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Abstract
Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues.
Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry,
could display entirely real spectra above some phase-transition threshold. This stems from the existence
of a parameter in the Hamiltonian governing characteristics features of eigenvalues and eigenfunctions.
Varying this parameter causes real eigenvalues to coalesce and become complex conjugate pairs,
signaling the occurrence of a nontrivial phase transition and the breakdown of PT symmetry. Such an
appealing discovery has aroused extensive theoretical interest in extending canonical quantum theory
by including non-Hermitian but PT-symmetric operators in the last two decades. Despite much fund-
amental theoretical success in the development of PT-symmetric quantum mechanics, an experimental
observation of pseudo-Hermiticity remains elusive as these systems with complex potential seem
absent in Nature. But nevertheless, the notion of PT symmetry has survived in many other branches of
physics including optics, photonics, AMO physics, acoustics, electronic circuits, and material science
over the past ten years, where a judicious balance of gain and loss constitutes ingeniously a PT-
symmetric system. Here, although we concentrate upon reviewing recent progress on PT symmetry in
optical microcavity systems, we also wish to present some new results that may help to accelerate the
research in the area. These compound photonic structures with gain and loss provide a powerful
platform for testing various theoretical proposals on PT symmetry, and initiate new possibilities for
shaping optical beams and pulses beyond conservative structures. Throughout this article there is an
effort to clearly present the physical aspects of PT-symmetry in optical microcavity systems, but
mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathemati-
cal treatments should resort to the extensive list of references. Despite the rapid progress on the subject,
new ideas and applications of PT symmetry using optical microcavities are still expected in the future.

Keywords: parity-time (PT) symmetry, optical microcavities, non-Hermitian systems, phase
transition, exceptional point, applications
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1. Introduction

Optical microcavities (or microresonators) [1–3], confining
light to small volumes by resonant recirculation, has become
a distinct research area in photonics over the past two dec-
ades. Both physical implementations of these devices and
their applications are highly differentiated, ranging from
optical communications, cavity quantum electrodynamics
(QED), nonlinear optics, novel laser sources, bio-sensing,
quantum optics, quantum information processing, to inte-
grated photonics. Although an ideal cavity would trap light
indefinitely at resonant frequencies with exact values, in
practice experiments with photonics are intrinsically non-
Hermitian owing to gain and loss. As a result, the resonance
nature of the interaction of light with cavities does not always
bring about desired enhancement on optical properties of
interest only. Recent experimental progress on microcavities
with alternating gain and loss in a balanced manner [4–9],
however, shines a new light to the problem. In these
demonstrations [4–9], light wave is typically amplified in
some regions of the system and is attenuated in others.
Heuristically, physics seems only limited to the compensation
of loss by equal amount of amplification. On the contrary, it
turns out that subject to this condition, a nontrivial, sharp
phase transition arises further from the evolution of char-
acteristics of supermode profiles with only real frequency
components to with complex spectra. Alternatively, on
crossing a unique ‘exceptional point’ (EP) [10–16] in para-
meter space, the eigen-spectra cease to be real and the
underlying modes coalesce to a single mode, because of the
nontrivial wave interference. In fact, such structures share a
common feature, that is, they belong to open but parity-time
(PT) symmetric systems [17–28]. The PT symmetry in optics
[20–27] amounts to the necessary condition n(r)=n*(−r)
with n(r) the complex refractive index of the medium, which
demands the real part of the refractive index be an even
function of position whereas the imaginary part be odd.

Historically, interest in PT symmetry originated from the
effort on the generalization of standard quantum mechanics
by the inclusion of non-Hermitian Hamiltonians [17–19,
29–32]. Although such extension of traditional quantum
theory is highly controversial, Bender and Boettcher [33]
theoretically showed that a class of non-Hermitian Hamilto-
nians, commuting with the joint parity and time-reversal
operator, can possess entirely real spectra above a phase-
transition point (or EP). Below that critical point, PT sym-
metry spontaneously breaks down and the Hamiltonians start
to undergo a phase transition that admits complex eigenvalues
instead. This counterintuitive discovery, on the one hand,
radically challenges one of the basic axioms in canonical
quantum mechanics formulated by Dirac and von Neumann
that the Hermiticity of an operator guarantees real eigenvalues
and the orthonormality between eigenstates with different
eigenvalues for closed physical systems. On the other hand, it
dramatically shapes our cognition on open systems, where it
is commonly believed to have complex eigenvalues and non-
orthogonal eigenfunctions. The significance of this pioneering
work by Bender and Boettcher has immediately aroused

considerable theoretical effort [17–19, 29–32] in extending
Hermitian quantum theory to non-Hermitian but PT-sym-
metric operators. In the past two decades, an intensive
research has been dedicated to the exploration of a more
general class of pseudo-Hermitian operators [11, 20, 25] with
special symmetries and purely real eigenvalues. The devel-
opments on this forefront have helped to establish an active
research field, PT-symmetric quantum mechanics, which has
been covered in a series of reviews [19, 29, 34] and special
issues [22–30]. Despite the impressive theoretical success in
prospering PT-symmetric quantum mechanics, a viable
experimental observation of such pseudo-Hermiticity remains
yet elusive in real physical settings.

In addition to quantum mechanics, the scope of PT
symmetry has been rapidly expanded to a variety of physics
branches. The first attempt on constructing an optical analog
was made by Ruschhaupt et al [35], who theoretically ana-
lyzed light propagation in a medium with an even refractive
index and odd gain–loss landscape. However, it was the
works by Christodoulides and his coworkers [36–38] that
exceedingly stimulated the attention on PT symmetry in the
realm of optics and photonics. By noticing the mathematical
isomorphism between the quantum Schrödinger equation and
the paraxial optical diffraction equation, they [36] suggested
to realize complex PT-symmetric potentials through judi-
ciously making use of refractive indices with balanced gain
and loss in optical settings. In particular, with coupled
waveguides they formulated PT-symmetric optics by pro-
viding a simple but nontrivial framework for the study of PT-
symmetric systems. It was shown that in waveguide struc-
tures, the parity operator leads to spatial reflection, while the
time-reversal operator reverses the propagation direction. One
of the most striking PT properties stems from the appearance
of a sharp, symmetry-breaking transition, once a non-Her-
mitian parameter crosses a certain threshold. This transition
signifies the occurrence of a spontaneous PT symmetry
breaking from the exact- to the broken PT phase in a classical
way. Such a peculiar behavior is not only of interest to fun-
damental research but also gives rise to a breadth of new
opportunities for flexible light control and manipulation.
Subsequent experiments [39, 40] have indeed confirmed those
theoretical predictions. Inspired by these optical realizations,
the extension of PT symmetry to other branches of physics
[4–9, 41–65] is then readily followed and has revealed
numerous intriguing phenomena [66–129] that may be inac-
cessible with usual Hermitian arrangements. Moreover, by
incorporating nonlinearity [22–26] one can largely enrich the
overall dynamics with numerous exotic phenomena beyond
the capability of conservative architectures.

Indeed, work on PT symmetry is very diverse and has
resulted in a long list of publications that run the gamut from
reports of its experimental realizations, to discussions of its
fundamental physics, to suggestions for implementation var-
iations dictated by practical considerations. In this review, we
aim at presenting a compact overview, but by no means a
comprehensive discussion, of recent advances on PT-sym-
metric optical microcavities with emphasis on some intriguing
optical phenomena and new emerging applications. We notice
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that PT symmetry has already been summarized in a series of
reviews [18–28] from different perspectives. Different from
these existing reviews, however, throughout this article there
is an effort to clearly present the physical aspects of the PT-
symmetry. Mathematical formulations are reduced to the
indispensable ones. Readers who prefer rigorous mathema-
tical treatments should resort to the extensive list of refer-
ences. We in the meanwhile wish to present some new results
and observations that have not yet been discussed elsewhere.
It is hoped that these new additions may further accelerate and
expand the research interest and scopes in PT-symmetric
optical microcavities.

Since PT symmetry originated from extending standard
quantum mechanics into complex plane, in section 2 we being
our review with a short survey on its historical development
by summarizing only the major characteristics associated
with. To make the argument more meaningful, a two-level toy
model will be introduced in the end to provide an intuitive
understanding of the abstract concepts. As it will become
clear throughout the whole content, it is this toy model that
essentially paves the way for classical emulations with a
variety of physical settings.

Section 3 is devoted to recent observations of PT sym-
metry in optics, especially optical microcavities. We first
follow the historical development by establishing the quant-
um-classical analogy between the Schrödinger equation for a
quantum particle and the paraxial propagation equation of
light in a medium, which enables the first experimental
implementations in coupled waveguides in the spatial
domain. We then focus on recent advancement of achieving
PT/anti-PT symmetry with use of optical microcavities in the
temporal domain. Owing to their flexible optical properties
through design, optical microcavities also allow us to build
connections with other research areas, which include optical
nonreciprocity and cavity optomechanics. In this section, we
further present a theoretical proposal for the realization of
anti-PT symmetry using three microcavities. Of interest, this
structure fulfills the accomplishment of both PT and anti-PT
symmetry within the same architecture.

In section 4 the potential applications of PT-symmetric
optical microcavities are concentrated on few recent exper-
imental demonstrations. In comparison with traditional
structures, PT symmetry brings novel functionalities, and
opens new prospects for the development of novel photonic
devices such as single-mode lasers and supersensitive sensors.

Finally, we conclude our review with a brief summary
and outlook in section 5.

2. PT symmetry in quantum mechanics: basic
concepts and properties

We begin, in this section, by briefly overviewing the essential
concepts in the theory of PT-symmetric quantum mechanics.
We do not intend to record all available materials of this
extremely broad field, but rather to focus on the critical ideas
that are relevant to the content in the subsequent sections. For
comprehensive reviews on non-Hermitian operators in

physics and mathematics, besides the works [10–14, 17–19,
29–34] listed above, interested readers please refer to the
reviews [130–134], as well as the monograph of Moiseyev
[135].

2.1. Parity and time-reversal operators

Standard quantum mechanics demands Hermitian Hamilto-
nians, to describe closed physical systems, to ensure real
eigenspectra and the orthonormality between eigenstates with
different eigenvalues. As one axiom in the mathematical
framework of conventional quantum theory, the postulation
on Hermiticity guarantees real observables and probability-
preserving time evolution (or unitarity). In contrast, the
dynamics of open systems is typically described by non-
Hermitian Hamiltonians. Owing to the seemingly impossible
conservation of energy, complex eigenvalues are commonly
taken for granted in non-conservative systems. Since the early
days of quantum mechanics, considerable efforts have been
dedicated to incorporating non-Hermitian Hamiltonians into
the well-accepted Hermitian representations. Throughout the
enterprise, early notable achievements include pioneering
works by Gamow [136], Feshbach et al [137], and Lindblad
[138, 139]. Indeed, these successful developments lead to a
more formal basis for describing the dynamics of certain open
quantum systems [140–142]. In spite of these achievements,
yet the interpretation behind is not straightforward all the
time. As such, Barton in his book Introduction to Advanced
Field Theory [143] used to comment: ‘A non-Hermitian
Hamiltonian is unacceptable partly because it may lead to
complex energy eigenvalues, but chiefly because it implies a
non-unitary S matrix, which fail to conserve probability and
makes a hash of the physical interpretation.’

Although the research on non-Hermitian generalization
of quantum mechanics has a long history since the early days
of quantum theory, for a non-Hermitian Hamiltonian to have
real eigenspectra was due to the theoretical work by Wu in
1959 [144], who first used an anharmonic oscillator (with
mass m) associated with a pure imaginary cubic potential

a= +ˆ ˆ ˆ ( )H
p

m
i x

2
, 1

2
3

with the momentum operator = -p̂ i d

dx
and the position

operator x̂, to analyze the ground state of a quantum system of
hard spheres. In equation (1), the constant α is used to make
sure the correct dimension. Quite surprisingly, he found that
all the eigenvalues were real, discrete, and no longer diver-
gent. This counterintuitive finding made a quite stir in the
community and stimulated many follow-up theoretical stu-
dies. For example, it was later further examined in the
Reggeon field theory [145, 146], the Yang-Lee edge singu-
larity [147–149], and the perturbation theory of odd anhar-
monic oscillators [150]. Another important contribution in the
development of non-Hermitian quantum mechanics was the
publication by Haydock and Kelly in 1975 [151], where they
pointed out for the first time that while Hermiticity was suf-
ficient to ensure real eigenvalues, it was not necessary and
sufficient. The significance of their work is that they put
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forward a very interesting question about the identification of
a necessary and sufficient condition for real eigenvalues. The
next big step forward was a justification for the use of com-
plex eigenvalues by Hatano and Nelson in 1997 [152], where
they applied depinning field lines of a non-Hermitian external
magnetic field to a type II semiconductor. Nevertheless, in a
long period no one could find a physical reason why such a
non-Hermitian Hamiltonian allows all real eigenvalues. At the
same time, undoubtedly, objections also existed in the com-
munity, as these people were more concerned about the
consequences of the results. Among them include: Did the
probabilistic interpretation of quantum mechanics still hold?
Was the norm positive and conserved? All kinds of funda-
mental questions were raised in regards to introducing non-
Hermitian Hamiltonians into Hermitian quantum theory.

The truth had to wait until 1998. In that year, Bender and
Boettcher [33] made a seminal discovery by showing that
Hermiticity is a sufficient but not necessary condition for
spectral reality and unitary time evolution. In particular, they
found a broad class of non-Hermitian Hamiltonians which can
have a set of eigenstates with real spectra, provided they
commute with the combined parity operator P̂ and time-
reversal operator T̂ ,

=  =ˆ ˆ ˆ ˆ ˆ ˆ [ ˆ ˆ ˆ ] ( )PTH HPT PT H, 0, 2

a necessary condition. As two fundamental discrete symme-
tries in physics, P̂ and T̂ are, respectively, defined by their
actions on the dynamical variables x̂ and p̂ . Specifically, the
linear parity operator P̂ has the effect of flipping the sign of x̂
and p̂ :  -ˆ ˆx x and  -ˆ ˆp p ; while the antilinear time-
reversal operator T̂ [153] applies the operations of ˆ ˆx x,

 -ˆ ˆp p , and  -i i. Here, T̂ changes the sign of i due to
the requirement on preserving the fundamental commutation
relation =[ ˆ ˆ]x p i, in traditional quantum mechanics. In
addition, P̂ and T̂ are unitary and have the following prop-
erties,

I= = =ˆ ˆ ˆ [ ˆ ˆ ] ( )P T P Tand , 0, 32 2

where Î is the identity operator. Now multiplying by ˆ ˆTP from
the right-hand side in equation (2) gives

=ˆ ˆ ˆ ˆ ˆ ˆ ( )PTHTP H , 4

with the help of equation (3). Equation (4) is PT invariant as
=( ˆ ˆ) ˆ ˆ†TP PT (the symbol † here stands for the Hermitian

conjugate). In the Schrödinger equation, for Hamiltonians of
the form


¶
¶

Y = Y = +ˆ ˆ ˆ ( ) ( )i
t

H H
p

m
V x,

2
5

2

with V(x) the (complex) potential energy of the system, the
necessary condition (2) immediately implies that the real part
of V(x) be an even function of the coordinate and the ima-
ginary part be an odd function, i.e.,

*= -( ) ( ) ( )V x V x 6

with * denoting the complex conjugate. Note that as the
necessary condition for PT symmetry, equation (6) appears
naturally from the Schrödinger equation. The requisition on

complex potential energy, however, becomes vague and
extremely challenging, owing to the lack of complex poten-
tials in the quantum domain.

2.2. PT symmetry versus pseudo-Hermiticity

Unlike Hermiticity, PT symmetry is not a sufficient condition
to guarantee the spectral reality. When combined with the
requirement of the unbroken PT symmetry (see below),
however, it becomes sufficient. To illustrate this, let Ej be an
eigenvalue of Ĥ with respect to the eigenvector Yñ∣ j (which
also simultaneously becomes the eigenvector of ˆ ˆPT with an
eigenvalue λ). That is,

Yñ = Yñˆ ∣ ∣ ( )H E . 7j j j

Applying the PT transformation (4) to equation (7) leads to

Yñ = Yñˆ ˆ ˆ ˆ ˆ∣ ˆ ˆ ˆ ˆ∣PTHTP PTE TP .j j j

As *=ˆ ˆTE T Ej j and I=ˆ ˆP2 (3), the above equation yields

*Yñ = Yñ = Yñ = Yñˆ ˆ ˆ ˆ ˆ∣ ˆ ∣ ∣ ∣PTHTP H E E ,j j j j j j

where equations (4) and (7) have been used. Hence, *=E Ej j

and the eigenvalue Ej is real. Because the procedure is
applicable to every eigenvalue of Ĥ , this concludes the real-
ness of its spectra. The above proof fully relies on the crucial
assumption on Yñ∣ j to be an eigenvector of both Ĥ and ˆ ˆPT . A
reader interested in the proof of the statement may also resort
to a different version offered in [19]. In quantum mechanics,
we learn that if a symmetry transformation is represented by a
linear operator Â and if Â commutes with Ĥ , the eigenstates
of Ĥ are then also eigenstates of Â. Unfortunately, because of
the antilinearity of the joint operator ˆ ˆPT , one has to make one
extra but nontrivial assumption that the PT symmetry of Ĥ is
unbroken. What happens if this assumption (spontaneously)
breaks down? It turns out that there will be a striking phase
transition associated with the presence of complex eigenva-
lues in the spectra of Ĥ. In other words, for an unbroken PT-
symmetric Ĥ , its eigenvectors are also the eigenvectors of ˆ ˆPT ,
and the corresponding eigenvalues thus assume real values.
However, for a broken PT-symmetric Ĥ , its eigenvectors are
no longer the eigenvectors of ˆ ˆPT . In this latter case, the
eigenvalues (or part of the eigenvalues) cease to be real and
become complex conjugate pairs instead. Different from
Hermitian quantum mechanics, PT symmetry does not pro-
mise the completeness and orthomornality of eigenvectors of
the operator. It is worth to emphasize that acceptable complex
Hamiltonians may be either Hermitian =ˆ ˆ †H H in the Dirac
sense or PT-symmetric, but not both; in contrast, real sym-
metric Hamiltonians can be both Hermitian and PT-sym-
metric. From this point of view, the central idea of PT-
symmetric quantum mechanics [17–19, 33, 154–157] is to
relax the strong condition of Hermiticity for a quantum
Hamiltonian with the weaker condition that it have space-time
reflection symmetry. Alternatively, the proposal on PT-sym-
metric Hamiltonians does not give up Hermiticity. Rather, it
offers the possibility of studying new quantum theories that
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might even describe measurable physical phenomena in the
physical world.

Using PT symmetry as an alternative condition to Her-
miticity, one can devise infinitely new Hamiltonians that
would have been rejected since the early days of quantum
mechanics, simply because they are apparently non-Hermi-
tian. The Hamiltonian (1) turns out to be one such example.
Based upon this Hamiltonian, a more general class [33] of
PT-symmetric ones can be readily deduced by utilizing the
fact that any real function of ˆix is PT-symmetric:

a e e= + Îeˆ ˆ ( ) ˆ ( ˆ) ( )H
p

m
x ix

2
, Real. 8

2
2

Again, α(ε) here is a dimensional constant to ensure the
correctness of the dimension. In equation (8), ε is the very
parameter whose value essentially determines the character-
istic behaviors of the attainable eigenvalues and eigenfunc-
tions before and after PT-symmetry breaking. We notice that
when ε=0, the Hamiltonian (8) reduces to that of the classic
harmonic oscillator whose exact solutions are addressed in
most of quantum mechanics textbooks. As illustrated in their
numerical studies, Bender and Boettcher [33] observed that
the spectra of Ĥ (8) exhibit three distinct behaviors with an
abrupt phase transition as a function of ε (see figure 1).
Specifically, for all ε � 0 the corresponding Hamiltonians (8)
are in the regime of unbroken PT symmetry, and their
eigenspectra are infinite, discrete, entirely real and positive.
Obviously, the Hamiltonian (1) is just one member of this
huge class of complex Hamiltonians. This explains why the
Hamiltonian (1) possesses all real, positive, and discretized

energy levels. For −1<ε<0, there are only a finite number
of positive real eigenvalues but an infinite number of complex
conjugate pairs of eigenvalues. In this region, the PT sym-
metry spontaneously breaks down. As ε decreases from 0 to
−1, adjacent energy levels merge into complex conjugate
pairs at the high end of the spectra. Eventually, the only
remaining real eigenvalue is the ground-state energy but
diverges till ε→−1+. When ε�−1 no real spectrum is
available. As we can see from figure 1, at ε=0 lies the
conventional Hermitian Hamiltonian of the quantum-
mechanical harmonic oscillator, which marks the phase-
transition point (or EP) between the unbroken and broken PT
regions. Rooted in the above features, the term ‘PT sym-
metry’ is coined to describe these new non-Hermitian com-
plex Hamiltonians but having real energy levels.

Before proceeding, we notice that the above discussions
on the eigenspectra of the Hamiltonians are referred to the
differential operator itself but without specifying the bound-
ary conditions. For a reader who is unfamiliar to the notion of
PT symmetry, the following statement might be found help-
ful: a differential equation with a PT-symmetric Hamiltonian,
i.e., the Hamiltonian is invariant under ˆ ˆPT , is formulated on
the complex plane with the boundary conditions Y ( )x 0
when  ¥∣ ∣x . As a result, it becomes possible for the
eigenvalues to be discrete and real. For different boundary
conditions, they may lead to different spectral behaviors. To
be specific, let us look at the -( ˆ )x4 -potential case by setting
ε=2 in equation (8). In classical motion, as the boundary
value problem is formulated along the real axis, the motion
does not have turning points and the system has only con-
tinuous spectrum. In contrast, quantum mechanically x is a
complex variable and the boundary value problem is corre-
spondingly formulated along a trajectory in the complex
plane, where the eigenfunction tends to zero at the contour
ends. As such, the boundary value problem in PT-symmetric
quantum mechanics does not possess a classical analog, since
it is unclear what the corresponding complex coordinate
would be classically.

For a non-Hermitian Hamiltonian to possess fully real
eigenspectra, a sufficient and necessary condition, in fact, can
be mathematically formulated in terms of a more general
property called pseudo-Hermiticity [34, 158]. In the framework
of pseudo-Hermitian quantum mechanics [29, 158–164], PT
symmetry does not play a basic role and no further need
introduces a C-operator [155, 165] to make the theory well-
defined, although they can be nevertheless defined in general.
On the contrary, all that is needed is to determine the class of
non-Hermitian Hamiltonians that are capable of generating a
unitary evolution and a procedure that associates, to each
member of this class, a positive-definite inner product that
renders it Hermitian (or self-adjoint). There are always an
infinite class of positive-definite inner products meeting this
condition. Any inner product may be defined by a certain linear
metric operator, ĥ, which determines the kinematics of pseudo-
Hermitian quantum systems. The Hamiltonian operator Ĥ is
linked to ĥ via the ĥ-pseudo-Hermiticity relation (sometimes

Figure 1. Real, positive energy levels of the Hamiltonians (8) as a
function of the real parameter ε. For ε � 2, the entire spectra are
definitely real and positive. For −1<ε<0, the spectra have a
finite number of real positive eigenvalues but have unlimited
complex conjugate pairs of eigenvalues. In this regime, the number
of real eigenvalues decreases until only the remaining ground-state
energy, along with the reduction of ε. As ε→−1+, the ground-state
energy diverges. For ε�−1 no real eigenenergy can be attainable.
(Reproduced from [33].)
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also called the similarity transformation),

h h h h= =-ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †H H U U, and , 91

where Û is a unitary operator. Clearly, when h =ˆ Î , the pseudo-
Hermitian Hamiltonian coincides with a Hermitian one. This
simple observation indicates that Hermitian Hamiltonians define
a subset of pseudo-Hermitian Hamiltonians. Moreover, it is not
difficult from equation (9) to see that pseudo-Hermiticity is
unitary invariant.

By defining the automorphism as an invertible operator
that maps an inner-product space onto itself, Mostafazadeh
[158] proved that if Ĥ is a non-Hermitian Hamiltonian with a
discrete spectrum and has a complete biorthonormal eigen-
basis, then Ĥ is pseudo-Hermitian if and only if one of the
following conditions hold: (i) the spectrum of Ĥ is real, or (ii)
the complex eigenvalues come in complex conjugate pairs
and the multiplicity of the eigenvalue pairs is the same. The
characteristic transform of the spectra from real to complex
entails a nontrivial phase transition. The PT phase transition is
thus naturally incorporated into the framework of pseudo-
Hermitian quantum mechanics. To ensure a real spectrum,
pseudo-Hermiticity is required but is not a sufficient condition
on its own. To formulate a necessary and sufficient condition,
Mostafazadeh [159] then introduced another theorem: ‘Let Ĥ
be a Hamiltonian that acts in a Hilbert space, has a discreate
spectrum, and allows a complete set of biorthonormal
eigenvectors Yñ Fñ{∣ ∣ }, .j j Then the spectrum of Ĥ is real if

and only if there is an invertible linear operator Ô so that Ĥ is

OOˆ ˆ †
-pseudo-Hermitian.’
One interesting question is now whether (C)PT-sym-

metry is in fact a subclass of pseudo-Hermiticity. Mostafa-
zadeh [160] claimed that it is. He went on to prove that all
diagonalizable linear operators with a discrete spectrum will
have an antilinear symmetry, leading him to the following
two corollaries: (i) any diagonalizable linear operator that
possesses a discrete spectrum (real eigenvalues) is anti-
pseudo-Hermitian; and (ii) any diagonalizable pseudo-Her-
mitian linear operator that possesses a discrete spectrum will
have antilinear symmetry. Since PT symmetry is an antilinear
symmetry, the PT-symmetric Hamiltonians imply that
ĥ-pseudo-Hermiticity is present, h t=ˆ ˆ ˆ ˆPT with t̂ an antilinear
operator obeying the relation t táF Yñ = áY Fñ∣ˆ ∣ ∣ˆ ∣ . In addition,
Mostafazadeh [163] demonstrated the unitary equivalence
between PT-symmetric quantum mechanics and Hermitian
quantum mechanics, and the recovery of Hermitian Hamil-
tonians from every PT-symmetric Hamiltonian.

Though pseudo-Hermitian quantum mechanics shows
abundant (mathematical) properties beyond PT-symmetric
one, from now on we will not discuss it as the focus of this
article is PT symmetry. Two comprehensive reviews on
pseudo-Hermitian quantum mechanics have recently been
given by Mostafazadeh [29, 164], where an extensive list of
references can be found. Another attention that should be paid
is that the content of PT symmetry discussed in this subsec-
tion is more about a quantum particle subject to canonical
continuous variables ( ˆ ˆ)x p, . The behavior associated with
such a Hamiltonian can be qualitatively different from that

with a Hamiltonian confined in a finite-dimensional Hilbert
space, as we shall see in the following subsection.

2.3. EPs and phase transition

Non-Hermitian quantum mechanics has interesting applica-
tions to open quantum systems. In particular, non-Hermitian
theories can be used as tools to model the evolution of open
quantum systems. For simplicity, from now on we will use a
symbol-without-hat to denote an operator for a matrix
representation, unless otherwise specified. One of the benefits
of doing this is that the notions are appropriate for both
quantum and classical treatments without adding confusion.
To make the arguments more illustrative, as a two-state toy
model, let us look at a simple 2 × 2 matrix Hamiltonian [155]

q

p

= ¹ Î

Î

q

q-

⎛
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⎞
⎠⎟ ({ }

[ )) ( )

†H re s
s re

H r s, Real and

0, 2 , 10

i

i

which is generally not Hermitian except θ=0. But it is PT
symmetric, where the parity operator is (equivalent to the
Pauli matrix σ1)

= = =-( ) ( )†P P P0 1
1 0

, 111

and the time-reversal operator T corresponds to complex
conjugation. Note that the parity operator (11) satis-
fies = =- †P P P .1

After a little algebra, one can easily obtain its two
eigenvalues

 q q=  - ( )r s rcos sin . 122 2 2

Evidently from equation (12), there are two parametric
regions to consider, one for which the square root is real and
the other for which it is imaginary. That is, when <s2

qr sin ,2 2 the energy eigenvalues form a complex conjugate
pair, which indicates the region of broken PT symmetry.
While for q>s r sin ,2 2 2 the eigenvalues are real, implying
the region of unbroken PT symmetry. In this unbroken region,
the simultaneous eigenstates of both H and PT have the form

 y
a

y
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a
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with a = q- ( )sin .r

s
1 sin Because the eigenvectors are gen-

erally biorthogonal for an open system [166], the eigenstates
(13) here obey the orthonormalization condition
 y y dá ñ = +- ∣ . If q<s r sin ,2 2 2 the states (13) are no longer

eigenstates of PT because α becomes imaginary. Moreover,
the PT norm of the energy eigenstate vanishes. q=s r sin2 2 2

is the exact EP where the phase transition occurs between
broken and unbroken symmetry. At this branch point, the
Hamiltonian (10) turns into a nondiagonal Jordan block. As a
result, the two eigenvalues collide and the two eigenvectors
are linearly dependent. In other words, the respective alge-
braic multiplicity of the eigenvalue is two, larger that the
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geometric multiplicity of one. In fact, this PT-symmetry
breaking point reflects all the characteristics of an EP singu-
larity. In general, EPs appear as singularities of non-Hermi-
tian eigenvalue problems and can be compared with
degeneracies in Hermitian operators. EPs are intrinsically
different from Hermitian degeneracies, conforming to the
situation in which both the eigenvalues and eigenvectors
coalesce. In the limit θ→0 in this two-state system, the
Hamiltonian (10) becomes Hermitian.

Interestingly, for the toy model presented above, one can
introduce the counterpart of PT symmetry, ‘anti-PT sym-
metry’, which instead anti-commutes with the Hamiltonian,

={ }PT H, 0.anti Mathematically, the Hamiltonian (10) would
become anti-PT symmetric on multiplying by i [63],

=
q

q-

⎛
⎝⎜

⎞
⎠⎟ ( )H ire is

is ire
. 14

i

ianti

Based on this observation, the concept of anti-PT sym-
metry was explicitly proposed and demonstrated in the work
of Peng et al [63]. The mathematical transformation between
H and Hanti, as a consequence, implies immediately that the
behavior of an anti-PT system would be conjugate to that of a
PT system. In addition, the action of PT on the Hamiltonian
(10) returns H itself while for the Hamiltonian (14), the same
operation yields—Hanti as a contrast. One can quickly check
that indeed, Hanti anti-commutes with the joint PT operator
defined in (11). Without difficulty, the two eigenvalues can be
readily obtained with the form

e q q=  - ( )ir i s rcos sin . 152 2 2

But the eigenstates remain unchanged and coincide
with the states (13). By comparing equation (15) with
equation (12), one may notice that e = iE , as expected
from the relationship =H iH.anti Opposite to the PT case, for

q<s r sin ,2 2 2 the two eigenvalues are complex and the sys-
tem is termed in the regime of unbroken anti-PT symmetry;
for q>s r sin ,2 2 2 the pair of eigenvalues become purely
imaginary, corresponding to the region of anti-PT symmetry
breaking. The anti-PT phase transition point stays at

q=s r sin .2 2 2 Distinct from the PT case, the anti-PT Hamil-
tonian (14) always maintain non-Hermitian irrespective of the
value of θ. At q = p p{ },

2

3

2
emerges perfect anti-PT sym-

metry in the sense that ε± are either real or purely imaginary.
This sort of toy models have been extensively studied in

the literature, owing to their simplicity. The involved research
has generated hundreds of theoretical publications in a variety
of journals. These include the work by Bender and his col-
leagues [155] where they conceived a charge operator C so
that the inner product of PT symmetry can be properly
defined through the co-application of CPT. Even though the
theory looks attractive, in this article we will not go into
further discussions here. Readers interested in this type of
research may take advantage of the cited references for
additional reading. A while ago, based on the toy model (10)
Bender et al [167] investigated time cost in the evolution
between two states (13) and predicted shortened time in
comparison with the conventional Hermitian evolution.

However, a new assessment [168] of this model suggests that
it is fundamentally flawed. In particular, the authors con-
sidered two implicit assumptions in previous calculations
[167], involving how PT symmetry is locally defined and how
its predictions are computed. They then put these assumptions
to test with a classic thought experiment, in which Alice and
Bob share two entangled states. By choosing how Alice
measures her state, they found that Alice could send infor-
mation to Bob faster than the speed of light, implying the
violation of the no-signaling principle in special relativity.
This observation led the authors to conclude that PT-sym-
metric quantum theory fails to be a fundamental theory of
Nature. Undoubtedly, this work made an interesting attempt
on questioning PT-symmetric quantum theory as a valid local
theory.

Before moving to the next section, we wish to make the
following few remarks on PT-symmetric quantum mechanics.
First of all, although the toy model undoubtedly serves as an
intuitive way to illustrate the essence of PT and anti-PT
symmetry, due to the lack of physical substance, so far its
practical implementation remains highly elusive in terms of
the demanding complex PT-potentials. Second, unlike the
case with dynamical variables (see section 2.2), the toy model
here pertains to a discrete version. As shall be evident in the
following sections, it is this toy model that has significance in
optics and other branches of physics where complex PT
potentials can be easily realized by properly balancing gain
and loss. Third, as will become clear in the rest content, each
matrix element in the Hamiltonians (10) and (15) has the
well-defined physical meaning for different topics. Conse-
quently, this leads to a tight connection with other research
areas.

3. PT symmetry in optical microcavity systems

Regardless of the impressive theoretical success in the
development of non-Hermitian quantum domain, yet, the lack
of any experimental support makes these theories highly
skeptical as physical theories in reality. Notwithstanding that,
in the past decade non-Hermitian systems with the notion of
PT symmetry in particular, as an emerging platform of
interdisciplinary research among optics [39, 40], photonics
[46–48, 52, 53, 58, 64, 65], AMO physics [62, 63], acoustics
[59–61], microwave mechanics [43, 44], electronic circuits
[41, 42, 169], and material science [45, 49–51, 54–57], have
attracted extensive studies and initiated numerous intriguing
prospects [66–129] beyond the capabilities of conservative
structures. Rapid progress in its rich interplay with other
physical phenomena has exceedingly reshaped the original
intention to be the paradigm for extending Hermitian quantum
mechanics. This section is committed to recent advances in
experimenting PT symmetry using optical microcavities. In
order to make the story self-contained, we start with the
course on establishing PT-symmetric optics through the for-
mal equivalence between the paraxial optical propagation
equation in a medium and the Schrödinger equation for
a quantum particle. We then continue to review recent
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experimental demonstrations of PT symmetry utilizing optical
microcavities. As tunable photonic PT systems can add new
exciting functionalities being potentially able to find even
broader applications over the field of photonics, in the rest
part of this section we will pay attention to few such efforts
including on-chip optical nonreciprocity. Besides, we would
like to present a new proposal on realizing both PT and anti-
PT within the same microcavity setting.

3.1. Paraxial optics versus quantum mechanics

Quantum physics are fundamentally different from classical
physics even from a conceptual point of view. A well-known
example is that, in quantum theory the wavefunction is a
complex probability amplitude, while in classical optics, its
analog—the electromagnetic field—is a measurable real
quantity. In fact, since the birth of quantum mechanics, its
founders made many attempts to find at least a formal con-
nection to classical physics. Among these efforts, a notable
view came from Schrödinger [170], who believed classical
dynamics of a point particle be the geometrical optics
approximation of a linear-wave equation, in the same as ray
optics be a limiting approximation of wave optics. In the
subsequent years some rigorous mathematical analogies have
been progressively identified between classical optics and
quantum mechanics. Among them, one of the best known and
widely exploited is based upon the similarity between the
time-independent Schrödinger equation and the time-inde-
pendent Helmholtz equation. Historically, this analogy has
successfully led to many fruitful discoveries and designs,
such as i) designing multilayered optical structures, as their
quantum counterparts with 0D, 1D, or 2D geometry [171],
with the same transmission characteristics; ii) the transverse
modes of aspherical laser resonators resembling the eigen-
states of the stationary Schrödinger equation with a potential
well determined by the mirror profile [172]; iii) the ladder
operator description of the Hermit-Gauss or the Laguerre-
Gauss modes of a laser beam equivalent to that of the
quantum harmonic oscillator [173]; iiii) the mimic of a
coherent state through the refraction of displaced light beams
by lenses [174]; and v) the optical simulation [175] of the
Franck–Condon principle as well as the Ramsauer-Townsend
effect in the mismatch of a mode passing through two fibers
with different refractive index distributions; to name just a
few. An excellent account on the topic please refer to the
textbook [176] written by Dragoman and Dragoman. In these
analogies, the Helmholtz equation by the paraxial approx-
imation is typically reduced to the time-independent Schrö-
dinger equation, where the propagation distance, wavelength,
and refractive index correspond to the time, Planck’s con-
stant, and potential in quantum mechanics. The momentum in
the quantum world tallies with the ray direction in the optical
case. As a result, ray optics is recovered in the limit as the
wavelength approaches zero.

In 2007 this analogy was rigorously employed by
Christodoulides and his coworkers [36] to construct PT
symmetry within the realm of optics. More specifically, let us

consider a 1D dielectric planar inhomogeneous medium
having a relative permittivity that only varies along the x axis,
e =( ) ( )x n x .2 Here, the complex refractive index =( )n x

+( ) ( )n x in xR I with ( )n xR representing the real index profile
of the structure, and ( )n xI denoting the gain or loss comp-
onent. Then the optical beam propagation within the medium
can be theoretically described, in the paraxial diffraction
approximation, as a Schrödinger-like equation with 1D by
assuming the electric field f= w-( ) ( )E x z e, ,i kz t

f
f e

¶
¶

= = -
¶
¶

- ( ) ( )i
z

H H
k x

k x,
1

2
, 16p p

2

2

with k=2π/λ0 and λ0 being the vacuum wavelength of
light. It shall be noted that Hermitian Hamiltonians are in line
with the cases where the optical energy is conserved and ε(x)
(or n(x)) is real (see figure 2(a)). In a continuous medium, the
parity operator P performs the spatial reflection but the time-
reversal operator T reverses the propagation direction. Similar
as in the quantum case (6), in order for the permittivity ε(x) to
be PT-symmetric, the condition *e e= -( ) ( )x x must be ful-
filled. This condition arises from the necessity for the
Hamiltonian (16) to commute with the PT operator PT in such
a way that f is a common eigenstate of both H and PT.
Practically, it demands that the optical complex potential kε
(x) consist of a symmetric real refractive index guiding

= -( ) ( )n x n xR R and an antisymmetric gain/loss profile
= - -( ) ( )n x n x .I I Or, *= -( ) ( )n x n x in a compact way (see

figure 2(a)). By expanding the scalar field amplitude f ( )x z,
onto its eigenvalue and corresponding eigenmode as
f = b( ) ( )x z u x e, ,i z equation (16) reduces to the scalar
Helmholtz equation

e b
¶
¶

+ =
⎡
⎣⎢

⎤
⎦⎥( ) ( )

k x
k x u u

1

2
. 17

2

2

The mode propagation constant ξ is thus given by
ξ=k+β. Note that equation (17) agrees with the stationary
Schrödinger equation for a quantum particle under the formal
substitution  -/ /k m1 2 2 .2

In contrast to the quantum case discussed in section 2, one
fundamental aspect associate with optical PT components (as
well as others) has to do with their coupled-mode interactions.
Abiding by this rule, a simpler arrangement for equation (17) is
to look at a PT coupler with one component being optically
pumped to provide gain γ while the neighbor arm experiencing
equal amount of loss. Under these conditions, one can plug the
ansatz f =( ) [ ( ) ( )x z a z u x, 1 1 + b( ) ( )]a z u x ei z

2 2 into the para-
xial propagation equation (16) with the normalization of the

eigenmode ( )u xj according to *ò d- =( ) ( )dxu x u x .m j mn After

straightforward algebra, one can thence show that the evolution
of the system is governed by a set of coupled-mode theory
[177, 178],

g k
k g

= = =
-

- -
⎛
⎝⎜

⎞
⎠⎟( ) ( )i

dA

dz
HA A

a
a H

i
i

, , , 181

2

where *òk e= -
-¥

¥
( ) ( ) ( )x u x u x dx1 1 / *ò -

-¥

¥
( ) ( )u x u x dx2 1 is

the mode coupling coefficient and is a real quantity, and
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*òg e= -
-¥

¥
( ) ( ) ( )i x u x u x dx1 2 / *ò -

-¥

¥
( ) ( )u x u x dx1 2 repre-

sents propagation constant shift as a result of the coupling
interaction. Recall the toy model sketched in section 2.3. It is not
difficult to find that the non-Hermitian Hamiltonian in
equation (18) is genuinely PT symmetric, if setting

g q k= = = -pr s, ,
2

in equation (10). As a result, real
eigenvalues are expected as long as the PT symmetry is not
broken. A direct diagonalization gives the two eigenvalues,

b k g=  - ( ). 192 2

If the gain/loss parameter is smaller than the coupling
coefficient g k, the propagation constants x b= + k of
the two eigenmodes take real values which correspond to exact
or unbroken PT-symmetric phase. If γ>κ, on the other hand,
PT symmetry automatically fails and the two eigenvalues (19)
become a complex conjugate pair. The transition point γ=κ is
known as the spontaneous PT phase-transition point, or more
generally the EP.

The eigenstates involve a left and right biorthogonal set
of eigenvectors that are defined as b b bñ = ñ  ∣ ∣H R R

and
b b bá = á  ∣ ∣H ,L L

with the orthonormalization condition
b b dá ñ =  +-∣ .L R

The corresponding eigenstates can be either
calculated directly or from equation (13) as
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In the unbroken PT phase, both the H and PT operators
share the same set of eigenstates and the mode intensity in this
regime is symmetric with respect to the mirror axis of the two
parts of the system, see figure 2(b). In the broken region,
however, the eigenstates of H cease to be eigenstates of the
PT operator, in spite of the fact that H and PT still commute.

This stems from the antilinear property of the PT operator. In
addition, the spatial distribution of the modes is asymmetric,
one of them living predominantly in the amplifying site and
the other vanishing in the lossy one (see figure 2(b)).

The beam dynamics associated with equation (18) is
relatively straightforward and was investigated theoretically
in [19, 22]. To this end, the Hamiltonian in equation (18) is
first written in the form b s b s= = 

 · ˆH n n where sn is the

Pauli matrix projected along the k g= -
b

ˆ ( )n i, 0,1 direction.

By applying the identity s= +se I d i dcos sin ,id
n

n the
effective evolution operator U(z) takes the form

b
b

b= = --



( ) ( ) ( ) ( )U z e I z i

H
zcos sin . 21izH

Application of the above operator (21) to a generic initial

preparation f = = ( )( )z
c
c0 1

2
permits to evaluate the beam

y ( )z at a propagation distance z,
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The total light intensity f f= +( ) ∣ ( )∣ ∣ ( )∣I z z z1
2

2
2 is not

any more a constant of motion. Its dependence on the paraxial
distance z can be easily computed from equation (22),
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Figure 2. PT-symmetric coupler. (a) Schematic of the optical PT potential for two waveguide coupler. (b) Evolution of typical spatial
distribution of the two supermodes before (γ<γPT) and after (γ<γPT) the phase transition with γPT =1 by setting κ=1. (c)–(e) Beam
dynamics for this PT-symmetric coupler. (c) In the unbroken phase region, the total light intensity shows Rabi-like oscillatory behavior and
the dynamics is asymmetric for different initial conditions with respect to the z-axis of symmetry of the structure. (d) The beam dynamics at
the exceptional point where the total intensity grows in a power law along with the propagation distance z. (e) In the phase breaking regime,
the beam intensity grows exponentially in an asymmetric way ((b)–(e) are adapted from [22]).
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Figures 2(c)–(e) illustrate the beam dynamics described
by equations (22) and (23) in a PT-symmetric coupler for
some typical values of the gain/loss parameter γ. The asso-
ciated experimental measurements have been performed in
[39, 40] with use of coupled optical waveguides. In these
experiments, the authors recognized that as γ reaches κ, the
total beam power starts to grow exponentially, while for
γ<κ (coherent) power oscillations are observed. The former
behavior is rooted in the complex nature of the propagating
constants in the broken phase, while the latter is due to the
biorthogonal nature of the two supermodes. At γ=κ
the intensity grows in a power law manner with respect to the
propagation distance z, signaling the existence of a defective
eigenvalues. All these cases can be easily derived from
equation (22) analytically. On the other hand, in all cases the
beam evolution is nonsymmetric. Specifically, the beam
propagation pattern differs depending on whether the initial
excitation is on the left or right waveguides. This has to be
contrasted with the Hermitian case (γ=0), where the beam
propagation is insensitive to the initial condition.

Though the analogy enables the possibility of theoreti-
cally extending PT symmetry from quantum to wave optics, it
is the recognition of coupled-mode dynamics that actually
paves the way for experiment involved. In the language of
coupled-mode theory, each matrix element in the Hamiltonian
(18) has its well-defined physical meaning. This makes itself
distinct from the quantum counterpart (10), which more or
less suffers the perplex of metaphysics. Thanks to its wide
range of applicability, coupled-mode theory has already been
shown to exceedingly facilitate the studies of PT symmetry in
a variety of branches of physics. To date, all research on PT
symmetry in the classical world cannot escape the coupled-
mode dynamics. Setting aside our theme, we notice that the
terminology ‘PT symmetry’ [179, 180] was used to explain
some optical experiments with high-temperature super-
conductors long before the invention of PT symmetric
quantum mechanics [33].

3.2. PT symmetry in coupled optical microcavities

It turns out that the formulation of a PT-symmetric coupler in
section 3.1 utilizing the coupled-mode theory is fairly general
for various physical systems in terms of scattering problems.
In optical settings, light scattering delivers important infor-
mation about their spectral properties and reveals the con-
sequences of their symmetries. The adoption of PT potentials
is expected to empower new regimes of linear scattering, and
furthermore facilitate novel photonic devices that surmount to
conservative architectures. In the last years silicon photonics
has become one of the most promising photonic integration
platforms. This can be mainly attributed to the combination of
a very high-index contrast and the availability of mature
CMOS fabrication technology, which allows the use of
electronics fabrication facilities to make photonic circuitry.
Thanks to the CMOS technique, silicon waveguide structures
have shown unprecedented reduction in footprint, and espe-
cially wavelength-selective devices. A prime example of this

is optical microring resonators (a set of waveguides in which
at least one is a closed loop coupled to some sort of light input
and output). Optical microresonators [1–3] offer the potentials
for developing new types of photonic devices such as light
emitting diodes, low-threshold microlasers, ultra-small optical
filters and switches for wavelength-division-multiplexed net-
works, color displays, and so on. Moreover, novel designs of
microresonators open up very challenging fundamental sci-
ence applications beyond optoelectronic device technologies.
The interaction of active or reactive material with the modal
fields of optical microresonators provides key physical
models for basic research including cavity QED experiments,
spontaneous emission control, nonlinear optics, bio chemical
sensing and even quantum information processing.

In an optical waveguide light propagation is confined via
total internal reflection (TIR) by two dielectric interfaces to a
region of high refractive index. The guiding region of high
refractive index is formally equivalent to a potential wall
wherein the electric fields may be decomposed into eigen-
modes that are solutions of the Schrödinger equation. Light
propagating in curved waveguide (such as cylindrical or
spherical surface) is still guided via TIR at the outer interface,
but it no longer demands an inner interface to complete the
confinement. Elimination of the inner boundary leaves a di-
electric disk that supports whispering gallery modes (WGMs).
These modes consist of azimuthally propagating fields guided
by TIR at the dielectric interface and optical inertia that
prevents the field from penetrating inward beyond a fixed
radius termed the inner caustic. Mathematically, a WGM is a
solution of the Helmholtz equation in a curved coordinate
geometry. Attention is restricted to a cylindrical geometry
appropriate for the analysis of planar disk and ring resonators.

Inspired by waveguides experiments in the spatial
domain [39, 40], in 2014 two groups independently per-
formed optical PT symmetry using two directly coupled
WGM microtoroid resonators in the temporal domain [4, 5].
As schematically depicted in figure 3, the dynamics of the
input signal field in two coupled cavities is effectively
described by the temporal coupled-mode approach [178],

m
m g

= = =
-g

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )i

d

dt
A HA A

a
a H

ig
i

with and . 24
g

Here, g ( )a tg, represent the normalized supermode amplitudes
in toroids 1 and 2, and μ stands for the coupling strength
between two resonators due to mode overlapping.

g= -
+ ∣ ∣/

g
g

a a g1 g s

0
2 [4] is the net gain supplied by optically

pumping doped Er+3 ions in the active toroid 1, where g0 is
the pumping gain for =a 0,g as associates with the gain
saturation threshold, and γg counts the total loss. Similarly, γ
characterizes the total loss for the passive cavity 2, which
relies on the quality factor Q. In the derivation of
equation (24), the two microcavities are assumed to share the
same resonant frequency, which also coincides with the input
signal frequency. The nonlinearity appearing in g seemingly
makes the problem difficult to analyze in general. In fact,
depending on the circulated optical power ∣ ∣ag

2 with respect to
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the saturation threshold, it can be segmented into two dif-
ferent regions: linear and nonlinear. That is, if ∣ ∣/a a 1,g s

the nonlinear saturation effect can be neglected safely. On the
other hand, if ∣ ∣/a a 1g s one has to take into account the
nonlinearity, which contains rich physics (see below and
section 3.4) despite its complexity.

Let us first focus on the linear case of ∣ ∣/a a 1.g s In this
region, one can quickly check that for perfect PT symmetry, it
demands balanced gain and loss g=γ in equation (24). As
such, the PT Hamiltonian (24) concurs with that (18) for the
waveguide directional coupler. Without any difficulty, the
two eigenspectral branches are centered at

w m g=  - ( ), 252 2

pertaining to the cavity resonance frequency. By adopting the
same method ascribed in section 3.1, the light beam f(t) at the
propagation time t, for the initial preparation = =( )A t 0

( )c
c ,1

2
takes the form
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with a g m= ( )/arc sin .
From the eigenspectra (25), a PT-like spectral bifurcation

occurs around the EP μ=γ. For μ � γ, the two PT super-
modes with a zero linewidth are spectrally distributed at

m g -2 2 away from the cavity resonance and the optical
power does a Rabi-like oscillation between two cavities
(see equation (26)). By operating in such a region, an ideal

single-mode lasing operation can be realized with the spectral
width much less than the cavity linewidth, see section 4.1. As
μ<γ, ω± become complex and the PT-symmetry is spon-
taneously broken. As the PT-symmetric phase is broken, one
supermode gradually vanishes because of the absorption
while the other experiences amplification. One peculiar fea-
ture occurring in this latter case is that while the eigenspectra
are complex, their linewidths are considerably shrunk as a
result of the compensation from the mode coupling. At μ=γ
the two modes start to coalesce into the cavity resonance
frequency. Moreover, the presence of this EP leads to the
substantial reduction of the lasing threshold [117, 118].
Generally, the existence of this singularity point does not
require the exact balance of gain and loss between two
components, which gives rise to the opportunity to introduce
the concept of passive PT symmetry [39]. Using two pas-
sively-coupled microtoroid resonators, in a recent experiment
[181] Yang’s group realized loss-induced suppression and
revival of lasing, a phenomenon that resembles a temporal
version of the loss-induced transparency observed in two
passively-coupled waveguides [39]. Although an effective PT
system can be mathematically constructed by pulling out a
global loss offset in passive structures, in this review we
retain our attention to active PT symmetry with balanced gain
and loss. For passive-PT configurations, unless otherwise
specified, we will reserve them as conventionally coupled
systems as they have been researched for a very long time
from a different perspective.

Although equation (26) seems to give a good account of
the light propagation within two microresonators, it does not
take into account the light launching mechanism properly,
which leads to additional features beyond the linear homo-
geneous systems of ordinary differential equation (24) with
constant coefficients. This deviates from the waveguide case
and essentially leads to different dynamics. To count the light
injection consistently, light transport in such a coupled-cavity
system can be studied by the input–output theory [178] which
results in inhomogeneous linear systems of ordinary differ-
ential equations. To fulfill the PT operation, the output signal
amplitudes at ports 4 and 1, corresponding to the forward and
backward propagation configurations (figure 3) respectively,
are of interest for the same input signal amplitude sin. That is,
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Figure 3. On-chip two directly coupled WGM microtoroid
resonators with gain and loss for PT symmetry as well as optical
nonreciprocity. The system is composed of two toroids (1 and 2)
which are coupled to two tapered optical fibers (1 and 2). Toroid 1 is
an active resonator resonant at frequency ω0 and is optically pumped
to produce a net gain g. Toroid 2 is a passive resonator resonant also
at ω0 with a decay rate γ. The coupling strengths between toroid
1-toroid 2, toroid 1-fiber 1, and toroid 2-fiber 2 are, respectively,
denoted by μ, κ1 and κ2. Optical reciprocity and nonreciprocity are
studied by analyzing transmittance spectra in forward (a) and
backward (b) propagation configurations. sin represents the ampl-
itude of the input signal field.
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These two sets of equations (27) and (28), apparently
different from equation (26), are then the starting points for
analyzing the PT-symmetric optics (and nonreciprocal signal
transmission). The input–output theory does not change the
cavity resonance property, but it does modify the supermodes
dynamics. Alternatively, the centers of two PT eigenspectra
still follow equation (25). Yet, the signal transmission can be
simply evaluated in the steady-state approximation. As such,
from equations (27) and (28), the transmission coefficients at
ports 4 and 1 are, respectively,

w
m k k

w
w= =

G
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s

s
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s

s
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with w m g w wG = - - -( ) ( ) .2 2
0

2 Equation (29) immedi-
ately leads to the conclusion that the linear PT symmetry
yields symmetric (or reciprocal) transmission spectra regard-
less of the unbroken or broken phase. Additionally, it shows
that due to spectral singularities, these transmission coeffi-
cients tend to grow infinitely, a phenomenon that was pre-
viously noticed by Mostafazadeh [119] because of the
linearity of the system. This feature of significant signal
amplification offers a practical way to determine whether g
balances γ in the experiment.

These theoretical analysis have been confirmed in the
experiments [4, 5] where the experimental setup is schema-
tically shown in figure 4(a). Figure 4(b) is the 2D top view of
the system. The evolution of the two PT supermodes from the
unbroken phase to the broken phase is illustrated in
figure 4(c) as a function of the separation distance between
two microcavities. If one focuses on the peak locations of the
two PT eigenspectra, figure 4(d) clearly reveals the quadratic
splitting between two PT modes as well as the transition from
the unbroken phase to the broken. It is worth noting that
because of the imperfect cavity surface, backscattering ori-
ginated from the Rayleigh scattering [180] is non-negligible
in high-Q cavities. The observed double-peak structures in
figure 4(c) are precisely the result of this reason. Owing to the
potential application in integrated photonics, the research on
PT symmetry using optical microcavities has attracted a
considerable attention in the past few years. For example,
Phang et al theoretically considered the effects in the presence
of dispersion and frequency misalignment in two PT-sym-
metric coupled microresonators [182]. He et al further gen-
eralized the case to an infinite structure with the cyclic
permutation symmetry [91].

Despite the mechanism of PT symmetry breaking is
inherently linear, of fundamental interest will be to compre-
hend how this process unfolds in the presence of nonlinearity
[22–26]. Given that lasers are by nature nonlinear devices,
this trend becomes imperative. Likewise, adding nonlinearity
was predicted to support ample novel phenomena including
solitons in PT structures [38]. The appearance of gain satur-
ation in the active optical microcavity [4, 5] provides a new
addition along this direction. In the presence of saturable gain
and loss that is prevalent in such kind of systems, optical
properties of PT-symmetrically coupled microcavities would

be dramatically modified and may exhibit new features that
cannot be achievable in the linear case. By counting the
saturation effects in the dual optical micoresonator arrange-
ment shown in figure 3, the light transport is now changed to
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respectively, for the forward and backward configurations,
where g0 represents the unsaturated loss for the passive cavity.
Here it assumes the same threshold as for both gain and loss
microresonators and g g= .g The saturable loss term could be
introduced through an externally controllable probe to induce
in practice. When the modal field amplitudes are small in both
injection cases, equations (30) and (31) are reduced to the
linear situations (27) and (28) by ignoring the saturation
effects. Caution should be paid to the coupling strengths k1 and
k .2 Depending on k∣ ∣ ∣ ∣s g ain s1 0 and/or k g∣ ∣ ∣ ∣s ain s2 0
as well as g∣ ∣ ∣ ∣a ag s, and/or g∣ ∣ ∣ ∣b a ,g s, the modal field
amplitudes in the system can experience very complicated
evolutions and result in rich physics including the mixtures and
transitions of linear and nonlinear propagations even for the
same propagation configuration. Due to the nonlinearity,
equations (30) and (31) are difficult to be solved analytically in
general. An interesting attempt was recently made by Hassan
and his coworkers [183], which will not be further discussed in
this article.

3.3. Proposal on anti-PT symmetry in optical microcavities

Though PT symmetry in various physical settings has been
studied extensively in the past decades, its counterpart, anti-
PT symmetry, has only been known by people in very recent
years. One major challenge stems from the unusual dis-
sipative coupling appearing in the off-diagonal terms of the
anti-PT-symmetric Hamiltonian (14). As it will become clear
shortly, such a dissipative coupling mechanism is funda-
mentally different from the Hermitian couplings in any PT-
symmetric Hamiltonian. By employing atomic coherence
transport in a warm alkali atomic vapor cell, the first anti-PT
experiment [63] was demonstrated in two coupled atomic spin
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waves, where the randomness and irreversibility associated
with the atomic thermal motion set the foundation of non-
Hermiticity of the system Hamiltonian. As mentioned in
section 2.3, the dynamics of an anti-PT system is governed by
a non-Hermitian Hamiltonian anti-commuting with the joint
anti-linear PT operator, or ={ }PT H, 0.anti Moreover, the
mathematical transformation between the PT-symmetric and
anti-PT-symmetric Hamiltonians suggests that the properties
of an anti-PT system are exactly conjugate to the corresp-
onding PT system. For instance, in the symmetry-unbroken
phase, lossless propagation in a PT system corresponds to
refractionless (i.e. unit-refraction) propagation in an anti-PT
system [63]. This rather intriguing effect gives rise to a
complementary probe in the non-Hermitian optics, stretches
the extent of novel techniques for light manipulation, and
offers new paradigms of light control. In spite of these
attractions, anti-PT symmetry is not easily attainable in
experiment. In two earlier attempts, one proposal [184]
requires a challenging balance of positive and negative
refractive indices in coupled metamaterials, while the other

[185] utilizes an optical lattice of spatially driven cold atoms,
which is very difficult in practice and impossible to scale.

Motivated by real applications, an implementation of
anti-PT symmetry in an integrable photonic system becomes
thus highly desirable. It turns out that anti-PT symmetry is
realizable in three passively-coupled optical microcavities
[186, 187] through the technique of adiabatic elimination
[188]. As schematically depicted in figure 5(a), w D, , andj j

g =( )j 1, 2, 3j denote, respectively, the cavity resonance
frequency, laser frequency detuning, and the total loss rate in
microcavity j. m ( )1 2 and k ( )1 2 stand for the coupling strengths
between Cavity 2 and Cavity 1 (3), and in/out of Cavity 1 (3)
through tapered fiber, respectively. Note that there is no direct
coupling between Cavity 1 and Cavity 3. For the forward
configuration, the signal laser is launched from Cavity 1
whereas for the backward configuration, the signal field is
launched from Cavity 3. The signal dynamics in the system
can then be well described by the temporal coupled-mode
formalism combined with the input–output theory. For

Figure 4. PT symmetry using two directly coupled WGM microtoroid resonators with balanced gain and loss. (a) Schematic 3D view of the
system. (b) Top view optical microscope image of the system in (a). (c) Evolution of PT-symmetric transmission spectra from the unbroken
phase to the broken by varying the coupling strength (or separation distance) of the two toroids. (d) Spectral splitting between the two PT
supermodes in (c). (Adapted from [4].)
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simplicity, let us first look at the signal transport in the for-
ward configuration, which obey the following set of ordinary
differential equations [186],

g m k= D - - + ( ) ( )a i a i a s , 32in1 1 1 1 1 2 1

g m m= D - - - ( ) ( )a i a i a i a , 332 2 2 2 1 1 2 3

g m= D - - ( ) ( )a i a i a . 343 3 3 3 2 2

The backward signal transmission can be similarly
derived, except that the driving term shall be added to Cavity
3 instead of Cavity 1 [186],

g m
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To realize anti-PT symmetry, it essentially requires to
have the dissipative coupling between optical modes in
Cavity 1 and Cavity 3 by adiabatically eliminating optical
modes in Cavity 2. As such, Cavity 2 is assumed to be highly
lossy in comparison with its laser frequency detuning, i.e.,

gD  .2 2 Under this condition, optical modes in Cavity 1 and
Cavity 3 will then become anti-PT symmetrically coupled.
That is, from equation (33) one has » - m m
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stituting this result into the rest two equations (32) and (34)
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The physics now becomes clear. In order to make the non-
Hermitian Hamiltonian (35) satisfy ={ }‐PT H, 0,anti PT besides
m m=1 2 and g g= ,1 3 the detunings Δ1 and Δ3 should be
equally but oppositely tuned in experiment, same as reported in
[63]. As a result, the Hamiltonian in equation (35) coincides with
the one given in (14). The two off-diagonal coupling coefficients
are indeed purely imaginary as demanded in equation (14). In
addition, these two non-Hermitian terms, in fact, violate the
time-reversal symmetry, thus implying nonreciprocal light
transmission. It is anticipated that such a linear system may be
beneficial to chip-based optical nonreciprocity beyond the con-
ventional Faraday magneto-optical effect. Without any compu-
tational difficulty, the two eigenspectra have the form of
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Depending on the signal detuning Δ1 greater or smaller

than the dissipative coupling strength
m

g
,1

2

2
the two eigenvalues

(36) are either complex or purely imaginary. For complex
eigenspectra, their real parts describe the signal transmission
peak locations while the same imaginary parts indicate the same
spectral linewidth. The system is in the anti-PT phase breaking
regime. On the contrary, in the anti-PT unbroken phase region,
purely imaginary eigenspectra mean that the two signal trans-
mission peaks coalesce but possess different linewidths. The

anti-PT phase transition occurs at the EP, D =
m

g
.1

1
2

2
These

spectral behaviors have been theoretically plotted in figure 5(b).
In anti-PT symmetry, one interesting effect appearing in the
phase unbroken case is to create flat-band structure [63]. The
occurrence of the phenomenon relies on the destructive inter-
ference associated with different effective refractive indices
created in two cavities 1 and 3. It is this destructive interference
that leads to the flat-band structure for the signal transmission,
whose bandwidth is mainly determined by the anti-PT band-
width in the unbroken phase region. The imperfections in real

Figure 5. (a) Schematic of the proposed tri-microcavity system for the realization of both PT and anti-PT symmetry. (b) The real (top) and
imaginary (bottom) parts of the two supermodes (34) obtained from the transmission spectra.
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implementations may cause the shift of EP and bring Hermitian
components into the anti-Hermitian coupling strengths.

Interestingly, the proposed structure also allows the
implementation of PT symmetry [4, 5] in the opposite regime.
In this case, it necessitates Cavity 2 to be of high quality in
terms of its laser frequency detuning, i.e., gD  .2 2 Under

this condition, equation (33) gives » m m+
D

a .
a a

2
1 1 2 3

2
Plugging

this result into equations (32) and (34) then yields
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By comparing the Hamiltonian in equation (37) with that
in equation (27), for perfect PT symmetry it further needs
g g= -1 3 in addition toD = D1 3 and m m= .1 2 We notice that
the proposed tri-microcavity system is the first architecture
capable of realizing both PT and anti-PT.

Owing to their linearity, a different perspective about the
relationship of perfect PT and anti-PT symmetry can be taken
by recasting equations (27) and (35) into the form of a
damped harmonic oscillator driven by a constant force,

g m g x+ - + - =̈ ( ) ( ) ( )a g a g a s , 38g g g in
2

and

h z+ D - D - + D D =̈ ( ) ( ) ( )a i a a s . 39in1 1 3 1
2

1 3 1

Note that in the derivation of equation (39), the decays
have been set to be zero for simplicity. From equations (38)
and (39), real eigenspectra for perfect PT and anti-PT sym-
metry correspond to have a simple harmonic oscillation by
canceling the damping term.

3.4. On-chip optical nonreciprocity

Achieving rapid progress in integrated photonic circuits
demands all-optical elements for high-speed processing of
light signals. The optical isolator is one such indispensable
ingredient. Similar to electronic diodes, an optical isolator
shall ensure the flow of light to be unidirectional and reduce
problems caused by unwanted reflections or spurious inter-
ference effects. Owing to the time-reversal symmetry retained
in light–matter interaction, unfortunately, light wave transport
in a linear, time-invariant optical system complies with the
Lorentz reciprocity [189]. As a result, the successful design of
an optical isolator relies on the breach of time-reversal sym-
metry, as typically achievable by applying the Faraday effect
in magneto-optical media through the inclusion of anti-sym-
metric off-diagonal dielectric tensor elements. In spite of their
commercial success, this well-established approach poses a
severe challenge to implement in chip-scale photonics due to
fabrication complexity with the mature CMOS technique,
difficulty in locally confining magnetic fields, and significant
material losses. As such, a vibrant search for different

physical principles to achieve on-chip optical nonreciprocity
has garnered a vast impetus in recent years. Alternative
methods, most, as yet, far from practical realizations, include
indirect interband transitions, optomechanical interactions,
Kerr nonlinearities, gain/absorption saturation, thermo-optic
effect, opto-acoustic interaction, Raman amplification, non-
linear parametric amplification, stimulated Brillouin scatter-
ing (SBS), Bragg scattering, and nonlinear nonadiabatic
quantum jumps. The progress with the two separate topics of
chip-scale nonmagnetic optical isolators and PT-symmetric
optics brings forward a legitimate question whether it would
be possible to attain optical nonreciprocity with PT symmetry.
This has motivated continued interest in the realization of
chip-based optical nonreciprocity with PT symmetry.

In the works [4, 5], two groups also observed highly
nonreciprocal transmission in two gain–loss-coupled micro-
toroids. As pointed out by [4], this nonreciprocal light
transmission is due to the gain saturation nonlinearity, see
figure 6(a). Thanks to the high Q factor, it turns out that the
signal gain is very easily saturated when increasing the input
signal and/or pump powers. With this compound system,
they achieved switchable isolation by elevating the incident
signal power from a few nanowatts to ∼30 μW. Such a
switchable isolation behavior can be also obtained, for
example, by only modifying the coupling strength k2 between
fiber 2 and toroid 2 (figure 4(b)) but with fixed input signal/
pump powers and other coupling strengths (m k, 1), as shown

Figure 6. (a) Measured gain g′ as a function of the dropped pump
power, which clearly reveals the gain-saturation nonlinearity.
(b) Observed switchable optical isolation in terms of the separation
distance between toroid 2 and fiber 2. The insets are typically output
transmission spectra for the forward and back signal inputs.
(Adapted from [4].)
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in figure 6(b). As one can see, when the coupling between
fiber 2 and toroid 2 is weak, the isolation ratio takes a
negative sign, which implies more backward transmission
than forward. However, when the coupling is large enough,
the isolation ratio becomes positive, indicating more output
from the forward configuration. In the coupled-mode theory
(27) and (28) presented in section 3.2, the theoretical simu-
lations can explain the observed phenomena well by includ-
ing the gain-saturation nonlinearity. The use of gain-
saturation nonlinearity to break the time-reversal symmetry
has been further studied subsequently by utilizing only one
active microcavity [190, 191]. As these latter works have no
relation with PT symmetry, we will not discuss them here.

In order to create asymmetric transmission, in the work
[80] by Nazari et al they theoretically explored directional
nonlinear Fano resonances, which emerge in a photonic cir-
cuit consisting of two nonlinear PT-symmetric microcavities
which are side-coupled to a waveguide (see the insets in
figure 7(a)). Due to the interplay of Kerr-nonlinearity with the
active elements, the generated nonlinear Fano resonances are

triggered at different resonance frequencies depending on the
direction of the incident light. Meantime, the PT-symmetric
configuration provides a strong output signal and ensures the
stability of the circuit against lasing action. By operating the
system in the ‘weak’ indirect coupling between two micro-
cavities, the authors numerically showed that the interplay of
the stability (i.e. nonlasing) and PT amplification properties in
the broken phase together with the presence of Kerr non-
linearity can lead to unidirectional amplified transport
(figures 7(a) and (b)).

Of these schemes [4, 5, 80], asymmetric optical trans-
mission is mostly demonstrated with only injecting a light
wave in either forward or backward direction but never both.
This type of implementation drawbacks was questioned in a
recent theoretical proposal by Fan group [192], where they in
particular proved that Kerr or Kerr-type nonlinearities are
incapable of providing complete isolation because of dynamic
reciprocity. A close examination on these schemes [4, 5, 80]
shows that the involved nonlinearities are Kerr or Kerr-type,
rendering them subject to the inevitable dynamic reciprocity.
As a result, complete isolation of backscattered signals looks
out of reach with these schemes. Very lately, Ma et al has
successfully managed to attain nonreciprocal PT symmetry by
employing the SBS in two microtoroid resonators, where the
SBS is exploited to produce direction-sensitive gain in the
Brillouin cavity [193]. Thanks to the guided acoustic wave
and accompanying momentum-conservation condition, SBS
here enables the first nonreciprocal PT dimer where the for-
ward and backward signal outputs with respect to the input
pump direction exhibit distinct characteristic behaviors in
spectra and powers. Unrestricted with the dynamic reciprocity
[192], this linear system has exhibited a remarkable isolation
performance over the existing demonstrations [194]. The
breach of time-reversal symmetry further makes this design a
versatile arena for developing formidable compact devices
such as unidirectional single-mode Brillouin lasers and
supersensitive bi-scale photonic sensors.

The discussions on PT symmetry using optical micro-
cavities so far are mainly limited to one EP case. Recently,
Teimourpour et al [195] have introduced a recursive bosonic
quantization technique for generating new classes of PT-
symmetric networks that possess hidden symmetry and
exhibit higher-order EPs. With these geometries, the authors
have also investigated the nature of the eigensolutions as well
as light transport. By following this recipe [195], a ternary
PT-symmetric microring system [9] was experimentally
implemented where supersensitive sensing enabled by higher-
order EP has been demonstrated (see section 4.3 below).

4. Applications of PT-symmetric optical
microcavities

In so far, intriguing applications enabled by PT symmetry in
optical microcavities have been experimentally demonstrated
including microlaser cavities and supersensitive sensing,
which will be briefly reviewed in this section.

Figure 7. Theoretical proposal on optical isolation via PT-symmetric
nonlinear Fano resonances. (a) The transmissions of the linear
system for input waves from the gain (filled black circles) and the
loss (black line) side are compared with the corresponding
transmissions in the case of microcavities with Kerr nonlinearity.
The resonance from the lossy side (green line) experiences a small
red-shift with respect to the linear structure. In contrast, the
transmittance curve (both line-shape and resonance position) of an
incident wave entering the structure from the gain side (red dotted–
dashed line) is different. Insets: schematic of the nonlinear PT-
symmetric photonic circuit. The color coding indicates the intensity
strength of the field inside the microcavity. (b) The transmission
phases (in the interval [−π, π]) are plotted as a function of
wavelength λ. The colors and the line-type indicate the same
scattering process as the one used in the upper panel. The blue
arrows (and the blue dots) mark the wavelengths where the Fano
resonances appear. (Adapted from [80].)
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4.1. Single-mode microring lasers

Since lasers are naturally engaged in gain and loss, they
provide perhaps the most straightforward stages where PT
symmetry finds its important applications to effectively
achieve lasing operation with desired spectral and spatial
properties. Laser cavities typically support a large number of
closely spaced modes because of their large dimensions over
one light wavelength. As a result, the outputs from such lasers
are subject to random fluctuations and instabilities due to the
mode competition for limited gain. Recently, it was experi-
mentally demonstrated that by taking advantage of PT sym-
metry, new single-mode lasers can be elegantly realized with
enhanced single-mode operations and greater tunability [6, 7].
The essential idea is to operate the system with a partial PT
symmetry, where almost all of the modes in the laser cavities
remain in the PT-symmetric phase, except for a single lasing
mode which experiences only amplification in the PT-broken
phase. Utilizing this idea, two groups [6, 7] simultaneously
reported the realization of single-mode microring lasers with
different configurations.

In the experiment by Hodaei et al [6], the single-mode
laser was illustrated with two coupled microring resonators,
one with gain and one with loss, see figure 8. In this setup
(similar to figure 4), the threshold of PT symmetry breaking
depends solely on the relation between gain/loss and the
coupling strength, i.e., m=g . This stringent condition clearly
indicates that the threshold for PT symmetry breaking sig-
nifies the boundary between amplifying/attenuation and
bounded neutral oscillations. That is, any pair of modes,

whose gain/loss stays below the coupling strength, will
remain neutral. However, as soon as the gain/loss exceeds the
coupling, PT symmetry will be broken and a conjugate pair of
lasing/decaying modes emerges. The experimental results are
summarized in figure 8. As a comparison, when there was
only one active resonator, or both resonators were active, a
similar multimode lasing spectrum ought to be observed in
the experiment (see figures 8(a) and (b)). In contrast, when the
two microrings were active-passive-coupled, a single sharp
spectral peak was dominantly left, evidencing the single-
mode lasing feature (see figure 8(c)).

In the other experiment by Feng et al [7], the single-
mode lasing was demonstrated in a microring cavity modu-
lated by a PT-symmetric grating. Different from the former
experiment, in this latter one the lasing mode arises as a result
of spatial selection instead of spectral selection. Here, the PT-
synthetic microring resonator was designed with 500 nm thick
InGaAsP multiple quantum wells on an InP substrate
(figure 9(a)). The gain/loss modulation, satisfying the exact
PT-symmetry operation, is periodically introduced using
additional Cr/Ge structures on top of the InGaAsP multiple
quantum wells along the azimuthal direction. The PT mod-
ulation is designed using bilayers on top of the gain material
that introduces loss and exactly reverses the sign of the
imaginary part of the local modal index, while remaining the
same real part. Owing to the continuous rotational symmetry
of the microring, PT symmetry breaking here is associated
with a thresholdless feature, even if the strength of the gain–
loss modulation is infinitesimal. Without the Cr/Ge mod-
ulation, the system typically gave a multimode lasing spec-
trum with different WGM azimuthal orders as shown in
figure 9(b). However, with the PT index modulation, a pro-
nounced single mode was obtained (figure 9(c)). The peak
location of this single mode as well as its amplitude remains
almost unchanged in comparison with the unmodulated case
(figure 9(b)).

By overcoming the limited nanocontrol over the phase of
light inside the microring resonator, Miao et al [196] recently
further realized single-mode orbital angular momentum
microlaser on an InGaAsP/InP platform with on-top Ge and
Cr/Ge modulations. Different sidewall scatters of the ring
coherently radiate light of different phases that continuously
vary from 0 to 2π over one circle along the azimuthal
direction. These PT works provide intuitive examples for
reassessing the role of optical losses presented in laser sys-
tems. Moreover, the peculiar behavior of complex eigenva-
lues around the EP manifests itself in the threshold and
spectral response of any lasing system. For instance, the EPs
can lead to an effect of pump-induced suppression and revival
of lasing, as experimentally demonstrated in coupled quantum
cascaded lasers as well as in a pair of silica microcavities with
Raman gain [197, 198].

4.2. Coherent perfect laser-absorber

Optical gain materials allow light amplification of stimulated
electromagnetic radiation in cavities to conquer the undesir-
able absorption and thus give rise to the birth of lasers. The

Figure 8. (a) Emission spectrum for one active microring resonator.
(b) The corresponding intensity pattern within the ring as observed
from scattered light. (c) Spectrum obtained from an evenly pumped
pair of the same rings as (a). (d) The intensity pattern shows that
both rings equally contribute. (e) Single-mode spectrum under PT-
symmetric conditions with gain–loss-coupled rings. (f) Lasing
exclusively occurs in the active resonator. (Adapted from [6].)
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laser distinguishes itself from other light sources by its
inherent coherence in both space and time. Interestingly, the
time-reversed counterpart of laser emission, named coherent
perfect absorber (CPA) [199], shows that incident coherent
optical fields can be perfectly absorbed by a time-reversed
optical cavity, where the gain is replaced with an equal
amount of loss. Also, the incident fields and frequency should
coincide with those of corresponding lasing modes with gain
under time symmetry. CPA essentially exploits destructive
interference to suppress scattering in a photonic system so
that light is completely trapped in a pre-specified spatial
region for perfect absorption (see figures 10(a) and (b)). The
first CPA (or anti-laser) experiment was demonstrated by
Wan et al [200], based on interferometric control of absorp-
tion to perfectly annihilate both the transmitted and reflected
light waves.

It seems that laser action and CPA might suppress each
other as they are the respective time reversal bodies. Coun-
terintuitively, the CPA-laser concept was first proposed the-
oretically in a PT system with homogeneous gain and loss
embedded under a uniform index grating by Longhi in 2010
[117]. Because of the time-reversal property, the lasing and
CPA modes are expected to share common resonant proper-
ties including identical frequency dependence, coherent in-
phase response and fine spectral resolution. These predictions
were confirmed experimentally by Wong et al [8] using a
straight waveguide of 500 nm thick InGaAsP multiple
quantum wells as a gain medium on an InP substrate. The
alternating PT-symmetric gain–loss modulation was intro-
duced by periodically placing thin absorbing Cr/Ge structures
on top of the waveguide (see figure 10(c)), similar as the
design for PT-symmetric single-mode microring laser. With
such a configuration, the lasing and anti-lasing eigenmodes
are degenerate at the boundary of the Brillouin zone owing to
the distributed Bragg feedback through the periodic gain–loss
modulation. By carefully devising the optical transfer matrix
of the two-port system using the coupled-mode theory, the
CPA-laser can uniquely satisfy both the lasing and anti-lasing
conditions, and approach the CPA-laser point. For example,
when the incoming probe beams are –π/2 offset in phase, the
Bragg resonant electric fields constructively interfere only in
the gain regions, which leads to strongly amplified outgoing

waves and a sharp peak in the output spectrum corresponding
to the lasing mode as illustrated in figure 10(a). In contrast,
when the incoming probe beams are π/2 offset in phase, the
device falls in the anti-lasing mode, where the Bragg inter-
ference of electric fields is strongly confined only in the loss
regions, causing strong absorption and a narrow dip in the
output spectrum as shown in figure 10(b). Their main results
are summarized in figure 10(d). Apparently, at 1555.8 nm,
with the –π/2 phase-offset probe beams, the maximum Q
(red), manifests a distinct amplification peak of 15 dB,
corresponding to the resonant lasing mode; while with the π/
2 phase-offset probe beams, the minimum Q (blue), is asso-
ciated with the anti-lasing mode inducing an absorption dip
down to –15 dB. This essentially confirms that coherent

Figure 9. (a) Schematic of the PT microring laser consists of Cr/Ge bilayer structures arranged periodically in the azimuthal direction on top
of the InGaAsP/InP microring resonator to mimic a gain–loss modulation. (b) Multimode lasing spectrum typically observed from the
microring WGM laser where a number of lasing modes exhibit corresponding to different azimuthal orders. (c) Single-mode lasing spectra
obtained from the PT microring shown in (a) by operating at the m=53 and m=55 azimuthal orders. (Adapted from [7].)

Figure 10. (a) and (b) Schematics showing the principle of the CPA-
laser, where the pure gain (G)–loss (L) PT modulation is introduced
by placing periodic loss structures on a semiconductor InGaAsP/InP
gain waveguide. The PT modulation period is half of the effective
wavelength of guided light, to meet the Bragg resonant condition. As
such, by uniformly pumping the device, both lasing and anti-lasing
eigenmodes can be attained within the same cavity and be selectively
excited with the coherent interferometric phase control on the guided
light incoming from both directions. (c) SEM image of the fabricated
CPA-laser on the InGaAsP/InP platform. (d) The spectra output
coefficient Q of the CPA-laser at the lasing threshold. (Adapted
from [8].)
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amplification and absorption is achieved in a single lasing
cavity. The lasing and anti-lasing modes share similar reso-
nant wavelengths, and have symmetric amplification and
absorption magnitude, all due to the complex conjugate
effective indices supported by the PT-broken phase.

The demonstration provides another effective route of
light manipulation and control through the interplay between
material loss and gain by PT symmetry. The switchable lasing
and anti-lasing modes offer alternative coherent control
strategy with an appreciable amplification-to-absorption
contrast. By considering nonlinearity effects (including
saturation) associated with lasing, an investigation on incor-
porating optical nonlinearity may be worthwhile for further
theoretical and experimental studies.

4.3. Supersensitive sensing

It is known that a degeneracy of resonant frequencies can
serve as a basic element of a sensor since a small perturbation
can lift the degeneracy and can thus result in a detectable
splitting of these frequencies. This simple principle is usually
adopted in designing modern sensor devices including
microcavity sensors for single or few particle detection and
optical gyroscopes. For Hermitian systems, a perturbation of
strength δ acting on the twofold degeneracy (or the diabolic
point (DP)) leads to energy shifts and splitting proportional to
δ (figure 11(a)). On the contrary, for an open system, the
behavior at a non-Hermitian degeneracy (or EP) is more
drastic behaviors than at a DP as at this point in parameter
space not only the eigenvalues but also the corresponding
eigenvalues coalesce (see section 2.3). If an EP for two
coalescing levels is subject to the perturbation of same
strength δ then the resulting energy splitting is typically
proportional to d (figure 11(b)). Alternatively, for suffi-
ciently small δ the splitting is enhanced if compared to a DP
even though exactly the same perturbation is applied. In
general, for an open system with an Nth-order EP, at which N
eigenvalues and the corresponding eigenvectors coalesce, the
splitting induced by the perturbation can be proved to scale as
d .N Therefore, for a sufficiently small perturbation δ, the

splitting at the EP turns out to be larger. It is precisely this
basic characteristics of EPs that was first put forward by
Wiersig for supersensitive sensor applications [201, 202].

Very recently, this elegant idea has been experimentally
tested by two groups using optical microcavities in different

configurations: a microtorid cavity with clockwise- and
anticlockwise-traveling modes [203], and a ternary PT-sym-
metric microring system with loss, gain and neutral resonators
[9]. In the former, the square-root-perturbation sensitivity was
demonstrated in a lossy microcavity by using two silica nano-
tips as Rayleigh scatters within the mode volume to tune the
coupling between clockwise- and anticlockwise-traveling
modes to steer the system to an EP. While in the latter
experiment, the higher-order PT EPs were utilized to display
the enhanced sensitivity, a cube-root dependence on induced
perturbations in the refractive index. Since EPs are generally
present in any open system, a system that is non-Hermitian
but PT-symmetric is of our primary focus in this article.
Hence, in the following we will concentrate on this specific
application of PT-symmetrically coupled microrings.

As schematically illustrated in figures 12(a1)–(a3), their
experimental setup consists of two different PT configura-
tions. Figure 12(a1) depicts such two PT photonic molecules.
The first involves two identical cavities, one experiencing
gain and the other an equal amount of loss. The second is
composed of three resonators with equidistant separations: the
two side ring resonators are subjected to equal amounts of
gain and loss while the middle ring remains neutral (see
figure 12(a2)). In addition, the rings evenly exchange energy
with each other with a coupling strength κ. Figure 12(a3) is
the SEM image of the fabricated structure. It can be easily
shown that the former supports a second-order EP, and the
latter a third-order one. As a result, in the first case, the
eigenvalues are expected to diverge according to d , whereas
for the second case, the splitting would be more abrupt
because it follows d .3 These features have been indeed
verified in their experiments as given in figures 12(b1)–(c2).
Specifically, in the binary system, once a small frequency
mismatch δ is thermally introduced to the optical oscillator
around the second-order EP, the two lasing frequencies split
according to w dkD = 2 .EP2 As theoretically expected,
figure 12(b1) clearly exhibits a square-root wavelength
splitting in response to changes in the power dissipated in the
heater. The observed linear slope of ½ in the corresponding
logarithmic plot affirms this behavior in the inset.
Figure 12(b2) gives the measured enhancement in sensitivity
in terms of the induced perturbation (i.e. the shift in resonance
frequency). As one can see, the enhancement factor increases
for small δ. And in this case, the enhancement up to 13 times
in the detuning range below 10 GHz is obtained. The sensi-
tivity of the PT tri-microring system was investigated by
operating close to one third-order EP. To establish the PT
symmetry, the pump light was completely withheld from one
of the side rings using a knife edge. Moreover, the central ring
is partially illuminated but the third ring is fully pumped. By
adjusting the position of the knife edge and the pump power,
the three lasing modes of the structure gradually merge into
one sharp line, which signals the emergence of a third-order
EP. Once this third-order EP was identified, the heater
underneath the pumped cavity was activated to introduce the
perturbation, which consequently causes the splitting of the
single lasing mode into three distinct branches with

Figure 11. Topology of the surface dictating the complex frequency
of diabolic- (a) and exceptional-point (b) sensors, which intuitively
shows an energy splitting of the sensors subject to a perturbation δ.
For small δ, this energy splitting is proportional to d for EP sensors
while δ for DP sensors.
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approximated spectral separation w dkD » /3 2.EP3
23 Such a

cube-root behavior of the frequency separation wD EP3 was
verified in figure 12(c1) as a function of δ. By plotting these
experimental data on a logarithmic scale, one can directly
infer a slope of 1/3 from the inset. The sensitivity enhance-
ment factor was plotted in figure 12(c2), where the sensitivity
is magnified about 23 times when the detuning between the
gain and neutral rings is below 5 GHz.

In comparison with the passive system [203], the EP-
sensitivity enhancement in PT systems is significant in the
sense that due to the gain–loss balance, the supermodes in
principle have much narrower linewidths near EP points,
which thus yield a narrower spectral background. This narrow
spectral background is in favor of measurements in practice.

By exploiting non-Hermiticity to enhance sensing cap-
abilities, the PT-microcavity systems pave the way towards a
new class of chip-scale ultrasensitive sensors beyond the
conventional ones.

5. Conclusion and outlook

As we indicated in the Introduction, this compact review is by
no means a complete presentation of the many new results on
PT-symmetric microcavity structures that have appeared and
continues to appear in the literature. For example, in our
presentation we did not discuss cavity optomechanical sys-
tems, where phonon lasing [81–83] and chaos [84] can be

Figure 12. (a1) Schematics of binary (left) and ternary (right) PT-symmetric photonic molecules formed with gain, loss and neutral
resonators. (a2) The PT-symmetric tri-microring system with equidistantly spaced cavities. (a3) The SEM image of the structure. Second-
order EP improved sensitivity in the binary PT case by observed frequency splitting (b1) and measured enhancement factor (b2). Similarly,
third-order EP boosted sensitivity in the ternary PT case by measuring the frequency splitting (c1) and enhancement factor (c2). (Adapted
from [9].)
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dramatically modified from conventional circumstances.
Similarly, we did not review the effects of quantum noise in a
PT system [123–126] where its presence could lead to sig-
nificantly different physics as compared to that expected from
semiclassical approaches. Finally, following the extension of
PT symmetry to optics and photonics, there are some recent
interesting studies in investigating whether topological inter-
face states can exist at all in PT-symmetric photonic systems
[65, 99, 129, 204–206]. After two decades effort, it seems to
us at this moment that PT symmetry in the classical settings is
fairly well understood in theory. The extension of the subject
to other research fields, such as AMO physics, condensed
matter physics, and quantum optics will not only enrich the
scope of theoretical analysis but also open doors for a variety
of potential applications. Despite the rapid progress made in
recent years, it is believed that many significant works are yet
to appear. The interdisciplinary research will lead to dis-
coveries within the broad class of PT symmetry. From this
point of view, our paper is just a starting point for future
research on the phenomenon. We will not be surprised as new
observations on PT symmetry to appear.
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