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In this Letter, we studied the near-field effect of the non-
linear Raman–Nath diffraction experimentally in a 1D peri-
odically poled LiTaO3 crystal and established a theoretical
relationship between the nonlinear effect in the near field
and the corresponding effect in the far field. The interfer-
ence of far-field spots in the near field constitutes the
nonlinear Talbot self-imaging effect. Our results not only
enhance our understanding of the nonlinear Talbot effect,
but they also indicate potential applications of this effect in
domain inspection and domain design. © 2018 Optical
Society of America
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Nonlinear photonic crystals (NPCs) [1,2], with their periodic
modulation of the second-order susceptibility χ�2�, have been
widely studied for use in nonlinear frequency conversion be-
cause they could provide an abundance of reciprocal vectors
to compensate for the phase mismatch that occurs during
the nonlinear interaction process, that is, the quasi-phase-
matching (QPM) process [3–5]. In addition to assisting with
the QPM process, the spatial phase modulation capabilities of
NPCs have been also used to modulate second-harmonic (SH)
wavefronts in one dimension for the generation of special
beams, including Airy beams and Hermite–Gaussian beams
[6–10]. Both the efficient nonlinear frequency conversion and
1D phase modulation procedures are based on collinear wave
mixing. Various other interesting phenomena are also gener-
ated using noncollinear wave-mixing processes in NPCs,
including the nonlinear Bragg diffraction [11], nonlinear
Raman–Nath (RN) diffraction, and nonlinear Čerenkov
diffraction [12].

In the noncollinear nonlinear wave-mixing process, the
phase mismatch can be divided into two components: a trans-
verse component and a longitudinal component. The nonlinear
Bragg diffraction effect occurs when both components are com-
pensated to satisfy the noncollinear QPM process, which has

previously been used to generate multiple SH spots and
Bessel beams [13–15]. If only the longitudinal phase mismatch
is compensated, it can be considered to be the nonlinear
Čerenkov diffraction phenomenon [16–18]. Therefore, the
phenomenon where only the transverse phase-matched compo-
nents are compensated is automatically called nonlinear RN
diffraction. The RN diffraction effect was first reported by
Saltiel et al., used to generate the SH Bessel beams [19] and
expanded to engineering of a 2D SH field by superposing non-
linear susceptibility modulations or structuring fundamental
waves [20–23]. The resulting engineered 2D SH fields have
been used to demonstrate nonlinear imaging [24–26], super-
focusing [27], and a diffraction-free array beam [28]. However,
most previous studies on nonlinear RN diffraction in NPCs
have essentially focused on far-field characteristics; to date,
the near-field characteristics of this process have not been in-
vestigated sufficiently, and there is a particular interest in the
relationship between the nonlinear RN diffraction far-field
patterns and the near-field effect.

In this Letter, we present an experimental study of the
near-field and far-field effects of the SH waves generated using
a 1D periodically poled LiTaO3 (PPLT) crystal. The far-field
effect is shown as the RN diffraction, while the near-field effect
is the previously reported nonlinear Talbot effect [24,25].
Theoretical and numerical calculations are performed to estab-
lish the relationship between the nonlinear near-field effect and
the far-field nonlinear RN diffraction. Our results show that
the nonlinear Talbot effect can also be understood as the in-
terference of far-field patterns in the near field, which greatly
enriches the concept of nonlinear Talbot self-images.

In the experiments, we used a Z-cut periodically poled
LiTaO3 sample with dimensions of 10 mm�x� × 1.2 mm�y� ×
0.5 mm�z� [Fig. 1(a)], which was fabricated using an electric-
field poling technique at room temperature with a poling
period Λ � 29.6 μm and a duty cycle of D ∼ 67%. A femto-
second mode-locked Ti:sapphire laser operating at a wave-
length of 920 nm was used to provide the fundamental input
field. The pulse width was ∼75 fs with a repetition rate of
80 MHz. The laser beam was loosely focused using a 300-
mm focal length lens and then directed into a 1D PPLT crystal
along the y axis with its polarization parallel to the z axis,
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thereby using the largest nonlinear-optical coefficient (d33) of
the LiTaO3 crystal [Fig. 1(a)]. The phase-matching diagram
shown in Fig. 1(b) combines the wave vectors k1 and k2, which
correspond to the beam’s fundamental frequency and its SH,
respectively. The transverse component k2 sin θm � mG0 of
the phase matching determines the different diffraction angles
θm, where m is the nonlinear RN diffraction order, and G0 �
2π
Λ is the primary reciprocal lattice vector. The SH pattern
[Fig. 1(c)] is observed on a screen located 4 cm away from
the center of the sample. Adjacent to the side spots that cor-
respond to nonlinear Čerenkov diffraction, it is possible to dis-
tinguish a set of ordered SH spots near the passed fundamental
beam. These SH beams are believed to correspond to the non-
linear RN diffraction because of the periodicity of the structure
in the transverse direction. In the far field, we can clearly
observe 15 SH beams that correspond to the seven orders
[see the enlargement in Fig. 1(c)].

Under the undepleted pump approximation, the spectral in-
tensity of the SH field in a 1D PPLT crystal can be written as a
function of the spatial frequency K x and the propagation length
Ly of the fundamental wave in the crystal [29,30]:

I 2�K x , Ly� � πa2L2yβ22I
2
1 × fsinc�Ly�Δk − K 2

x∕2k2�∕2�g2

×
� X

m�0,�1,�2,…

gm exp�−a2�mG0 � K x�2∕8�
�

2

,

(1)

where a is the beam width of the fundamental wave, and
β2 � k2χ�2�∕�2n2e2� is the nonlinear coupling coefficient,
where ne2 is the refractive index at the SH frequency. We
assume that the fundamental wave is a Gaussian beam of
the equation E1�x� � E10e−x

2∕a2 , so I1 � E2
1. In addition,

Δk � k2 − 2k1 is the wave vector mismatch between the fun-
damental and SH waves. The Fourier coefficients are gm �
2D − 1�m � 0� and gm � 2 sin�πmD�∕�πm��m ≠ 0�, and
D is the duty cycle of the 1D PPLT crystal.

To observe the near-field nonlinear effect, we used a 100×
objective lens with a numerical aperture (NA) of 0.7, moving
along the y axis near the back of the sample; the movements of
the lens were controlled using a precision translation stage. The
input pump power was set at 66 mW. The generated SH pat-
tern was then projected onto a charge-coupled device (CCD)
camera, which moved jointly with the objective lens. The step
was set to 0.5 μm. The intensity distributions along the x
direction in the recorded images compose the “carpet” in
Fig. 2(a). The measured evolution of the SH carpet within the
range y � 2000 μm [Fig. 2(a)] clearly highlights the imaging
performance. We find this pattern to be similar to the carpet
produced by nonlinear Talbot self-imaging. Experimentally, in
comparison to the initial pattern at y � 0 μm, the SH pattern
at y � 1900 μm presents a half-period shift along the x direc-
tion, which results from the π-phase shift of the generated SH
field [31]. That is, all bright SH stripes in the output face of the
object evolve into dark stripes, and vice versa. The period of the
image is equal to the period of the sample. We verified that the
self-image of the 1D PPLT crystal occurs at y � 1900 μm and
that the imaging performance is similar to that of half of the
self-imaging length. At smaller propagation lengths, sub-images
can also be observed. For example, at y � 910 μm, the image is
half the original size and appears with half the period of the
sample, thus corresponding to one-quarter of the Talbot
self-imaging length. We note that the features at the other ob-
servation planes are also correlated with the characteristics of
the Talbot self-imaging effect. The experimental setup (which
is not shown here) is the same as that used in our previous stud-
ies of the SH Talbot effect.

After careful measurements, the characteristic SH field pat-
terns were recorded at different observation planes (Fig. 3) to
represent a variety of “photonic carpets” within the Fresnel dif-
fraction region. The diffraction patterns change considerably
[Figs. 3(a)–3(f )] as the images are acquired at increasing distan-
ces away from the crystal. For example, the periods of the SH
patterns increase, while their intensities decrease. The half-
Talbot self-imaging plane was observed at y � 1900 μm
[Fig. 3(f )], which is consistent with the theoretically calculated

Fig. 1. (a) Design of the 1D nonlinear photonic structure, (b) the
phase-matching diagram, (c) and the second-harmonic pattern ob-
served on the screen (inset: expanded view of the nonlinear Raman–
Nath diffraction). The peripheral spots correspond to the nonlinear
Čerenkov diffraction (marked Če), while the central spots are from
the nonlinear Raman–Nath diffraction (marked RN).

Fig. 2. (a) Talbot “carpets” along the propagation direction
obtained from experiments, and (b) numerical results obtained from
the nonlinear RN diffraction with the inverse method.
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SH half-Talbot length of Y T ∕2 � 2Λ2∕λ � 1905 μm, where
λ is the wavelength of the fundamental beam, and Λ is the
period of the PPLT. The small deviation may be the result
of translation-stage hysteresis. At the half Talbot plane, the
period of the interference pattern is 29.7 μm, which is consis-
tent with the sample period of 29.6 μm. In the other fractional
Talbot planes, complex diffraction patterns that result from the
Fresnel diffraction interference of the SH waves can be seen.
Near the end face of the sample [Fig. 3(a)], the SH pattern
at y � 190 μm has a nonuniform period. The intensity is at
its highest here, and some detailed structures can be observed
in the image [see the area marked in Fig. 3(a)]. This occurs
because the higher-order diffraction fields near the output sur-
face of the sample are recorded in their entirety by the CCD.
We also determined from the experiments that the periods of
the patterns increase [Figs. 3(b)–3(f )] and that the qualities of
the image after the half Talbot plane worsen when compared
with those at other fractional planes. The images from the
experiment, which are shown in Figs. 3(b)–3(f ), yield the SH
pattern periods of 4.3 μm, 6.0 μm, 7.5 μm, 14.5 μm, and
29.7 μm at the Talbot lengths of 1/15, 1/11, 1/8, 1/4, and
1/2, respectively. These periods correspond to the predicted
periods given by Λ 0 � 2Λ 	 p

q, where p and q are prime
numbers, for self-images to occur at the different planes in a
1D PPLT.

To verify the theory that the nonlinear Talbot self-imaging
effect is indeed formed by the near-field effect of the nonlinear

RN diffraction, we performed numerical simulations using the
inverse method. First, we extracted the relative intensities of
the far-field spots from the nonlinear RN diffraction pattern
[Fig. 1(c)] and used Am to represent the relative intensities of
different orderm, with values including A0 � 1, A1 � 0.6424,
A−1 � 0.6303, A2 � 0.4303, A−2 � 0.4182, A3 � 0.4424,
A−3 � 0.4970, A4 � 0.3879, A−4 � 0.5576, A5 � 0.3455,
A−5 � 0.4303, A6 � 0.2121, A−6 � 0.3212, A7 � 0.1333,
and A−7 � 0.1879, which are all in agreement with the values
obtained from theoretical calculations using Eq. (1). In addi-
tion, measurement of the first-order diffraction angle in the ex-
periment gives θ1 � 0.0151 rad. Second, in the simulation,
each spot can be considered to be a Gaussian beam with a wave-
length of 460 nm. Third, using the multiple-beam interference,
all spots mutually interfere, and this results in an SH propaga-
tion carpet [see Fig. 2(b)]. For the image shown in Fig. 2(a), the
simulation reproduces almost the same pattern, as depicted in
Fig. 2(b), using the experimental parameters, which indicates
good agreement with the experimental data. Based on Fig. 2(b),
the numerical simulation confirms the nonlinear Talbot self-
imaging behavior, and thus it verifies that the near-field effect
of the nonlinear RN diffraction is indeed the nonlinear Talbot
effect in a 1D PPLT crystal. This implies that the nonlinear
Talbot effect studied here can also be interpreted to be the
near-field interference of the far-field spots. To enable further
examination of the observed near-field effect, we have theoreti-
cally demonstrated the evolution of the SH field [Fig. 4] in the
1D PPLT using the finite difference method [32]. The input
pump laser was still operating at the 920 nm wavelength. For
Fig. 4, the length of the crystal was 1200 μm along the y axis,
and the SH wave propagation distance in the free-space is again
2000 μm. We found that in the Fresnel near field (from the
output face of the crystal to 3200 μm), the Talbot effect
was also observed, which validates the experimental results
once more.

In addition, we also determined experimentally that the
nonlinear Čerenkov diffraction affects the image quality. The
intensity of the nonlinear Čerenkov diffraction is high [as
shown in Fig. 1(c)] and is close to the nonlinear RN diffraction
in the near field. Therefore, this diffraction can be partially col-
lected using an objective lens with high NA. This is why we are
able to find some detailed structures near the end surface of the
sample in the experiments [Fig. 3(a)] when the pattern is non-
uniform. As the propagation distance increases, the Čerenkov
diffraction and the RN diffraction separate completely, mean-
ing that the patterns only contain information about the non-
linear RN diffraction. Without the effects of the nonlinear
Čerenkov diffraction, the SH image becomes much clearer
in more distant fractional Talbot planes [see Figs. 3(c)–3(e)].

Fig. 3. Images of the SH patterns recorded using a conventional
optical microscope at different Talbot planes. The images were all
formed within the half-Talbot length. The SH patterns correspond
to the Talbot lengths of (a) 1/20, (b) 1/15, (c) 1/11, (d) 1/8,
(e) 1/4, and (f ) 1/2.

Fig. 4. Evolution of the field in the 1D PPLT crystal, as determined
using the finite difference method. The length of the crystal is
1200 μm, and the propagation distance in the free-space is 2000 μm.
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We note that no such analysis was implemented in previous
nonlinear Talbot experiments.

Note that the focusing beam that was used in the experi-
ment has a beam size of ∼200 μm, which covers an area of
approximately seven periods of the sample. The Talbot effect
is well-known to be a near-field diffraction phenomenon from a
periodic object. To ensure high-quality images over long dis-
tances, it is best to have as many periodic structures as possible
participating in the self-imaging process. This raises an inter-
esting question: How can we realize nonlinear Talbot self-im-
aging? It appears that the nonlinear RN diffraction provides
sufficient diffraction orders at the end face of the sample that
can effectively interfere with each other to generate the nonlin-
ear Talbot effect.

In summary, we have demonstrated an evolutionary process
from the near-field to the far-field nonlinear RN diffraction in
an NPC. Going beyond the previously investigated nonlinear
effect, this work has established a relationship between the non-
linear effect in the near field and that in the far field. In par-
ticular, our investigation indicates that the nonlinear Talbot
effect can be understood to be the interference of far-field spots
occurring in the near field. Furthermore, the nonlinear
Čerenkov diffraction affects the quality of the SH imaging near
the end face of the sample. By including these two factors, the
results of the simulations of the multiple-beam interference
agree well with the experimental results. Our results not only
enrich the concept of the nonlinear Talbot self-imaging effect,
but also open the door to a broader variety of applications
of nonlinear RN diffraction in fields such as imaging, domain
design, and domain inspection.
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