (a) Diagram of a four-level N-type energy-level structure
in a cold atomic cloud, which involves a probe field Ep (Rabi
frequency Ωp, electric-field intensity Ep), a strong coupling field Ec

(Ωc, Ec), and a driving field Ed(Ωd, Ed). (b) The population of an
atomic ensemble is modulated as a periodical distribution by an 1D
trapping optical lattice. The atomic population in each trapping
channel is assumed to exhibit a Gaussian distribution. Reproduced
with permission from [36].

Figure 11. (a) Evolutions of the imaginary and (b) real components
of probe susceptibility χp versus the position (z− zi)/a and probe-
field detuning Δp. (c) Imaginary and (d) real parts of χp versus
(z− zi)/a with detuning being Δp=3.284 MHz. The other
parameters are Ωc0=3.0 MHz and δΩc=0.3 MHz. Reproduced
with permission from [36].
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uses the thermal motion of warm atoms to construct the cou-
pling between the two optical modes.

The experiment is operated in an 87Rb atomic vapor cell
with the temperature set at about 40°C, as shown in
figure 12(a). The inner surface of the cell is coated with
coherence-preserving paraffin [52], which allows atoms to
undergo thousands of wall collisions with little demolition of
their internal quantum state. The atomic vapor cell is housed
within a four-layer covering shield to screen out the ambient
magnetic field. Inside the covering layer, a solenoid is used to
generate a uniform magnetic field, which can induce a Zee-
man shift δB on the two-photon detuning. One laser beam
from an external cavity diode laser (ECDL) is spatially split
into four beams with half-wave plates and polarization beam
splitters. The probe and controlling lights (with orthogonally
linear polarizations) are first recombined and converted to
circular polarization by quarter-wave plates (QWP), and then
directed into two optical channels (named as Ch1 and Ch2)
with a distance of 1 cm between them.

The energy-level configuration of Ch1 and Ch2 are
shown in figure 12(b), where two right-circularly polarized
strong-control fields (W( )

1
1 and W( )

1
2 ) couple the transition

|1〉↔|3〉, and two left-circularly polarized weak-probe fields
(W( )

2
1 and W( )

2
2 ) connect the transition |1〉↔|3〉. For the steady-

state condition, the population mainly locates in level |2〉. The
frequency of the two probe fields are shifted with the same
one-photon detuning |Δ0| (but with opposite signs) by using

acoustic optical modulators. Here Δ0 is the frequencies dif-
ference between the probe and controlling fields. In each
channel, the co-propagating probe and controlling fields
establish a Λ-type EIT window and create a ground-state
coherence with a long lifetime of ∼100 ms. Such an
arrangement can effectively couple the two spin waves by the
random and irreversible atomic motion, which distributes
atomic coherence through the optically thin medium and is
the foundation for generating the non-Hermiticity for the
effective Hamiltonian.

Theoretically, based on the density-matrix formalism
[53] for describing the atom–light interaction, the time-
dependent non-Hermitian Hamiltonian Heff is obtained to
describe the dynamics of the two collective spin-wave exci-
tations. The resonance condition of the coupled system is met
when Det[Heff]=0, whose solutions coincide with the two
eigenvalues of H, defining the appearance of the two Eigen-
EIT supermodes (in terms of δB). Here δB is a parameter that
is swept to extract the eigenvalues of H. Since H satisfies

= -ˆ ˆPTH H (i.e., =[ ˆ ˆ ]H PT, 0) in contrast to =ˆ ˆPTH H
(i.e., =[ ˆ ˆ ]H PT, 0) for the conventional PT symmetry, H in
the current system is considered as an anti-PT -symmetric
Hamiltonian. In addition, this anti-PT-symmetric H leads to a
phase transition exhibited on the two Eigen-EIT spectral
branches. Specifically, in the symmetry-unbroken regime
(|Δ0|<Γc), the two Eigen-EIT resonances coincide at the
center δB=0, but with different linewidths. The breaking
point occurs at |Δ0|=Γc, where the two supermodes per-
fectly overlap. When |Δ0|>Γc, the driven system runs under
the symmetry-broken regime, and the resonances bifurcate
and exhibit level anti-crossing, resembling a passively cou-
pled system.

The spectral profiles of the two eigen-EIT spectra were
experimentally obtained by slowly scanning the magnetic field
with time and measuring the weak-probe transmission. To
experimentally extract the linewidth and line center of the
eigen-EIT spectra from the measured beating patterns, one
must identify the beating note with the maximal amplitude and
choose its peak location as the time reference origin. Starting
from this reference point, the remaining discrete time points are
then sequentially identified at distances of integral multiples of
the beating period. Figures 13(a) and (b) show the observed
probe transmission depending on both δB (lower x-axis) and
time (upper x-axis), and the corresponding beating pattern, to
be specific, two sets of representative probe transmission
spectra with Δ0=m15 Hz (figures 13(a1) and (a2)) under the
symmetry-unbroken regime and Δ0=m60 Hz (figures 13(b1)
and (b2)) under the symmetry-broken regime. From the beating
spectra, one can extract a set of EIT spectra, as denoted by the
red/blue dots. The spectra are fitted (red/blue lines) by a
weighted sum of the two Eigen-EIT spectra to give the line-
width and line center values as predicted.

At the same time, the evolution of the anti-PT super-
modes below and above the exceptional point is carefully
examined by varying |Δ0|. The centers and corresponding
linewidths of the extract lines are a function of |2Δ0|, as
shown in figure 13. Remarkably, the current system has a

Figure 12. (a) Schematic for realizing anti-PT symmetry via rapid
atomic-coherence transport in a thermal 87Rb vapor cell. Two
spatially separated optical channels (Ch1 and Ch2) each contains
collinearly propagating weak probe and strong controlling fields
operating under the condition of EIT. The output probe transmission
spectra are measured by sweeping a homogeneous magnetic field
generated by a solenoid inside a covering layer, which can shield the
ambient magnetic field. PD: photodiode detector, PBS: polarization
beam splitter, QWP: quarter-wave plate. (b) The three-level Λ-type
EIT configurations in two channels. All the probe and controlling
fields with orthogonal circular polarizations come from an external
cavity diode laser. Reprinted by permission from Macmillan
Publishers Ltd: [Nature Physics] [51], Copyright (2016).
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high resolution of the phase-transition threshold at the Hz
level, which may open up new avenues for precisely mea-
suring the optical phase or the magnetic field.

The promising experiment based on a coherently-prepared
multi-level atomic configuration offers a versatile environment
for investigating the properties of anti-PT symmetry in optical
field. The photon-photon interaction can be modified from
linear to nonlinear by choosing proper experimental para-
meters. Moreover, given the tight connection of the current
system to magnetometers, slow light and quantum memory
[54], new directions may be opened up for precision mea-
surements, quantum optics and quantum information science.

Besides the study on anti-PT symmetry with two coupled
components, Wu et al theoretically predicted the non-Hermi-
tian degeneracies and unidirectional reflectionlessness in a 1D
Bragg grating, where the periodical probe susceptibility χp

satisfies *c c- = - -( ) ( )z zp p with loss and no gain [33, 55]. In
this work, cold Rb atoms are captured as a 1D lattice by a
periodical dipole traps formed by the counter-propagating red-
detuned lasers with the same wavelength of λ0, as shown in
figure 14(a). The periodicity of the trapped atomic lattice can
be calculated as l q=a 0.5 cos ,0 0 where θ0 is the angle
between laser beams forming the trapping lattice and the z

direction. The atomic population in each channel of the
induced lattice has a Gaussian distribution. The atoms are
coherently driven to connect an N-type configuration shown in
figure 14(b) by a weak probe Ep (frequency ωp, Rabi frequency
Ωp), a coupling field Ec (ωc, Ωc) and a strong dressing field Ed

(ωd, Ωd). The experimental scheme is shown as figure 14(c).
The probe (σ+ polarization) and coupling (σ− polarization)
fields propagate along the same z direction. The dressing field
is split into three components, and two of them (both σ+

polarization) counter-propagate in a very small angular offset
±θd (with respect to the z direction) to spatially modify the
light shift δdz(z) corresponding to transition |2〉↔|4〉, while the
third component (linearly polarization in the y direction) pro-
pagates along the x direction to provide a light shift.

According to the rotating-wave approximations, density
matrix element ρ31 can be obtained under the approximation
of ρ11≈1. The probe susceptibility χp(z) satisfying

*c c= - -( ) ( )z zp p can be achieved by spatially arranging the
critical parameters of atom–light interacting system [35, 56].
Considering that the atomic density distribution is an even
function of the lattice position, one can set the frequency shift
δd0 as an odd one by taking the dressing field with three
components (with σ+ polarization). So, the probe suscept-
ibility can be modulated in every channel of the atomic
lattices.

The modulated real and imaginary parts of susceptibility
χpj versus the lattice position z and probe frequency detuning
are given as figures 15(a) and (b), respectively. The frequency
detunings in the current configuration are defined as Δp =
ωp −ω31, Δc =ωc −ω32 and Δd =ωd −ω42. And the
evolution of χpj at different Ωd is calculated in figures 15(c)
and (d). As can be seen from figure 15, the refractive index
induced in the periodical atomic lattices satisfy the condition

Figure 13. (a1), (a2) Transmission spectra of the probe light from
Ch1 and Ch2 (with respective probe detuning m15 Hz) in the regime
of symmetry-unbroken case, respectively. (b1), (b2) Transmission
spectra of the probe light with detuning set as m60 Hz in Ch1 and
Ch2, respectively, in the regime of symmetry-broken case. The bold,
dotted curves in (a1), (a2), (b1), and (b2) are the EIT spectra
extracted at time points, and the beating notes marked in dark blue
are for the phase reference. The insets are calculated curves from the
theory. (c1), (c2) The real part Re[ω] (c1) and imaginary part Im[ω]
(c2) of the two eigen frequencies of the coupled-EIT supermodes
versus the probe detuning |Δ0|. In (c1), the blue squares represent
the EIT peak separation between two uncoupled channels, and the
red dots are for the coupled case. In (c2), the green dots and blue
squares are the extracted linewidths of the two eigen-EIT modes,
respectively. Reprinted by permission from Macmillan Publishers
Ltd: [Nature Physics] [51], Copyright (2016).

Figure 14. (a) The distribution of a cold 87Rb atomic ensemble is
modulated by a 1D periodical lattice and the trapped atoms in each
channel possess a Gaussian density distribution (b) energy-level
structure of an N-type atomic configuration. (c) Possible geometry
for the suggested scheme. Reprinted figure with permission from
[33], Copyright (2014) by the American Physical Society.
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of anti-symmetry *c c+ = - -( ) ( )z zpj pj when Δp=0.
However, the anti-symmetry is gradually moved up with the
increasing of |Δp|, as seen from figures 15(a) and (b). Based
on the non-Hermitian degeneracies, this work also predicts
the unidirectional reflectionless propagation of laser. The
unidirectional vanishing probe reflectivity can be easily con-
trolled by setting proper dressing-field parameters.

3. Spatially periodical coherent optical effect

Up to now, the experimental observations of (anti-)PT sym-
metry are mainly completed in a pair of coupled optical
configurations such as waveguides and microcavities [57].
Considering that even a single PT unit can possess fantastic
optical features, the non-Hermitian optical lattices are exten-
sively studied to show more new behaviors and properties
[5, 8, 9, 14–16, 23, 33, 39, 45, 58–66]. The theoretical studies
show that a non-Hermitian lattice can lead to novel properties
including optical solitons [23, 39], non-Hermitian Bloch
oscillations [8, 9], unidirectional invisibility [15], PT-sym-
metric Talbot effect [63], double refraction, and nonreciprocal
characteristics [5], which may provide new thoughts for
exploring non-Hermitian synthetic materials. Fortunately, the
first experimental study on periodic PT symmetry with gain
and loss are achieved based on spatially periodical coherent
effect in a multi-level atomic configuration. In the following,
we will give a summary to show the recent progresses on
periodical optical potential based on atomic coherence.

3.1. Dipole soliton in laser-induced atomic gratings

Firstly, the charged dipole-mode solitons are studied in high-
order nonlinear processes generated in coherent multi-level
atoms with electromagnetically induced grating (EIG) struc-
tures, where the Kerr nonlinearities are dramatically
strengthened [67]. The key point for experimentally obtaining
such dipole-mode solitons is to induce a high-contrast peri-
odical refractive index inside the atomic medium. As a

consequence, two-component dipole-mode solitons are
effectively produced in two coexisting four-wave mixing
(FWM) processes. Such observed spatial solitons can lead to
the wave-guiding effect with the assistance of the non-
linearity-induced focusing effect.

In that system, two EIGs are established under the geo-
metrical configuration shown as figure 16(a) and energy-level
system as figure 16(b). Two optical fields E1 and E1′ (fre-
quency ω1, Rabi frequency Ω1 and Ω1′, respectively) propagate
in the same direction with an angle of θ1≈0.3° between them
to connect the transition |0〉↔|1〉. A weak probe field E3 (ω1,
Ω3) propagates along the opposite direction of E1. Two addi-
tional coupling fields E2 and E2′ (ω2, Ω2 and Ω2′, respectively)
link the transition |1〉↔|2〉. As a result, the beams E1 and E1′

(E2 and E2′) can induce the grating EIG1 (EIG2), which is
schematically given as figure 16(c) (figure 16(d)).

Such periodical refractive index can establish two pho-
tonic band gaps (PBGs) [68, 69], which can lead to the pro-
hibition of the probe transmission and therefore, the
reflections with high efficiency. Thus, the dipole-like FWM
EF1(EF2) can be viewed as the diffraction patterns of the
incident probe laser E3 from the horizontally-aligned EIG1
(vertically-aligned EIG2). Furthermore, the generated FWM
signals and probe field can form a vector soliton.

Experimentally, the dressing fields (Ω1′, Ω1 orΩ1′ together
with Ω1) can impose influence on the generated FWM EF2 in
such cascaded three-level system, and different dressing set-
tings are shown in figure 17(a). The transverse nonlinear phase
shift f2 generated by EIG2 can result in two dipole patterns.

For the points Δ1 with weak dispersion effect, EF2 beam
is only modulated linearly. For the points |Δ1|=16.5 GHz

Figure 15. (a), (b) Im(χpj) and Re(χpj) depending on the lattice
position (z− zj)/a and probe detuning Δp/2π. (c), (d) Im(χpj) and
Re(χpj) versus (z− zj)/a at Δp=0 with c/2π set as 16 MHz
(circles), 22 MHz (triangles), 28 MHz (squares). Reprinted figure
with permission from [33], Copyright (2014) by the American
Physical Society.

Figure 16. (a) Beam arrangement for the experiment. (b) The energy-
level structure for generating FWM EF1 and EF2. (c) EF1 with TM
polarization and (d) EF2 with TE polarization are manipulated
through the induced EIG1 and EIG2, respectively. Reprinted figure
with permission from [67], Copyright (2011) by the American
Physical Society.
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(where exists the maximum |n2|), the balanced interplay between
the diffraction and the cross-Kerr nonlinearity results in the
vertically-oriented dipole soliton [67]. In the range from
Δ1=−30GHz to Δ1=−10 GHz, where appears the self-
focusing effect, the energy in the two elements of the EF2 dipole
mode is effectively exchanged. For the points at resonance or
large frequency detuning, the EF2 soliton evolves into an com-
mon one without node. Under the situation of enhanced FWM
due to dressing, the coexisted Ω1′ and Ω1 can exert a greater
effect on EF2 than the single (with only Ω1′ or Ω1 on) and no
dressing (with bothΩ1′ and Ω1 off) cases. Further, with the angle
θ2 between the beams E2 and E2′ decreasing, as shown in
figure 17(b), the diffracted fringes decrease from eight (at
θ2=0.5°) to two (at θ2=0.2°), since the spatial periodicity of
EIG2 increases with the decreasing θ2. This work experimentally
generates the spatial diffraction pattern based on high-order
nonlinearity and opens the way for spatially modulating the
propagation of lights in atomic settings and potentially studying
the periodic non-Hermitian potential in nonlinear optics.

3.2. Discrete diffraction patterns in an optically-induced lattice

With dipole-mode solitons investigated in dressed nonlinear
processes, the discrete diffraction based on EIT technique
(linear response) is also experimentally demonstrated, which
provides an effective solution to generate a waveguide array.
The experimental setup is shown in figure 18(a). A probe field
(λp=780 nm, ωp, Rabi frequency Ωp) and a pair of coupling
fields (λc=776 nm, ωc, Ωc) connect a three-level 87Rb
atomic system as shown in figure 18(b), which consists of
5S1/2(|1〉), 5P3/2(|2〉) and 5D5/2(|3〉). A pair of elliptical-
shaped coupling beams from a Ti: Sapphire ring laser co-
propagate with a small angle of 2θ≈0.4° and drive the
transition |2〉↔|3〉. As a result, a standing wave associated
with the PBG is established along the transverse x direction.
The periodicity of the standing-wave field is calculated as
d=λ/(2sinθ)≈112 μm. The Gaussian probe laser counter-
propagating with the two coupling lasers can cover the optical

lattice (induced by the standing-wave coupling field) inside
the medium. The probe field propagating through the lattice is
imaged onto a charge coupled device (CCD) camera.

By employing the beam propagation method [5], the
diffractions of a week Gaussian probe laser passing through
the medium without and with an optical lattice are theoreti-
cally given as figures 19(a) and (b), respectively. Obviously,
in the presence of the standing-wave coupling field (optical
lattice), the incident probe laser can be discretized.

The experimentally observed output images of the probe
field are displayed in figures 19(c) and (d) with the optically-
induced lattice turned on and off, respectively. As shown in
figure 19(c), the output probe field remains a Gaussian profile,
which agrees well with the theoretical picture in figure 19(a)
with only normal diffraction. With the standing-wave field on,
as shown in figure 19(d), the output of the probe beam
appears as stripe patterns due to the discrete diffraction. The
adjacent bright channels in figure 19(d) have the same space

Figure 17. (a1)−(a4) Images of dipole-soliton EF2 at different Δ1 in
the cascaded three-level system with Ω2′=Ω2=20 GHz, Ω1′=
55 GHz and Ω1=45 GHz (a1), Ω1′=55 GHz and Ω1=0 (a2),
Ω1′=0 and Ω1=45 GHz (a3), and Ω1′=0 and Ω1=0 (a4).
(b) Bragg reflections of EF2 beam at different θ2. The parameters
are Δ1=−15 GHz, Δ2=−4.5 GHz, Ω1′=Ω1=Ω2′=Ω2=
20 GHz, and Ω3=0.5 GHz. Reprinted figure with permission from
[67], Copyright (2011) by the American Physical Society.

Figure 18. (a) Experimental setup for generating discrete diffraction
in an atomic vapor cell. PBS: polarization beam splitter; BS: beam
splitter; DL: external cavity diode laser; SAS: saturation absorption
spectroscopy; EIT: the setup for monitoring the two-photon EIT
window; λ/2: half-wave plate; CCD: charge coupled device camera.
(b) The relevant three-level rubidium atomic system. Reproduced
with permission from [70].

Figure 19. (a) Theoretically standard diffraction of a Gaussian beam
without the coupling lattice. (b) Evolved discrete diffraction of a
Gaussian light through an optical lattice by theoretical simulations.
(c) Experimentally output Gaussian probe beam without the
coupling optical lattice. (d) Observed output image when the probe
field propagates through the cell with the coupling lattice turned on.
Reproduced with permission from [70].
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as that in the induced lattice. Such experimental results pro-
vide a solid foundation in studying PT-symmetric lattice in
atomic medium and the travel of light through optical lattices.

3.3. Electromagnetically induced Talbot effect

Inspired by the scheme for generating diffraction patterns
with the assistance of an optically-induced lattice [70], the
electromagnetically induced Talbot effect (EITE) [71, 72] has
been experimentally demonstrated in a three-level atomic
system. This provides the possibility to realize PT-symmetric
Talbot effect [63] by adding an additional pump field to
construct the PT-symmetry potential [73].

The experimental setup for EITE and corresponding
energy-level structure are shown in figure 20. The probe field
E1 (wavelength λ1=794.97 nm, frequency ω1, horizontal
polarization, and Rabi frequency Ω1) from a single-mode
tunable ECDL1 co-propagates with two coupling beams to
drive a Λ-type 85Rb atomic configuration (see figure 20(a)).
The three-level structure consists of two hyperfine ground
states, i.e. 5S1/2 F=2 (state |1〉) and F=3 (state |2〉), and
one excited state 5P1/2 (state |3〉). Two elliptically shaped
coupling beams, E2 and E2′ (λ2=794.97 nm, ω2, vertical
polarization, and Ω2 and Ω2′, respectively) from ECDL2 with
the same angle of θ=0.2° regarding the z axis intersect at the
center of the cell, and induce an optical lattice (with a peri-
odicity of d=λ2/2sinθ≈ 114 μm) along the transverse x.

By carefully choosing the experimental parameters for the
probe and coupling fields, the diffraction pattern of the probe
beam from the induced EIG [74] can be clearly observed at the
output plane of the cell. The diffraction pattern is monitored by
a CCD camera equipped with an imaging lens, which is similar
to the setup used in section 3.2. In addition, by coupling two
beams E1′ and E2″ into a second auxiliary cell2 to establish a
same Λ-type EIT spectrum for reference, one can calibrate the
frequencies of the fields E1 and E2 [41].

The propagation characteristic feature of the EIG-dif-
fracted probe field out of the cell is obtained by the CCD

camera equipped with an imaging lens. By moving the lens
(placed on a precision translation stage) together with the
CCD camera (fixed on another translation stage) to maintain
the distance between them (along the z direction) to be twice
the lens’s focal length, one can obtain the imaging results at
different observing planes with high accuracy. The observed
images at different distances along the z direction are shown
in figures 21(a1)–(a9). The experimental results show that the
diffracted image shifts by a half period (compared to that at
z=0) when the observation plane is set to be z≈ 15 mm,
which is close to the theoretically predicted Talbot length of
ZT=16.3 mm [72]. Additionally, figure 21(b) shows the
experimentally measured dependence of the Talbot length on
angle 2θ, which determines the periodicity of the coupling
standing wave as well as the optical lattice. For a given angle
2θ, two measured values exist (maximum and minimum
values), showing a range in which the recurrence effect seems
to be optimal. The experimental observations match well with
the theoretical solid curve, which advocates that the periodi-
city of the lattice indeed determines the Talbot length.

Figure 22 demonstrated the observed fractional Talbot
effect. The periodicity of the discretized probe beam at
z=ZT/2 and z=3ZT/2 is doubled while the intensity is
dramatically weakened. The period-doubled images occur at
nearly z=8 mm (≈ZT/2) and z=22 mm (≈3ZT/2), which
coincide with the theoretical calculation.

Although this EITE is implemented in an atomic vapor
cell, this effect will work effectively in cold atoms, con-
sidering that EIG has already been experimentally demon-
strated in cold sodium atoms under EIT conditions [75].
When extended to cold atomic samples, the angle 2θ can be
increased to reduce the EIG period d since the Doppler effect

Figure 20. Experimental setup and the relevant three-level Λ-type
atomic system (in the dashed box). An imaging lens is applied to
observing the probe beam via a CCD camera with. Beams E1′ and
E2″are injected into the auxiliary cell2 to generate an EIT window in
the frequency domain to calibrate the frequencies of the lasers.
ECDL: external cavity diode laser, HW: half-wave plate, HR: high-
reflectivity mirror, PBS: polarization beam splitter, PD: photodiode
detector. Reprinted figure with permission from [71], Copyright
(2018) by the American Physical Society.

Figure 21. (a) The diffracted probe images at various z distances.
(b) Dependence of the Talbot length on the angle θ. The squares
represent the experimentally measured Talbot length while the solid
curve represents the theoretical ones. Reprinted figure with permission
from [71], Copyright (2018) by the American Physical Society.

Figure 22. Observed fractional Talbot effect (double periodicity) at
z=8 mm (≈ZT/2) and z=22 mm (≈3ZT/2). The experimentally
observed integer Talbot length is ZT≈15 mm. Reprinted figure with
permission from [71], Copyright (2018) by the American Physical
Society.
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can be negligible. Therefore, this well established system is
an ideal platform to investigate interesting nonlinear/quantum
beam dynamics predicted in artificial periodic optical systems
beyond the EITE due to its controllable linear absorption/
dispersion and nonlinear properties.

4. PT symmetry in a reconfigurable gain–loss optical
array

The recently proposed notion of periodical non-Hermitian
potential in optics has spawned intriguing prospects. The
known experimental work on a periodic PT-symmetric optical
potential is finished in an lossy optical waveguide array
formed in the solid-state environment, which involves loss
and no-loss channels only, i.e. without gain [61]. Namely, PT
symmetry has not yet been observed in a spatially extended
periodic gain–loss optical lattice, as discussed in [76]. Such
observation is delayed due to various limitations of solid-state
structures including the restrictions in generating gain in
certain materials and the connection between the real and
imaginary indices as imposed by Kramers–Kronig relations
[48]. Recently, the PT symmetry in gain–loss modulated
optical lattice has been achieved in a four-level atomic con-
figuration [73].

The experiment setup and corresponding four-level
N-type atomic configuration are shown in figures 23(a) and
(b), respectively. The signal field Es and the standing-wave
coupling and pump fields, i.e. two intersecting strong cou-
pling lasers Ec and Ec′ and two intersecting strong pump
lasers EP and EP′, propagate in the same z direction to drive
the N-type four-level configuration in a 85Rb atomic

ensemble, which is the same as energy level used in the
theoretical proposal in [46]. By carefully setting the exper-
imental conditions, the essential active Raman gain for rea-
lizing exact PT-symmetric optical potential can be effectively
generated on the weak field Es [32, 47]. In experiment, two
elliptical-Gaussian coupling beams (shaped by an anamorphic
prism pair) Ec and Ec′ from the same ECDL (of wavelength
λc=794.97 nm) are injected into the cell in the same manner
as the EITE experiment to construct an optical lattice. The
space between two neighboring bright fringes of coupling
lattices is dc=λc/2sinθ≈114 μm. Similarly, two pump
beams Ep and Ep′ (λp=780.24 nm), partially overlapped
with Ec and Ec′, respectively, are incident into the medium to
induce a pump-field optical lattice. The 7 cm long vapor cell
is wrapped with μ-metal sheets to shield the magnetic field.
The signal beam Es (λs=794.97 nm) with a Gaussian
intensity profile passes through the two partially overlapped
optically-induced lattices (with an adjustable spatial-shift
distance Δd between them), as shown in figure 23(c).

By spatially modulating the intensity of the coupling
field, the real (dispersion) and imaginary parts of the refrac-
tive index for the signal field are spatially modulated as a
function of the transverse coordinate x under the EIT scheme
in the Λ-type subsystem |1〉→|3〉→|2〉 [70]. Next, the ima-
ginary part can alternately appear either above (absorption/
loss) or below (gain) zero along x with the intensity-modu-
lated pump field turned on. With the Gaussian signal beam
shown in figure 24(a) traveling through the coupling lattice,
one can obtain obvious discrete diffraction patterns that depict
the spatial modification on the refractive index experienced

Figure 23. (a) Experimental setup. The output gain and loss and the
relative phase difference are detected by a CCD camera. Two pump
lasers Ep′ and Ep come from the same external cavity diode laser
(ECDL), while the two coupling beams Ec′ and Ec from another
ECDL. The reference beam from the same ECDL as Es is introduced
by a 50/50 beam splitter. (b) The energy-level structure driven in
85Rb atomic vapor. (c) The spatial beam geometry of the three fields
inside the medium. x and z represent the transverse and longitudinal
directions of light propagation, respectively. With the distance Δd

between the two lattices optimized, we can observe the gain and loss
alternately along the x direction for the signal beam. Reprinted figure
with permission from [73], Copyright (2016) by the American
Physical Society.

Figure 24. The measured periodical gain and loss regions on the
probe-field image (a) The Gaussian image and intensity profile of the
signal field Es without absorption or gain. (b) Beam Es after passing
through the coupling lattice with the pump field turned off.
(c) Generated simultaneous gain and loss profiles when the signal
beam propagates through the coupling and pump lattices. (d)
Evolution of the gain and loss profiles by discretely changing the
pump detuning Δp. The squares representing the experimental
observations can match well with the theoretical solid curve. The
measured gain and loss profiles at Δp=30 MHz (d1) and 10 MHz
(d2). Reprinted figure with permission from [73], Copyright (2016)
by the American Physical Society.
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by the signal field in the EIT-medium. Such stripe patterns
can be observed when the frequency detuning is within a
window of 50MHz around the two-photon resonance, i.e.
Δs−Δc=0 [70, 71]. Figure 24(b) shows the diffraction
pattern, which is obtained by carefully adjusting dc at
Δs−Δc=10MHz and Δs=−100MHz.

In principle, the EIT modulated signal field Es can be
amplified with the presence of pump field. Consequently, the
pump-field lattice can introduce alternative gain and loss
(with a high and controllable contrast) on the output signal
beam with different coupling- and pumping-field intensities
arranged, which can be achieved by carefully modifying the
space Δd between the two partially overlapped lattices (see
figure 23(c)). As one can see in figure 24(c), two neighboring
channels on the spatially extended periodic probe beam
appear gain and loss. The dotted curve in figure 24 represents
the original intensity of the incident signal beam before
entering the medium. The gain/loss ratio between two adja-
cent channels in figure 24(c) is approximately 1, i.e. a case
with equalized gain and loss, which is necessary for con-
structing an exact PT symmetry in coupled waveguide sys-
tems [5]. Figure 24(d) depicts the dependence of the gain/loss
ratio on the pump detuning Δp. The theoretical prediction
(solid curve) based on numerical calculation agrees well with
the experimental observations (squares). Figures 24(d1) and
(d2) show the generated gain and loss profiles with the
detuning tuned to Δp=30MHz and 10MHz, respectively.

The manifestation of the constructed PT-symmetric sys-
tem below or above the symmetry-breaking threshold can be
to look at the relative phase difference ν between two adjacent
gain and loss channels, which represents the internal phase
difference of the eigenvectors [13] and can reflect the attri-
butes of the system. Figure 25 shows the measurement of the
explicit phase difference generated in two adjacent channels
with respective gain and loss. The phase difference between
two maximums of the adjacent interference fringes is 2π, i.e.
the distance of the double-sided arrow between the two solid
lines, as shown in figure 25(a). The distance mentioned here
is along the y direction. The space (marked by a pair of one-
way arrows) between one of the two solid lines and the dotted
line represents a phase difference of π. With the gain and loss
array generated, the reference interference can modulate the
well arranged gain and loss regions as a net-like lattice
composed of ‘bright’ and ‘dark’ squares (corresponding to
gain and loss channels, respectively), which can be easily
understood through the schematic diagram shown in
figure 25(b). The mentioned relative phase difference (pro-
portionally to the relative distance along the y direction)
depends on the gain/loss ratio.

Figure 26(a) exhibits the experimentally measured phase
difference at various gain/loss ratios. The case with no phase
difference, i.e. ν=0, is detected with the gain being zero.
When the gain is introduced, the phase difference ν (ν≠ 0) is
observed as the ratio γG/γL increases from 0.4 to 0.8, which
remains below the phase transition point. For the situation
above the breaking threshold, as one can see in figure 26(a),
the measured ν stays unchanged as γG/γL continuously
increases from 1 to 1.2. The dependence between the
observed ν and ratio γG/γL can be reasonably understood by
the theoretical pictures as shown in figure 26(b), which
demonstrates that term γL/2κ can effectively affect the phase
difference for a given γG/γL. Considering that the coupling
coefficient κ between two selected waveguides is directly
determined by nR, term γL/2κ indicates the evolution of
nI/nR, which can mathematically determine the transition
point of the non-Hermitian optical system [46].

According to the experimental conditions for a certain
gain/loss ratio in figure 26(a), one can calculate the value of
γL/2κ, which determines the state (below or above the
threshold) of the gain- and loss-modulated array obeying PT
symmetry by solving the coupling equations [73]. In

Figure 25. (a) The interference pattern of Es and the reference beam
(injected along the y direction). They are from the same ECDL. The
phase difference between the two solid lines is 2π. The phase
difference between the black dotted line (located at the middle point
between the two solid lines) and one of the two solid lines is π.
(b) The interference pattern between the intensity-modulated ES field
(after diffraction) and the reference beam, so that the square lattice is
formed. Reprinted figure with permission from [73], Copyright
(2016) by the American Physical Society.

Figure 26. (a) Experimental evolutions of the phase difference ν at
different γG/γL. (b) Theoretically calculated ν in a PT-symmetric
lattice with ten waveguides coupled. The propagation distance is set
as z=10. Reprinted figure with permission from [73], Copyright
(2016) by the American Physical Society.
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principle, even if the gain/loss ratio is not perfectly balanced
in a coupled-waveguide lattice system, i.e., γG/γL≠ 1, the
characteristic eigenvalue pattern is simply shift regarding the
zero line for a balanced case [77, 78]. Consequently, such a
quasi-PT-symmetric system with an unbalanced gain and loss
can also demonstrate the dynamical behaviors of its exact PT-
symmetry counterparts.

This work, for the first time, experimentally demon-
strated a spatially extended PT-symmetric optical lattice with
controllable gain/loss ratio in a coherently-prepared atomic
ensemble. The PT-symmetry required refractive index mod-
ulation and the anti-symmetric gain/loss profiles are realized
by employing the EIT and active Raman gain in the four-level
N-type atomic configuration. Due to the large available
parametric space, the refractive index and gain/loss profiles
modulated by the two sets of optical lattices can be easily
tuned/controlled and reconfigured in real time. The currently
established variable optical waveguide array with alternate
gain/loss channels would be very hard to realize in solid-state
systems. Consequently, such a constructed PT-symmetric
optical lattice can provide a promising platform to investigate
diverse effects involving non-Hermitian Hamiltonians,
including periodical anti-PT-symmetric potential and non-
Hermitian-modulated Talbot effect [63], and PT-symmetric
photonic Floquet topological insulators.

5. Summary

Non-Hermitian optics has attracted the attention of research-
ers from various fields since the exploitation of the mathe-
matical isomorphism existing between the quantum
Schrödinger and the paraxial wave equations. The unique
propagating features of light in non-Hermitian optical settings
have undoubtedly inspired extensive theoretical and exper-
imental studies. After a decade of efforts, the principles of
optical systems for demonstrating non-Hermitian Hamiltonian
are fairly well understood. Particularly, the extension of the
related phenomenon to atomic field, considering the reconfi-
gurability in real time and tunability with a large set of
parameters, provides a new platform to study non-Hermitian
Hamiltonians under different parametric regimes, which not
only enriches the perspectives in theory but also paves the
routes for a variety of potential applications. The light-
induced atomic coherence can result in easily controllable
absorption, dispersion, Raman gain, and nonlinearity, which
can be applied to experimentally construct real-time tunable
coupled waveguides and realize the interplays between non-
Hermitian optical potential and Kerr nonlinearity. Actually, a
lot of fascinating non-Hermitian optical properties [38–40]
have been theoretically proposed with coupled waveguides
and nonlinearity involved. From this point of view, we will
not be surprised that new observations on non-Hermitian
optical phenomenon will continue to appear in coherently-
prepared atomic media.
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