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Effects of gain saturation on the quantum properties of light in a non-Hermitian gain-loss coupler
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Gain saturation is ubiquitous but has not been fully explored in the newly developed field of non-Hermitian
optics. On the other hand, the nonclassical properties of light are highly relevant to the gain saturation that
influences the quantum noise accompanying light amplification. In this paper, we systematically examine the
gain saturation effects in a non-Hermitian system of coupled gain-loss waveguides. We explain the impact of gain
saturation on a quantum light field dynamically evolving in the coupled system. In contrast to the ideal situation
without gain saturation, one can achieve a quasisteady state under the gain saturation. Moreover, gain saturation
reduces the influence of amplification noise and thereby better preserves such quantum features as entanglement.
We illustrate the effects of gain saturation by examining the time evolution of the Wigner function, entanglement
of the light fields, and the cross-correlation function between the two output modes. Significant differences exist
between unsaturated and saturated situations, especially for low photon numbers.
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I. INTRODUCTION

Non-Hermitian optical systems, such as coupled gain-loss
waveguides [1–4], photonic lattices [5,6], and whispering-
gallery modes [7–9], have attracted considerable attention
in recent years. These systems have peculiar properties and
many applications in communication, computing, biochem-
istry, and environmental sensing [10,11]. The most important
parameters of non-Hermitian optical systems are the gain
and loss rates. Interesting features that are either difficult
or impossible to be implemented by Hermitian optical sys-
tems exist in the non-Hermitian ones given various com-
binations of their gains and losses. To mention a few, one
has single-mode parity-time lasers [12], unidirectional light
propagation [8,13–16], asymmetric mode conversion [17–19],
and enhanced sensitivity of sensors near exceptional points
[20,21]. For the ideal models, the gain and loss coefficients
do not depend on the intensity of the light propagating in
the systems. However, in almost all amplifying media, optical
gain is a function of field intensity, so that the intensity of
the propagating beam does not increase forever. When the
intensity of light reaches a steady state, the gain is reduced to
its “saturated” value. Although the saturation effect has been
examined in some classical non-Hermitian optical systems
[8,22–28], the dynamical nature of gain saturation in the
quantum regimes has remained unexplored. Especially, since
the variation of gain coefficient affects the quantum noise
caused by amplification, one expects that the saturation of
gain can significantly influence the quantum-noise-sensitive
properties of light such as entanglement.

So far, the majority of non-Hermitian optical systems have
been studied under the assumption that the light is a classical
electromagnetic field, and the gain and loss coefficients are
intensity independent (nonsaturable), and the quantum noises
due to amplification and dissipation are negligible. In this
paper, we dispense with these assumptions by adopting a full

quantum mechanical picture, examining the gain saturation
effect in a coupled gain-loss waveguide system, and consid-
ering the inevitable quantum noise effect (see Fig. 1). We sup-
pose that the gain medium is saturable, but the loss medium is
with a constant damping rate. As examples, we show that the
gain saturation effect alters the time evolution pattern of the
Wigner function and the entanglement of the output fields. In
contrast to a constant gain coefficient which often leads to a
non-steady-state situation, gain saturation generally prompts
a “quasisteady” state of the Wigner function and the entan-
glement of the light fields. Notably, in some situations, an
ideal constant gain rate leads to “entanglement sudden death,”
but a gain saturation introduces a steady entangled state of
the light field by reducing the detrimental quantum noise
effect. Moreover, we study the impact of gain saturation on
the cross-correlation function between the two output modes
for the inputs to the waveguides to be in the Fock state and
coherent state. This case also shows that the gain saturation
preserves the non-classical features of the light better.

We organize the rest of the paper as follows. In Sec. II,
we present the theoretical model of the non-Hermitian optical
waveguides. In particular, we compare the effective non-
Hermitian Hamiltonian approach to a stochastic Hamiltonian
approach involving quantum noises. In Sec. III, we compare
the time evolution of the Wigner function in the unsaturated
and saturated cases. Section IV is about the impact of gain
saturation on the time evolution of the entanglement of the
output signals, as well as how the degree of entanglement
varies with the saturation intensity. Then, we study the effect
of gain saturation of the cross-correlation function in Sec. VI.
Finally, we give a brief conclusion in Sec. VII.

II. THEORETICAL MODEL

The non-Hermitian system of coupled, single-mode
waveguides is depicted in Fig. 1. Waveguide A carries a
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FIG. 1. (a) Non-Hermitian coupled gain-loss waveguides. The
input signals are assumed to be squeezed vacuum states |z〉. Further-
more, the gain medium is saturable, denoted by g(t ), whereas the loss
coefficient γ is constant. The coupling coefficient of waveguides is J .
(b) Three examples of the dynamical behavior of the photon number
in the amplifying waveguide for different saturation intensities: Isat =
0.25 (green), 0.15 (dotted-dashed blue), and 0.05 (dashed red) [see
Eq. (4)]. The other parameters are γ /J = 0.5, z = 0.3, and g0/J = 2.
(c) Time evolution of the normalized gain g(t )/J vs the normalized
time Jt (the same parameters are used).

saturable gain medium with a gain coefficient g(t ) and waveg-
uide B is a nonsaturable loss medium with a loss coefficient of
γ . We denote the light field operator propagating in waveguide
A (B) by â (b̂), which share the same frequency ω0. The
waveguides are coupled via evanescent waves so that the
coupling strength J can be adjusted by the gap between them.
We assume that the group velocity in both waveguides is equal
and the possible superluminal propagation of the evanescent
wave as described in [29,30] is negligible.

There are two approaches to dealing with the dynamics
of the system. The first one is called the “semiclassical” or
mean-field approach, which encapsulates all amplifying and
dissipative processes in a non-Hermitian “effective Hamilto-
nian” (h̄ = 1) [10]:

Heff = ig(t )â†â − iγ b̂†b̂ + J (âb̂† + â†b̂). (1)

The first two terms describe the amplification and dissipation
of light in waveguides A and B, and the third term charac-
terizes the coupling between the waveguides. The Heisenberg
equation of motion determines the time evolution of operators
â and b̂.

If the gain coefficient is constant, one will obtain the
eigenvalues of the Hamiltonian in Eq. (1) as i

2 (g − γ ) ±√
4J2 − (g + γ )2. If g + γ = 2J , not only the eigenvalues

but also the corresponding eigenvectors will coalesce. This
is a special feature of non-Hermitian systems, and the cor-
responding transition point is called the exceptional point.
In particular, if g = γ , i.e., if the system respects the parity
and time symmetries, it is possible to obtain real eigenvalues
below the exceptional point where g + γ < 2J . However, in
the current paper we are considering the gain saturation, and
thus the gain coefficient is time dependent. Thus, intuitively

one expects the system does not have a stable exceptional
point.

While the semiclassical approach is adequate in describing
classical light, it does not provide a satisfactory depiction
of the nonclassical properties of light. In particular, since
Eq. (1) does not explicitly include the quantum noise effect,
the quantum correlation functions obtained by the mean-field
approach can deviate from the real correlation functions.

The second approach explicitly considers quantum noise
and treats it as a stochastic driving force. The equation
describing the dynamics of the system in some contexts is
called the “stochastic Schrödinger equation” [31]. As we
are interested in the dynamical behavior of the quantum
features of light, we will follow this approach. The to-
tal Hamiltonian includes the system, the reservoir, and the
system-reservoir interaction. We suppose that the reservoir
is an ensemble of an infinite number of harmonic oscil-
lators with a continuous frequency spectrum (it includes
positive as well as negative energies; see [31]). The cor-
responding Hamiltonian is HR = − ∫ ∞

−∞ dω ω f̂ †
a (ω) f̂a(ω) +∫ ∞

−∞ dω ω f̂ †
b (ω) f̂b(ω), where f̂c(ω) is the noise operator sat-

isfying [ f̂c(ω), f̂ †
c (ω′)] = δ(ω − ω′) for c = a, b. Using the

rotating-wave approximation with smooth system-reservoir
coupling and after applying the Markovian approximation, the
total Hamiltonian in the interaction picture is [32–34]

HT = J (â†b̂ + âb̂†) + i
√

2g(t ) [ f̂ †
a (t )â† − f̂a(t )â]

+ i
√

2γ [ f̂b(t )b̂† − f̂ †
b (t )b̂]. (2)

Note that the relevant terms to the amplification and dissi-

pation noises are defined such that [ f̂c(t ), f̂c
†
(t ′)] = δ(t − t ′).

The corresponding equations of motion are

d

dt
â = g(t )â − iJb̂ +

√
2g f̂ †

a (t ),

d

dt
b̂ = −iJâ − γ b̂ +

√
2γ f̂b(t ). (3)

In these equations, g(t ) depends on the intensity of the light
field propagating in waveguide A [see Eq. (4)]. An example
of the gain media is the erbium-doped amplifier [35], as
an ensemble of two-level atoms. If a pump laser excites
the erbium ions into the higher level so that the population
difference between the upper and lower levels is positive, an
optical signal propagating in this medium will be amplified
exponentially. The amplification is due to the stimulated emis-
sion of photons from dopant ions. The excited ions can also
decay via spontaneous emission or nonradiative processes that
reduce the efficiency of light amplification.

If the length of the medium is long enough or the doping
level is high enough, the light eventually reaches an intensity
at certain specific lengths such that the energy stored in the
upper level is not sufficient to satisfy the exponential growth
condition. In other words, when the signal intensity increases
to a certain value Isat, the population difference between
the upper and lower levels and hence the gain coefficient
decreases. This phenomenon is called gain saturation, with
Isat being the saturation intensity at the center frequency of
the optical beam. The gain coefficient as a function of time

023819-2



EFFECTS OF GAIN SATURATION ON THE QUANTUM … PHYSICAL REVIEW A 99, 023819 (2019)

(or as a function of saturation intensity) is

g(t ) = g0/[1 + Ia(t )/Isat], (4)

where g0 and Ia(t ) are the small-signal gain and the intensity
of light in waveguide A at time t , respectively. In Eq. (4)
the saturation intensity is defined such that the stimulated
rate downward equals the normal radiative decay of the up-
per level. For simplicity, we use the dimensionless satura-
tion intensity in Ref. [8]. Physically, the energy difference
between the upper and lower levels, the stimulated cross
section, and the lifetime of the upper level determine the
saturation intensity [36].

In the following, we study the effect of such gain saturation
on the quantum properties of light fields. The approach we
use combines two steps: (1) we find the evolved photon
number Ia(t ) = 〈â†â(t )〉 through the numerical solution of the
nonlinear equations obtained by plugging Eq. (4) into Eq. (3);
and (2) in determining the contribution to the evolved â(t )
and b̂(t ) from the noise drive terms in Eq. (3), we treat Eq. (3)
as a set of closed linear differential equations by assuming
a time-dependent coefficient g(t ) given by Eq. (4). With the
evolved â(t ) and b̂(t ) found this way, one will obtain various
correlation functions of these evolved operators, which are
relevant to the quantum properties of the evolved light fields.

III. INFLUENCE OF GAIN SATURATION
ON WIGNER FUNCTION

The Wigner function of light fields [37–40] provides a
visualization of their quantum states. Its general form,

W (x, p) ≡ 1

2π

∫ ∞

−∞
dξ exp(−ipξ )

〈
x + 1

2
ξ |ρ̂|x − 1

2
ξ

〉
(5)

is defined in terms of density operator ρ̂, where |x − 1
2ξ 〉 is

the eigenket of the position operator. In open systems like
that depicted in Fig. 1, the time evolution is affected by
the quantum noise in the amplification (dissipation) process.
In particular, one may ask how gain saturation affects the
dynamical behavior of such Wigner functions. We address
this question by comparing the time evolution of the Wigner
function in the unsaturated and saturated situations.

The Wigner functions of fields in the coupled gain-loss
waveguides have some special features. If the gain rate is
fixed, the quantum states of the fields inside the system remain
Gaussian, which takes the form [41]

W (X ) = exp
[− 1

2 XV X T
]

π
√

Det[V ]
, (6)

because the inputs to waveguides A and B are squeezed
vacuum states. In this equation, X ≡ (QA, PA; QB, PB), and the
parameters inside the parentheses are quadratures of the fields
defined as

Q̂m = 1√
2

(ĉ + ĉ†), P̂m = − i√
2

(ĉ − ĉ†), (7)

where m stands for A and B, and c = a, b. The 4 × 4 matrix V
in Eq. (6) is called the covariance matrix (CM) [42] defined as

V =
(

E F
F T G

)
, (8)

where E , F , and G are 2 × 2 matrices. The entries of CM are
therefore defined as

Vi j = 1
2 〈X̂iX̂ j + X̂ j X̂i〉 − 〈X̂i〉〈X̂ j〉. (9)

Here we assume that the input to the waveguides is a single-
mode squeezed vacuum state, |z〉 = S(z)|0〉, where S(z) =
exp [ 1

2 z(ĉ†)2 − 1
2 z∗ĉ2] for ĉ = â, b̂. The squeezing parameter

is defined as z = r exp(iθ ) where r and θ are its magnitude
and phase, respectively [43].

One should note that the quadratures involved in Eq. (6)
include two parts: contribution of the input that is going to
be amplified or dissipated [the homogeneous part of Eq. (3)]
and the contribution of the quantum noises [44] [the nonho-
mogeneous part of Eq. (3)]. Therefore, the gain saturation
can directly affect both parts. Particularly, it alters the time
evolution caused by the noise terms, which is proportional to
the square root of the gain coefficient.

The first and second rows of Fig. 2 show two examples
of time evolutions of the Wigner function in the unsaturated
and saturated cases, respectively. We assume that, in the top
row, the gain coefficient is larger than the loss coefficient. In
the unsaturated case, the gain coefficient is constant but, in
the saturated case, an effectively time-dependent factor g(t )
gives a different evolution pattern. Under the gain saturation,
the gain coefficient becomes lower than the loss coefficient,
regardless of whether it is initially higher than the loss co-
efficient. As Figs. 2(a1)–2(a4) show, the nonzero domain of
the Wigner function expands with time, but its peak value
substantially decreases. On the other hand, neither the domain
nor the peak value of the Wigner function changes remarkably
with time in the saturated case [Figs. 2(b1)–2(b4)]. In other
words, the Wigner function evolves into a quasisteady state.
Since the gain coefficient decreases considerably upon satura-
tion, the quantum noise effect also diminishes on the way to
evolving into the quasisteady state. One should note that the
magnitudes and shapes of the Wigner functions are different
because of the absence or presence of the gain saturation.
For example, the Wigner function profile in Fig. 2(a4) is
circular, but in Fig. 2(b4) it becomes elliptical. Moreover,
in the unsaturated case, the Wigner function profile keeps
switching between circular and elliptical profiles (Gaussian
and non-Gaussian functions) for long times, whereas in the
saturated case the profile becomes almost circular after a short
time and remains circular.

IV. EFFECT OF GAIN SATURATION ON ENTANGLEMENT

A. Time evolution of entanglement

One expects the coupled gain-loss waveguide system to be
a good platform for generating continuous-variable entangled
output fields [45]. However, amplifiers add quantum noise to
the optical fields, and the noise is especially significant in
the amplification of fields with low photon numbers. Even
if the input is shot-noise-limited, the output remains noisy
[43]. Meanwhile, one should understand that the quantum
noise associated with amplification is more detrimental to
entanglement because in the amplification process more pho-
tons are added to the optical field, while in the dissipation
process, a portion of the photons disappear via absorption.
Mathematically, one can confirm the dominant role of the
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FIG. 2. Projection of the scaled Wigner function of the coupled gain-loss waveguides on the (QB, PB ) plane. The top row [(a1)–(a4)] shows
the time evolution of the Wigner function in the unsaturated case at times Jt = 2, 4, 6, and 8, respectively. We have assumed the squeezing
parameters of both input signals to be equal: r1 = r2 = 0.8 and θ1 = θ2 = 0. Also, g̃/J = 0.5 and γ /J = 0.3. The bottom row [(b1)–(b4)]
demonstrates the time evolution in the saturated case at the same time intervals. All parameters, except the gain, are equal to those in the
unsaturated case. Here, in the normalized version of Eq. (4), g0/J = 4.5, Isat = 0.1, and Ia(Jt ) = 〈â†(Jt )â(Jt )〉.

amplification noise by the fact that in the calculation of 〈â†â〉
the noise terms associated with the dissipation vanish because
of the commutation relations.

Moreover, the eigenvalues of such a non-Hermitian system
are in general complex, and the eigenvectors are nonorthog-
onal [46]. The main consequence of nonorthogonality of the
eigenvectors is that, when random forces due to coupling to
the reservoir drive the system, then the noise introduced to the
system can be stronger than that in systems with orthogonal
eigenvectors [27]. If the quantum noise is intense, it degener-
ates a nonclassical light field into a classical one. Therefore,
one may expect that noise-sensitive quantities such as entan-
glement deteriorate significantly in non-Hermitian systems.
Knowing that the saturation of gain reduces the quantum noise
strength, one may ask how the gain saturation impacts the
nonclassical features of light fields such as entanglement. In
particular, one could ask if the saturation effect can reduce the
quantum noise to a level that the sudden death of entanglement
[47] is avoided.

Regarding the above points, we show below that the sat-
uration effect can thoroughly alter the time evolution of en-
tanglement. Under some special circumstances, the saturation
of gain significantly reduces the quantum noise so that the
entanglement of output fields can be well preserved.

To quantify the degree of entanglement of a field in the
Gaussian state, we use the logarithmic negativity [42]

EN = max[0,− ln 2η], (10)

where, using the definitions in Eq. (8),

η = 1√
2

√
σ −

√
σ 2 − 4 detV , (11)

and

σ = det E + det F − 2 det G. (12)

In Fig. 3 we present the numerically calculated time evo-
lutions for some examples of field entanglement, comparing
the evolved EN in the unsaturated case (denoted by a thin,
blue curve) to that of the saturated case (shown by a thick,
red curve). The gain coefficient in the unsaturated case, g̃,
keeps being equal to g(0). Since the input fields are in
squeezed vacuum states, in all cases we have chosen small
saturation intensities to better demonstrate the difference
between the unsaturated and saturated cases. If we assume
other inputs like squeezed coherent states, larger saturation
intensities yield the same time evolution patterns. In Fig. 3(a)
we impose the conditions g̃ ≈ γ and g̃ + γ < 2J . One should
note that the eigenvalues of Eq. (3) in the unsaturated case
are 1/2[g̃ + γ ±

√
(g̃ + γ )2 − 4J2], so that the exponential

factors involved in the solution are pure imaginary. In the
saturated case, the exponentials mentioned above are complex
because of g(t ) < γ . Moreover, in both cases, we expect to
observe oscillations in EN due to the imaginary parts of the
exponentials. Figure 3(a) shows that the output field remains
entangled within a finite time range in the unsaturated case.
It reaches a maximum value, which depends on the coupling
of the waveguides and the squeezing parameters of the input
fields. In the beginning, the two fields are independent, but
as they propagate, the optical field of waveguide A (B) pene-
trates the other waveguide, and thus they become entangled.
However, due to the domination of quantum noise, EN van-
ishes then. This phenomenon is called “entanglement sudden
death,” and it shows how the quantum noise associated with
the amplification is destructive to the entanglement. In the
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FIG. 3. Time evolutions of the logarithmic negativity EN in the unsaturated (thin, blue curves) and saturated (thick, red curves) cases. In
all figures we assume that r1 = r2 = 0.3 and θ1 = θ2 = π/4. Moreover, we assume that the constant gain coefficient g̃ in each case is equal to
the initial value of g(t ) = g0/(1 + Ia(t )/Isat . The other parameters are (a) g(0)/J = 0.3, g0/J = 0.8, γ /J = 0.3; (b) g(0)/J = 0.3, g0/J = 0.8,
γ /J = 1.3; (c) g(0)/J = 0.7, g0/J = 2, γ /J = 0.5; (d) g(0)/J = 0.7, g0/J = 2, γ /J = 1.5; (e) g(0)/J = 1.25, g0/J = 1.5, γ /J = 0.8; (f)
g(0)/J = 1.25, g0/J = 1.5, γ /J = 1.8. The saturation intensity Isat in (a)–(d) is 0.05. In (e)–(f), Isat = 0.5.

saturated case, however, EN reaches a quasisteady state after
a short time. Also, the oscillatory behavior of EN is consistent
with the expectation. Nevertheless, the oscillations are tiny at
long times because the intensity of the field propagating in
waveguide A has approached its steady state, and it reaches a
constant value since the gain coefficient depends on the inten-
sity. Consequently, the strength of quantum noise substantially
decreases so that EN comes to a quasisteady state.

Without changing g̃, we increase γ in Fig. 3(b) such that
g̃ < γ , but still keep the relation g̃ + γ < 2J . In contrast to
Fig. 3(a) where g(t )/γ < 1 after a short time, this ratio is
always less than one in Fig. 3(b). Since the gain is substan-
tially smaller than loss (in this case, roughly four times),
the quantum noise associated with the amplification is not
strong enough to erase the entanglement. Therefore, after a
long time, a steady state of entanglement is achieved. Here
the saturation effect does not change the evolution pattern
substantially. The only difference between the unsaturated and
saturated cases is that, in the saturated case, EN in the steady
state is higher than that of the unsaturated case because the
gain saturation reduces the quantum noise effect.

In Fig. 3(c), there is the relation g̃ > γ but one still keeps
g̃ + γ < 2J . Since the gain is higher than the loss in the
unsaturated case, we expect that the entanglement vanishes
after a finite time. On the other hand, the saturation effect
decreases the gain to a value much smaller than the loss,
and hence the associated quantum noise is not dominant.
Therefore, the entanglement measure EN again approaches a
steady state. Without changing the gain, we increase the loss
coefficient in Fig. 3(d) so that there are the relations g̃ < γ

and g̃ + γ > 2J . Although the gain is lower than the loss, it
is not low enough to avoid the entanglement sudden death.
However, the saturation effect reduces the quantum noise and

results in a steady state. One should note that g(t ) + γ < 2J
due to the saturation, although one has g(0) + γ > 2J .

In Fig. 3(e), the system parameters keep the relations
g̃ > γ and g̃ + γ ≈ 2J . Moreover, we use a higher saturation
intensity for Figs. 3(e) and 3(f) (10 times higher than that of
the previous figures). In this case, there is no considerable dif-
ference between the unsaturated and saturated cases because
in both cases the gain factor is large enough, so the associated
quantum noise cancels the entanglement. The saturation effect
only modifies the maximum value of EN . In Fig. 3(f), one
has the relations g̃ < γ and g̃ + γ > 2J . Interestingly, in both
unsaturated and saturated cases, EN approaches a steady state.
Moreover, the difference between these cases is small. In
contrast to the previous situations, the relation g(t ) + γ > 2J
is held forever for the saturated cases, the saturation effect
only leads to a small modification.

To sum up, one notices that a nonzero EN is possible
when g(t ) 
 γ , provided the initial gain is not too high so
that the associated quantum noise quickly erases the entan-
glement. The numerical calculations are based on parameters
achievable in the laboratory. For example, they are close
to those in a recent experiment [8] of two high-Q silica-
microtoroid resonators with balanced, effective gain, in which
γ = 227−2210 MHz, g = 2835 MHz, and J = 8−544 MHz.
Therefore, by choosing large coupling coefficients, it is pos-
sible to obtain g/J < 10 or γ < 10. One can engineer the
gain and saturation intensity by changing the dopant density
of the gain medium. We assume low saturation intensity to
better demonstrate the difference between the situation of
unsaturated gain and that with saturated gain. If the saturation
intensity is very high, then g(t ) ≈ g0 and hence no difference
exists in the two situations. Due to the difference between
the coupling between microresonators and waveguides, more
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FIG. 4. (a) Variation of the degree of entanglement with satura-
tion intensity. We assume that r1 = r2 = 0.3, θ1 = θ2 = 0, Jt = 4,
and γ /J = 1.3. The red curve corresponds to g0/J = 0.8, and the
dashed, blue curve matches g0/J = 0.4. The figure shows that the
degree of entanglement decays in a quasiexponential manner to
zero as the saturation intensity increases. (b) Variation of the time
evolution of EN with changing saturation intensity. In this case,
g0/J = 0.8, and the saturation intensities are 0.05 (red curve), 0.15
(dotted-dashed, blue curve), and 0.25 (dashed, green curve).

exact simulation of possible experiments with waveguides
should be based on the actual couplings between waveguides.

B. Entanglement variation with the saturation intensity

After one sees the time-evolution change of entanglement
due to gain saturation, it is interesting to know how the degree
of entanglement varies with the saturation intensity. For this
purpose, we consider a particular time when EN approaches
a steady state. As an example, we adopt the parameters of
Fig. 3(b) and select Jt = 4 in Fig. 4(a), but the saturation
intensity remains a variable. The solid (red) and dashed (blue)
curves in the figure correspond to g0/J = 0.8 and g0/J = 0.4,
respectively. Figure 4(a) shows that EN quasiexponentially
decays to zero as the saturation intensity increases. Since
higher saturation intensity leads to a higher gain coefficient
that intensifies the quantum noise, such quasiexponential de-
cay occurs. Also, by comparing the results, one notes that
a lower gain demands a higher saturation intensity so that
the quantity EN vanishes. Figure 4(b) shows that the time
evolution changes as the saturation intensity increases. For
higher saturation intensities, the steady-state value of g(t ) and
hence the quantum noise increase and the steady-state value
of EN decreases.

V. INFLUENCE OF GAIN SATURATION
ON CROSS-CORRELATION FUNCTION

Finally, we examine the Hanbury-Brown–Twiss (HBT)
cross correlation [43] between the two modes â and b̂:

Aa,b = 〈â†(t )b̂†(t )â(t )b̂(t )〉
〈â†(t )â(t )〉〈b̂†(t )b̂(t )〉 , (13)

where 〈â†(t )b̂†(t )â(t )b̂(t )〉 is proportional to the probability
of simultaneously detecting one photon each in the output of
both waveguides. 〈â†(t )â(t )〉 and 〈b̂†(t )b̂(t )〉 are the photon
numbers in waveguides A and B, respectively (individual
detections in the outputs). One can use the quantum regression
theorem [43] for Gaussian states to simplify Eq. (13):

〈â†(t )b̂†(t )â(t )b̂(t )〉 = 〈â†(t )â(t )〉〈b̂†(t )b̂(t )〉
+ 〈â†(t )b̂(t )〉〈b̂†(t )â(t )〉. (14)

We classify the outputs according to their cross-correlation
functions (for a single mode, the second-order correlation
function). If Aa,b > 1, the photon statistics is sub-Poissonian.
In this case the photons are not equally spaced, but rather
appear in bunches. If Aa,b = 1, the photon statistics is Pois-
sonian, which is the characteristic of a coherent light field.
Then the photons are randomly spaced. If Aa,b < 1, the pho-
ton statistics is super-Poissonian, and the photons are anti-
bunched (equally spaced) [48]. The latter is the feature of non-
classical light. One may ask how the gain saturation affects
the cross-correlation function. To address this question, we
consider two different cases in Fig. 5. In Fig. 5(a), we assume
that the input to the waveguides is in the Fock state |n, m〉
(tensor product of two independent Fock states). Moreover,
we assume that the gain coefficient is larger than the loss
coefficient. A dashed (solid) curve denotes the unsaturated
(saturated) case. Initially, the state is purely quantum mechan-
ical and accordingly Aa,b = 0, but because of the coupling
between the waveguides, the photons can tunnel from one
waveguide to the other one. Therefore, the cross-correlation
function oscillates in time. In the saturated case, however,
the oscillations disappear after a short time, and the cross-
correlation function approaches a constant value. Also, the
average value of Aa,b in the saturated case is less than that
of the unsaturated case. This shows that the nonclassical
behavior of the fields is preserved better in the saturated
case because the quantum noise is damped due to the gain
saturation.

In Fig. 5(b) we consider the input to the waveguides to be in
a coherent state |α, β〉, which is a quantum state showing clas-
sical features. Because of this reason, one expects that the dif-
ferences between the saturated and unsaturated cases are not
significant. As Fig. 5(b) shows, the difference between the
two cases is indeed less critical. An exciting feature of the
coherent input fields is that the cross-correlation function does
not remain equal to 1 throughout the non-Hermitian process.
This behavior is in contrast to the case of an unprocessed
coherent state whose cross-correlation function remains equal
to 1 forever.

023819-6
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FIG. 5. (a) Cross-correlation function for the input fields to
the waveguides in the Fock state, |n, m〉. The dashed and solid
curves demonstrate the unsaturated and saturated cases, respectively.
Here we assume n = m = 10. The other parameters are γ /J = 0.5,
g0/J = 2, g(0) = 1, and Isat = 10. l (b) Input to the waveguides is
in the coherent state |α, β〉. We assume α = 1 and β = 2. The other
parameters are γ /J = 0.4, g0/J = 0.5, g(0) = 0.42, and Isat = 5.

VI. CONCLUSION

We have demonstrated how gain saturation affects quantum
noise in a non-Hermitian system when the quantum prop-

erties of light are concerned. As quantum noise alters the
nonclassical properties of light, one sees that gain saturation
substantially changes the nonclassical features of light. As
examples, we first considered the Wigner function, which
is an alternative to the state vector and density matrix for
the system. We find that the Wigner function evolves into
a quasisteady state due to gain saturation, whereas in the
unsaturated case, the distribution of the Wigner function in
phase space expands, and its peak value drastically decreases.
Furthermore, the profile of the evolved Wigner function is
different for the saturated and unsaturated cases. The gain
saturation reduces the gain coefficient with time, and therefore
the quantum noise effect is reduced. Second, we investigated
the time evolution of entanglement, which is a pure quantum
feature with no classical counterpart. We considered different
cases in which the gain, loss, and coupling coefficients are
comparable or very different from each other. Generally,
as long as the quantum noise level is high, a steady state
of entanglement is not achievable. However, gain saturation
reduces the quantum noise level, and hence in most cases,
one can attain a final steady state. A nonzero entanglement of
the output fields is possible only for the cases with g(t ) 
 γ .
Then, we showed that gain saturation is especially meaningful
when the saturation intensity is low. On the other hand, if
the saturation intensity is sufficiently high, the degree of en-
tanglement vanishes, or the difference between the saturated
and unsaturated cases is negligible. Finally, we examined the
cross-correlation function between the output modes for the
inputs in quantum states. All these results indicate that gain
saturation does exert considerable impact on the quantum
properties of light fields processed by our non-Hermitian
setup.
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