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Breaking Lorentz reciprocity was believed to be a prerequisite for nonreciprocal transmissions of light
fields, so the possibility of nonreciprocity by linear optical systems was mostly ignored. We put forward a
structure of three mutually coupled microcavities or optical fiber rings to realize optical nonreciprocity.
Although its couplings with the fields from two different input ports are constantly equal, such system
transmits them nonreciprocally either under the saturation of an optical gain in one of the cavities or with
the asymmetric couplings of the circulating fields in different cavities. The structure made up of optical
fiber rings can perform nonreciprocal transmissions as a time-independent linear system without breaking
Lorentz reciprocity. Optical isolation for inputs simultaneously from two different ports and even
approximate optical isolator operations are implementable with the structure.
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The availability of the approaches other than those based
on the Faraday effect [1–3] is essential to realizing integrated
circuits of optical nonreciprocity. “Optical nonreciprocity”
here refers to the phenomena that the transmission of a field
with a certain frequency or bandwidth from port Pa to port
Pb in a circuit is asymmetric with its reversed transmission
from Pb to Pa, being different from the ideal “optical
isolator” [4] that completely blocks the field from one of the
ports, irrespective of its modal contents and polarizations.
Synthetic magneto-optical effects, such as those of spatio-
temporal modulations [5–12] and optomechanics [13–15],
were primarily considered as the replacement for the Faraday
effect. Numerous other methods [16–32] were also found for
the purpose.
To propagate asymmetrically, light fields should be

under an effect depending on their propagation directions.
For example, the momenta of photons should satisfy a
phase-matching condition for interband transitions [5] or in
parametric processes [26]. Or else, nonreciprocal trans-
missions can occur by unequal couplings of a system to the
inputs from two directions. Such examples include the ones
making use of the optical gain saturated disparately under
the fields unequally coupled from two waveguides
[24,25,32], as well as certain atomic systems nonidentically
coupled to photons from different directions [27,28]. One
question is whether there exists a nonreciprocal structure
that is only made of isotropic media and can couple to the
inputs from two different sides identically. It is also a
widely held notion that the relation derived from the
Lorentz reciprocity theorem [4,33] must be broken to
achieve optical nonreciprocity. Whether this assumed
restriction in designing nonreciprocal devices can be

removed for certain systems, which well perform nonre-
ciprocal transmissions, is fundamentally meaningful to
understanding optical nonreciprocity.
In this Letter, we provide the definite answers to these

questions, using the mutually coupled circulating structure
(MCCS) in Fig. 1(a). Developed from the widely studied
PT-symmetric optical systems [32,34–40] by adding one
more passive component (cavity 2), such system can be
constructed with three mutually coupled microresonators
[41,42] or optical fiber rings. Its relevant features are
illustrated in what follows.
Inside each cavity of the MCCS, a circulating field mode

couples to the reversely circulating ones in the neighboring
cavities. Any external drive thus creates three pairs of
circulating modes [one clockwise (CL) and one counter-
clockwise (CCL) in each cavity] through the mutual
couplings of the topological structure. In the frame rotating
with the cavities’ resonance frequency, the dynamical
equations for the coupled cavity modes read

_aþ1 ¼ −γ1aþ1 − iJ12a−2 − iJ13a−3 þ
ffiffiffiffiffiffiffi
2κe

p
Si;f; ð1aÞ

_a−1 ¼ −γ1a−1 − iJ12a
þ
2 − iJ13a

þ
3 ; ð1bÞ

_aþ2 ¼ −γ2aþ1 − iJ12a−1 − iJ23a−3 ; ð1cÞ

_a−2 ¼ −γ2a−2 − iJ12a
þ
1 − iJ23a

þ
3 ; ð1dÞ

_aþ3 ¼ ½gðtÞ − γ3�aþ3 − iJ13a−1 − iJ23a−2 þ
ffiffiffiffiffiffiffi
2κe

p
Si;b; ð1eÞ

_a−3 ¼ ½gðtÞ − γ3�a−3 − iJ13a
þ
1 − iJ23a

þ
2 ; ð1fÞ
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where “þð−Þ” represents a CL (CCL) mode. Besides the
dissipation rate γk (k ¼ 1, 2 and 3) and amplification rate
gðtÞ, the main parameters are the coupling coefficients Jij
(i, j ¼ 1, 2, and 3 for i ≠ j) determined by the distances
between two microcavities or by the designs of fiber
couplers. The MCCS enjoys richer dynamical properties
than the typical PT-symmetric systems—as in Fig. 1(b1)
the system will undergo the transition from instability to

stability and vice versa, as the couplings of cavity 2 to
the two other cavities change. This distinguishes the
structure from another topology of linking the components
into a string [43,44].
Unlike many other systems for implementing nonrecip-

rocal transmissions, the couplings of the MCCS to the
forward input Si;f and the backward input Si;b are always
the same with a fixed coupling constant κe. Relative to a
forward drive at port P1, we mainly consider a correspond-
ing backward drive with the identical intensity from P4,
while the backward one can be applied on P3 too. Under a
constant optical gain, the backward input from P3 also
gives the same output amplitude So;b ¼

ffiffiffiffiffiffiffi
2κe

p
a−1 at P1 as

the forward one So;f ¼
ffiffiffiffiffiffiffi
2κe

p
aþ3 at P3. Such relations of the

outputs, partially due to Lorentz reciprocity, are displayed
in Figs. 1(c1)–(c3).
A convenient tool to describe the relevant properties is

the scattering matrix, which takes the symmetric form

Ŝ ¼

0
BBBBBBBBBBB@

S1þ1þ S1þ1− S1þ2þ S1þ2− S1þ3þ S1þ3−
S1þ1− S1−1− S1−2þ S1−2− S1−3þ S1−3−
S1þ2þ S1−2þ S2þ2þ S2þ2− S2þ3þ S2þ3−
S1þ2− S1−2− S2þ2− S2−2− S2−3þ S2−3−
S1þ3þ S1−3þ S2þ3þ S2−3þ S3þ3þ S3þ3−
S1þ3− S1−3− S2þ3− S2−3− S3þ3− S3−3−

1
CCCCCCCCCCCA

; ð2Þ

from Eqs. (1a)–(1f). Rewriting a single-frequency input asffiffiffiffiffiffiffi
2κe

p
Si;fðbÞ ¼ EfðbÞeiΔt, where Δ is the detuning with

respect to cavities’ resonance frequency, one sees that
the transmission reciprocity between P1 and P4 manifests
as S1þ3−E ¼ S1−3þE, when two inputs with Ef ¼ Eb ¼ E act
separately on the system with a constant g. It is the
consequence of a dynamical symmetry of the structure,
which exhibits as S1þ3− ¼ S1−3þ, the equality of the scattering
matrix element (16) with (25) and (61) with (52) (the first
and second number represent the matrix element’s row and
column, respectively), in addition to the overall symmetry
ðijÞ ¼ ðjiÞ of the scattering matrix.
The transmission reciprocity can be easily lost under gain

saturation. The actual gain rate gðtÞ ¼ g0=½1þ jaþ3 ðtÞ þ
a−3 ðtÞj2=I0� becomes stable with time according to the
saturation intensity I0 of the given gain medium, as in
Figs. 2(a) and 2(b). With the different gain rates gðtÞ in
Eqs. (1a)–(1f) for the inputs Si;f and Si;b that are turned on
separately, the nonreciprocal transmissions between portsP1

and P4 exist. The trick to implement such nonreciprocity is
that, through the mutual couplings, the identical Si;f and Si;b
induce unequal jaþ3;fðtÞ þ a−3;fðtÞj2 and jaþ3;bðtÞ þ a−3;bðtÞj2
in the active component. The transmission nonreciprocity
is measured by the log ratio 10log10ðja−3;fj2=ja−1;bj2Þ,
because the concerned forward and backward outputs are

(a)

(b1)

(b2)

(c1) (c2) (c3)

FIG. 1. Mutually coupled circulating structure and its dynami-
cal properties. (a) The schematic of the structure, which can be
constructed either with coupled microcavities or with coupled
optical fiber rings. Cavity 3 (the yellow one) carries gain medium.
The concerned nonreciprocity refers to the realized phenomena
that the identical Si;f and Si;b induce the unequal So;f and So;b.
(b1) An example of the maximum real part of the eigenvalues of
such a coupled system neglecting gain saturation, which varies
with the couplings J12 and J23, respectively. The transitions
between instability (vertical axis value > 0) and stability (vertical
axis value < 0) occur at the marked points. (b2) The reduction to
the dynamics of a PT-symmetric system when cavity 2 is
detached, having the real parts of the eigenmodes to merge at
an exceptional point. (c1) An example of the evolved field modes
contributing to the outputs, due to a drive at P1. (c2) The
corresponding field modes due to the same drive at P4. (c3) The
corresponding field modes by placing the drive at P3. The plot for
þð−Þ mode in (c1) and (c2) swaps the position with that for the
−ðþÞ mode in (c3).
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proportional to a−3 and a−1 , respectively. Its relations with the
systemparameters are displayed in Figs. 2(c) and 2(d), where
η ¼ J23=J12 is an important factor adjusted by the couplings
of cavity 2 with the two others. Rayleigh scattering [45,46]
that couples a CLmodewith a CCLmode inside each cavity
exists in realistic systems, and its effect is discussed in Sec. I
of the Supplemental Material [47].
To use the MCCS as an approximate optical isolator, a

necessary condition is the highly asymmetric transmission
contrast under the forward and backward drives together
[26,48]. The isolation of two simultaneous inputs is
measured by the logarithmic ratio

10log10

����
a−3;f þ a−3;b
a−1;f þ a−1;b

����
2

¼ 10log10

����
S1þ3−Ef þ S3þ3−Eb

S1þ1−Ef þ S1−3þEb

����
2

; ð3Þ

which includes the contributions from the reflected fields of
the simultaneous forward input Ef and backward input Eb.
Optical isolation (a nonzero ratio of the above when
Ef ¼ Eb) immediately appears after breaking the symmetry
of identical coupling between the cavities (having unequal
distances between cavities so that η ≠ 1), and it exists even
without gain [Figs. 3(a1) and 3(a2)] and becomes more
significant under gain [Figs. 3(b1) and 3(b2)]. Figures 3(a3)
and 3(b3) show that the associated isolation ratios defined in
Eq. (3) stabilize with increased Ef=Eb. Moreover, they have
two groups of peak values with the opposite signs, one of
which is around η ¼ Δ=γ due to a transmission resonance. In
Fig. 3(c) showing this feature, the left of the marked dot on
each curve is the unstable regime described in Fig. 1(b1).
The outputs in the unstable regime are still asymmetric, as
seen from an example of the time evolutions of their
intensities.

(a) (b)

(d)(c)

FIG. 2. Transmission nonreciprocity due to gain saturation.
Here the relative parameters are chosen as γ1 ¼ γ2 ¼ γ,
γ3 ¼ 9.72γ, Jij ¼ 2.2γ, which are converted from a set of
experimental parameters in [32]. (a), (b) The evolutions of the
forward intensity jSo;fj2=ð2κeÞ ¼ ja−3;fj2 (solid curve) and back-
ward intensity jSo;bj2=ð2κeÞ ¼ ja−1;bj2 (dashed curve), with
g0 ¼ 10.55γ, Δ ¼ 0 in (a) and Δ ¼ 5γ in (b). These dimension-
less intensities scale with the transmitted field powers. The
dimensionless saturation intensity, which is determined by the
scattering cross section and lifetime of the dopant, and the
effective volume of the field inside cavity, is given as I0 ¼
1.33 × 103 in (a) and 1.33 × 107 in (b). (Insets) Corresponding
gain rates. (c),(d) The relations between isolation ratio and system
parameters for the evolved time-independent steady modes by
choosing g0 ¼ γ3 and the I0 in (a), with different ratios
η ¼ J23=J12. In (c), the detuning Δ=γ is set to be η. The drive
amplitude in these examples is Ef ¼ Eb ¼ 100γ.

(a1) (b1)
(c)

(a2) (b2)

(a3) (b3)

FIG. 3. Optical isolation for two simultaneous inputs. (a1), (a2) The induced field modes by the forward and backward drive,
respectively. Here g0 ¼ 0, Δ ¼ 5γ, J12 ¼ J13 ¼ γ, Ef ¼ Eb ¼ 10γ, and η ¼ 5. γ is the damping rate of the three cavities. (a3) The
isolation ratios for two opposite drives acting together on the system, with g0 ¼ 0 and Δ ¼ 20γ. (b1)–(b3) The corresponding results to
those in (a1)–(a3), with a difference of g0 ¼ 1.9γ. (c) The relation between optical isolation ratio and η, where the finally time-
independent field modes are obtained under any pair of identical and simultaneously acting inputs with Δ ¼ 10γ. (Inset) An example of
unstably evolving ja−3;fðtÞ þ a−3;bðtÞj2 (solid) and ja−1;fðtÞ þ a−1;bðtÞj2 (dashed), with η ¼ 0.5 on the left of the marked dot on the curve of
g0 ¼ 1.4γ. Gain saturation is neglected here.
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Another symmetry breaking leads to a realization of
nonreciprocity without gain saturation by the structure
made up of optical fiber rings. The coupler illustrated in
Fig. 4(a) capitalizes on directional macrobending loss [49],
so that more light from one direction couples into another
fiber than from the reverse direction. One choice, as in
Fig. 4(b), is that, through the coupler, mode aþ1 in cavity 1
and mode a−3 in cavity 3 couple more strongly than the
other pair a−1 and aþ3 , to replace the coefficient J13 in
Eqs. (1a) and (1f) [Eqs. (1b) and (1e)] by J13 þ ϵ (J13 − ϵ).
The couplings via such bending radiation are rather weak.
To implement an optical isolator operation, which requires
that both the reflection a−1;f ¼ S1þ1−Ef of the forward input
and the backward transmission a−1;b ¼ S1−3þEb be highly
suppressed while the forward transmission a−3;f ¼ S1þ3−Ef is

significant, one can lower the coupling constants J12 and
J23 for cavity 2 to the order of J13 � ϵ, as illustrated by the
example in Figs. 4(c1) and 4(c2). More details of this
mechanism are in Sec. II of the Supplemental Material [47].
The above scenario provides a better understanding of

the relation between Lorentz reciprocity and transmission
nonreciprocity. The scattering matrix is still symmetric
after introducing the directional couplings in Fig. 4(a), but
one of its additional symmetries is broken such that
S1þ3− ≠ S1−3þ. For two identical drives acting on P1 and P4

individually, such symmetry breaking results in the unequal
forward output

ffiffiffiffiffiffiffi
2κe

p
a−3;f at P4 and backward outputffiffiffiffiffiffiffi

2κe
p

a−1;b at P1, while the other pair of outputs,ffiffiffiffiffiffiffi
2κe

p
aþ3;f at P3 and

ffiffiffiffiffiffiffi
2κe

p
aþ1;b at P2, constantly keep equal.

The relation Efa
þ
1;b ¼ Eba

þ
3;f, as the manifestation of

Lorentz reciprocity for the system due to its symmetric
scattering matrix, is explicitly satisfied for any pair of
forward input Ef and backward input Eb; see Sec. III in
[47] for more details. However, the nonreciprocal trans-
missions by applying the directional coupler in Fig. 4(a) to
only two coupled cavities (cavity 2 is detached) violate
Lorentz reciprocity.
Such nonreciprocal transmissions by a MCCS are dis-

tinct from the asymmetric power flows in some other linear
systems [50,51]. For example, due to the drastically
unequal transitions from one field mode to another mode
with a different wave vector, asymmetric power flows
between two ends exist in the system discussed in
Refs. [50,52]. But nonetheless, its intermodal transitions
are identical; i.e., the transition from mode 1 on the first
end to mode 2 on the second end has the same rate as that
from mode 2 on the second to mode 1 on the first end.
Corresponding to the circulating modes in MCCS, the
forward transition from aþ1 to a−3 is indeed symmetric with
the backward one from a−3 to aþ1 , since the scattering matrix
keeps symmetric. However, mode a−3 is from P3 and mode
aþ1 leaves to P2, not being the reversed transmission from
P1 to P4. A field mode outputting to any port of such
MCCS must be oppositely circulating with the mode that is
excited by an input from the same port. At port P1, for
example, an input excites the CL mode aþ1 , but any output
comes from the CCL mode a−1 . The mutually reversed
transmissions in Fig. 1(a), therefore, have to be the
transitions from aþ1 to a−3 and from aþ3 to a−1 , respectively.
Such transitions from the CL (þ) to the CCL (−) modes,
unlike the intermodal ones mentioned above, will become
nonidentical once the symmetry S1þ3− ¼ S1−3þ is broken,
bringing about the transmission nonreciprocity.
In conclusion, we have demonstrated the nonreciprocal

transmissions with a MCCS, illustrating such phenomena
due to gain saturation and asymmetric field mode cou-
plings. The structure exemplifies a new concept of realizing
optical nonreciprocity and optical isolation with the top-
ology of its connected components and the geometry to

(a)

(c1) (c2)

(b)

FIG. 4. Optical nonreciprocity and optical isolation via coupling
geometry. (a)A design of directional coupler. Out of a small area on
the turnings of two fibers, which is removed of cladding and close
to the joint of two fibers, the bending radiation from the field
propagating along one direction hits the other fiber that is in a
symmetric position with the first fiber. Meanwhile, the identical
radiation due to the reversely propagating field mostly misses the
other. (b) The consequent nonreciprocity of the individually acting
fields. The gain rate g0with its saturation neglected is 0.9γ, where γ
is the damping rate of the three cavities. Two pairs of CL and CCL
modes in cavity 1 and cavity 3 couple at the rate J13 � ϵ with
J13 ¼ 10−2γ. Becauseof the directionality of bending radiation, the
ratio ðJ13 þ ϵÞ=ðJ13 − ϵÞ can be much higher than the displayed
here, though the radiation’s coupling into another fiber could have a
low rate, i.e., J13 � ϵ ≪ γ only given this type of coupling. The
detuning Δ is zero for the coupling between fibers. (c1),(c2) The
improvement of the optical isolation with J12 ¼ J23 ¼ 2.2γ in (c1)
to an approximate isolator operation with J12 ¼ J23 ¼ 10−2γ in
(c2). The other parameters are fixed as γ1 ¼ γ2 ¼ γ, γ3 ¼ 9.72γ,
g0 ¼ 9.7γ, J13 � ϵ ¼ ð10−2 � 9 × 10−3Þγ, and Ef ¼ Eb ¼ 10γ.
In (c2), the isolation ratio defined in Eq. (3) is greatly enhanced
together with the forward transmission proportional to ja−3;fj.
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couple the fields in different components, bearing funda-
mental dissimilarity with the other approaches that rely on
direction-dependent processes in the used media or non-
identical couplings to the inputs from different ports. There
also exist two distinct mechanisms for the phenomena:
(1) to break Lorentz reciprocity simply with gain saturation,
so that the inputs from different ports follow different
dynamical equations, and (2) to break the additional
symmetries of the scattering matrix elements, with unequal
couplings between pairs of circulating modes and/or
unequal distances between pairs of cavities, while preserv-
ing the Lorentz reciprocity of the system at the same time.
The nonreciprocal phenomena without breaking Lorentz
reciprocity were previously thought to be impossible. By
choosing the proper system parameters, the structure can
work as an approximate optical isolator.
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