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Abstract: We theoretically study the optical parametric amplification (OPA) process seeded by
a Laguerre–Gaussian (LG) mode. Based on the nonlinear coupled-wave equations, we analyze
the overlap integral among interacting LG beams, which presents the selection laws for the
azimuthal and radial indices of a pure LG mode in the OPA process. In the numerical simulations,
we demonstrate the amplification of an LG01 mode as an example with high purity and high gain.
Our results provide a potential way to efficiently amplify an LGmode for optical communications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In 1992, Allen et al. pointed out that light beams featuring helical wavefronts [1], such
as Laguerre–Gaussian (LG) beams, carry orbital angular momentum (OAM). Since then,
LG beams have attracted significant attention from researchers worldwide, owing to their
widespread applications in optical tweezers [2,3], optical trapping [4], imaging [5], astronomy
[6], rotation measurement [7], and quantum information processing [8–13]. In particular, owing
to the unbounded set of OAM states, OAM multiplexing has largely been explored for optical
communications [14,15], indicating that the LG beam is a promising candidate for dramatically
boosting the capacities of communication systems. However, the propagation loss in long distance
communication will degrade the performance. The second-order nonlinear process, i.e., optical
parametric amplification (OPA), provide a potential method for amplifying the LG modes.
Many interesting experiments have been performed to demonstrate the conversion of the

azimuthal index (l), i.e., the OAM number, of an LG mode during nonlinear optical processes,
such as second harmonic generation (SHG), third harmonic generation (THG), four-wave mixing
(FWM), spontaneous parametric down conversion (SPDC), and optical parametric oscillator
(OPO) [16–24]. The OAM conservation law has been confirmed in most nonlinear optical
processes. However, the conversion of the radial index (m) of an LG mode is rarely investigated
[25,26]. This is particularly meaningful in the OPA process, because it is directly associated
with the purity of the amplified LG modes. A pure LG beam (normally with m= 0) promises
to be applied in a variety of fields, such as the improvement of signal-to noise ratio in optical
communication, the design of OAM-multiplexed holograms and so forth. It should be noted that
the non-zero radial index of LG mode is usually considered as noise in most of above practical
applications. Our simulations show that the spatial modes of the output signal strongly depend
on the pump modes. One should choose the appropriate pump beam to amplify an LG mode
without introducing unexpected radial components.

In this paper, we investigate the collinear optical parametric amplification process seeded by a
pure LG mode. Based on the calculation of the spatial overlap integration between the modes
participating in the three-wave mixing process, we achieve the mode selection rules for both
the azimuthal and radial indices. As an example, we take LG01 (m= 0, l= 1) mode as the input
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signal and study its gain and purity pumped by different LG modes. The theoretical analysis can
be readily extended to the amplification of other LG modes. Moreover, we analyze the influences
of the crystal length on the output signal in such OPA process. These results embody interesting
regularity, which may be helpful to understand the essence of the m index in an LG-mode.

2. Mathematical model

OPA is a three-wave mixing nonlinear optical process in which a strong pump light at frequency
ωp and a weak seed light at frequency ωs interact in a nonlinear optical medium to produce an
amplified ωs and an idler light at ωi =ωp−ωs. In a cylindrical coordinate system where light
beams propagate along the z axis, the coupled wave equations for an OPA process can be written
as [27]

∇2Es(r, z) + k2s Es(r, z) = −
2χ(2)ω2

s
c2 EpE∗i

∇2Ei(r, z) + k2i Ei(r, z) = −
2χ(2)ω2

i
c2 EpE∗s

∇2Ep(r, z) + k2pEp(r, z) = −
2χ(2)ω2

p
c2 EsEi

(1)

Here, p, s, and i denote the pump, signal (seed), and idler, respectively, E is the electrical field,
χ(2) is the second-order nonlinear coefficient, and k is the wave number. Considering the OPA
process with LG modes, we use the cylindrical coordinates in the theoretical model. The field Ej
(j= p, s, or i) can be expanded as [28]

Ej =
∑

Bj(z)uj
ml(r, z)e

ikjz (2)

where uj
ml (r, z) represents an LG mode with the radial index m and azimuthal index l, and Bj (z)

is the field envelope of an LG mode. In the cylindrical coordinates, the expression for uj
ml (r, z) is

given by [28]
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Here,
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is the normalized coefficient with Nml =
√
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is the beam waist, zR is the Rayleigh range, and z = z − izR.
By substituting Eq. (2) into Eq. (1), performing the transformationBml(z) =

√
ω
n Aml(z) [28], and

considering the orthogonality of the LG modes, the following coupled wave equations involving
transverse modes are acquired (we consider the phase-matched case, i.e., ∆k= kp−ks−ki=0),
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Here, the overlap integral is defined by

Λ
lplsli
mpmsmi =
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umplpu

∗
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∗
milirdrdθ = 2πδlp,ls+li
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0

umplpu
∗
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∗
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The overlap integral is a crucial factor for a parametric process involving LG modes because it
decides the conversion efficiency. Note that δlp,ls+li in Eq. (5) actually implies the selection rule
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for the azimuthal index l of LG modes, i.e., lp=ls+li [29]. However, the selection rule for the
radial index m of the LG mode is not clear. Next, we develop a complete set of selection rules for
the m index from Eq. (5).
We consider a pure LG seed mode with ms = 0. With the help of the generating function and

polynomial identity theorem [29], the analytical expression of the integral in Eq. (5) can be
written as
∞∫
0
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milirdr = Const
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where λ= (|lp |+|ls |+|li |)/2, n=mp, n ‘=mi , µ= |lp |, µ

′

= |li |, η = (wp(z)/wi(z))2. Here, we assume
the Rayleigh ranges for pump, signal and idler beams are the same [29].
The function ( ab ) is defined by
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Therefore, the inequalities λ−µ′ > n′−k and λ−µ > n−j must hold. When inputting a LG mode
with ms = 0, the selection rules for the index m can be summarized as

1) If ls · li < 0, mp = 0, 1, . . . , min |ls |, |li | ; otherwise, mp = 0.

2) If lp · ls > 0, mi = 0, 1, . . . , min |lp |, |ls | ; otherwise, mi = 0.

3) If lp · li > 0, ms = 0, 1, . . . , min |lp |, |li | ; otherwise, ms = 0.

3. Numerical simulation results

As an example, we numerically simulate an OPA process in which a seed LG01 mode with
ms = 0 and ls = 1 is amplified. The wavelengths for the pump and seed are 532 nm and 1064 nm,
respectively. We consider a case of noncritical phase matching in a 12 mm-long lithium triborate
(LBO) crystal. The refractive indexes for the pump and signal lights are np = ns = 1.6, and the
nonlinear coefficient is d= 0.83 pm/V[30].
In light of the above selection rules, given a pump with certain mp and lp, one can determine

all the possible ms, ls, mi, and li in the output signal. First, we decide the input mp for the
amplification of LG01 mode. From the selection rule 1) for m index, if lp ≥ 1, mp must be 0, and
if lp < 1, mp can be 0 or 1. However, due to the existence of the term (-1) n′+n in Eq. (6), the
calculated overlap integrals from Eq. (5) for mp = 0 and mp = 1 have different signs. Obviously,
a destructive interference will occur between the signals generated by these two pump modes,
leading to a decrease in the signal gain. Therefore, in the following theoretical simulations, we
only employ a pump mode with mp=0 to amplify the seed light. For example, consider a pump
with mp = 0 and lp = 3. According to the conservation of l index, it must hold that li = 2 because
ls = 1. From the selection rules 2) and 3) for m index, one can obtain that mi can be 0 or 1, and
ms can be 0, 1, or 2. There are six mode components in the generated signal and idler lights.
Their ratios can be calculated from Eq. (5).

Next, we numerically simulate the cases in which mp=0 and lp takes a value from -2 to 3.
Figure 1 depicts the variation of the output signal intensity (Is) with the crystal length. It should
be noted that a certain incident pump mode may generate multiple signal modes with the same
ls but different ms. The signal intensity in Fig. 1 includes all the generated signal modes. It is
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observed that when the incidental lp is negative the total signal gain is quite low. When using a
positive lp, the total signal gain is relatively high.

Fig. 1. Signal intensity Is versus crystal length for various pump modes with lp = -2 to 3.

Figure 2 shows the simulated intensity patterns of the amplified signals when different pump
modes are involved. We also analyze the mode components of the signals (Fig. 3). Since the
goal is to amplify an LG01 mode, the mode purity is defined by the ratio between Is (ms = 0) and
the total Is. The patterns for lp = 2 and 3 in Fig. 2 are different from the others because of the
low mode purity of the amplified signal. By analyzing the simulation results in Figs. 1 and 3,
we conclude that when lp ≤ 1 the amplified signal mode has high purity, while the total signal
gain is high with a pump mode of lp ≥ 0. The pump light with a large lp (for example, lp = 3)
results in a low signal purity but a high gain, indicating that the high-order LG components have
a significant consumption of the pump energy. This should be carefully avoided when one cares
the purity of the amplified signal.

Fig. 2. Simulated intensity patterns of the amplified signals corresponding to different
pump modes.

By distinguishing the mode components in signal lights, we are able to numerically evaluate
the intensity dependence of the pure output LG01 signal on the crystal length (Fig. 4). Because
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Fig. 3. Rates of different signal modes when different pumps are employed.

the total signal gain with lp < 0 is very low, we only study the cases with lp ≥ 0. As shown in
Fig. 4, the pump mode with mp = 0 and lp = 1 is an optimal choice for efficient amplification
of a pure LG mode. In addition, when using a 50 mm-long nonlinear crystal, the conversion
efficiency for pure LG01 signal can be significant enhanced with a pump light of mp = 0 and lp = 1
(yellow line in Fig. 5(a)). In the other cases, the intensity of LG01 signal component present
oscillations (Fig. 5(a)).

Fig. 4. The intensity of pure LG01 signal (ms = 0) versus crystal length.

We perform further simulations to analyze the origination of the oscillations in Fig. 5(a).
Figures 5(b) and 5(c) show the evolution of all the other possible high-order signal mode, i.e.,
LG11 (ms = 1) and LG21 (ms = 2) modes, along the crystal length. Clearly, under a given pump
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mode, all the mode components in the amplified signal reach their maximal intensity at the
same crystal length. For example, using a pump mode of mp = 0 and lp = 3 (see the red lines in
Figs. 5(a)–(c)), the signal intensities with ms = 0, 1, and 2 simultaneously reach their maximum
at the crystal length of 21.1mm. This rules out the possibility of mode competitions during
nonlinear conversion. Figure 5(d) shows the evolution of the pump intensity along the crystal
length. Under a certain pump condition, for example, mp = 0 and lp = 2, the pump intensity
reaches its minimum at the crystal length of 31.1mm, where the signal intensity is in its maximal
value (the green lines in Figs. 5(a), (b), and (d)). Therefore, the oscillation in the signal intensity
can be attributed to the energy backflow in the OPA process. After carefully examining the
yellow lines in Figs. 5(a) and 5(d), one can find that, the energy reflux also happens under a pump
light of mp = 0 and lp = 1, except that the gain is much higher and the oscillations presents at a
longer crystal length (∼48mm) compared to the other pump case.

4. Conclusion

We have theoretically studied the LG mode amplification through an OPA process based on
nonlinear coupled wave equations. By analyzing the overlap integral in the three-wave mixing,
we demonstrate the conservation law of the azimuthal index and the spatial mode selection law
of the radial index. In numerical simulations, we show that the pump mode with mp = 0 and
lp = 1 is an optimal choice to amplify an LG01 mode with a high purity and a high gain. Our
result promises to be helpful in various practical and theoretical situations, including signal
enhancement in LG-mode based optical communication, the design of OAM based holograms
and the physical understanding of the m index of an LG-mode.
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