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Abstract: In the past decades, quantum plasmonics has become an active area due to its 
potential applications in on-chip plasmonic devices for quantum information processing. 
However, the fundamental physical process, i.e., how a quantum state of light evolves in the 
photon-plasmon conversion process, has not been described by a detailed microscopic 
quantum model. Here, we report a complete characterization of the plasmon-assisted 
extraordinary optical transmission process through quantum process tomography. By 
inputting various coherent states to interact with the plasmonic structure and detecting the 
output states with a homodyne detector, we reconstruct the process tensor of the photon-
plasmon conversion process. Both the amplitude and phase information of the process are 
extracted, which explain the evolution of the quantum-optical state after the coupling with 
plasmons. Our experimental demonstration constitutes a fundamental block for future on-chip 
applications of quantum plasmonic circuits. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Plasmonics provides the capabilities to localize and manipulate electromagnetic excitations 
within sub-wavelength scales, and therefore has great potentials in the miniaturization and 
scalability of photonic devices [1–5]. In recent years, the newly emerging field of quantum 
plasmonics [6,7] has become an active research area, which is mostly motivated by its 
potential applications in integrated plasmonic circuits for quantum information processing. 
Quantum plasmons excited by various quantum sources including single photon [8–10], two-
photon entanglement [11,12] and squeezing [13] have been experimentally demonstrated. The 
fundamental physical characteristics of quantum plasmons have been investigated in intense 
light-matter interactions [14–18], quantum confinement effects [19], survival of entanglement 
and squeezing [11,20–22], decoherence and loss [8,11,20,23–25], perfect absorption of 
entangled photons [26] etc. Quantum plasmonic devices such as detectors [27,28], 
interferometers [9,29–33], and controlled-NOT gate [34] have been developed. The 
applications have been further extended to quantum plasmonic sensing and quantum 
plasmonic networks beyond the classical limit [35–38]. However, large-scale usage of 
quantum plasmons in quantum information processing still faces many technical challenges to 
be solved, such as reducing loss and enhancing efficiency of plasmon-based quantum optical 
logic gates, controlling the phase of quantum interference devices and understanding at what 
scale the quantum theory has to be considered in a plasmonic device. More importantly, the 
fundamental physical problem, how an arbitrary quantum state of light evolves through the 
coupling with plasmons, has not been described by a detailed microscopic quantum model. 
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Physical understanding of quantum plasmons can be acquired in two steps through the 
evolution of various degrees of freedom of the optical field during the photon-plasmon 
conversion process. The first one is about the degree of freedom of single photons, e.g. 
polarization, spatial, temporal and spectral, which have been studied extensively [11,20,39]. 
However, the quantum fluctuations of photon-number degree of freedom and, moreover, the 
quasi-probability distribution in the phase space mark the difference between classical and 
non-classical optical fields, and are crucial for various quantum information applications 
[35,40,41]. Therefore, it’s indispensable to completely understand the evolution of quantum 
fluctuations and coherence, which correspond to the amplitude and phase information from 
the plasmonic structure. 

In this work we address this problem by applying the coherent-state quantum process 
tomography (CSQPT) [42] to a typical plasmon-assisted process, i.e. extraordinary optical 
transmission (EOT) [43,44], in a metal-hole array. This transmission is largely attributed to 
the excitation of surface plasmon polaritons (SPPs) in the literature. Although subsequent 
theoretical and experimental work has claimed the presence of other surface waves [45] in 
this process, SPPs still play an important role in EOT process at visible and near-infrared 
frequencies. And it has been shown that such process can maintain certain quantum 
properties, for example, two-photons entanglement [11] and squeezing [13]. Here, we focus 
the character of far-fields in EOT process, by inputting a set of coherent states through a 
metal hole array and performing a tomographic reconstruction of the output states, we provide 
a complete characterization of the plasmon-assisted EOT process that spans the effect of the 
process in the photon-number Hilbert space. In particular, the reconstruction allows to predict 
the output state of any input states including non-classical ones. 

2. Coherent state quantum process tomography 

A quantum process ε  can be described by a positive, trace-preserving linear map that 
transfers the input states to the output states over Hilbert space H. Complete characterization 
of a quantum process therefore means to know the effect of the process on arbitrary quantum 
states. Assume { }ˆiρ  is the complete set spanning the single-mode Hilbert space. Here, single 

mode indicates a fixed polarization and spatial structure. Thus, any input state can be 
decomposed as 

 ˆ ˆ .in
i ii

aρ ρ=  (1) 

Therefore complete characterization of a quantum process is equivalent to determine the 
output state ˆ( )iε ρ  for each ˆ

iρ . Once this information is acquired, one can predict the output 

state ˆ ˆ( )out inρ ε ρ=  through 

 ˆ ˆ( ).out
i ii

aρ ε ρ=  (2) 

The challenge associated with this approach is the construction of the appropriate 
complete set. For the optical field a natural candidate is the photon-number, i.e. Fock basis 

{ }m n . Under this basis, the process can be expressed as a rank-4 tensor mn
klε  that relates 

the density matrix of the output state ˆ outρ  and that of the input state ˆ inρ  

 ,out mn in
kl kl mnmn

ρ ε ρ=  (3) 

where ˆin in
mn m nρ ρ= , ˆout out

kl k lρ ρ= , and ( )mn
kl k m n lε ε= . Characterization of a 

quantum process can be achieved through the reconstruction of the tensor, which is known as 
the quantum process tomography (QPT). However, direct reconstruction of mn

klε  requires 

superpositions of different Fock states as the probe states, which may be infeasible with 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13810 



current techniques. Luckily, there is another set of complete basis, the coherent states { }α , 

which is readily generated with the output of a laser. Any quantum state of light ρ̂  can be 

written as a linear combination of density matrices of coherent states α  

 2ˆ 2 ( ) ,in
inP dρ α α α α=   (4) 

where ( )inP α  is the state’s Glauber-Sudarshan P function and the integration is performed 

over the entire complex plane. The output state can be expressed as 

 ( ) 2ˆ 2 ( ) .out
inP dρ α ε α α α=   (5) 

Thus, it is sufficient to know the output states of every coherent state α . In particular 

the process tensor in Fock basis can be reconstructed by using [42] 

 ( ) 22 ( ) ,mn
kl mnP k l dε α ε α α α=   (6) 

where ( )mnP α  is the P function of m n . In practical setups, experimental imperfections 

and statistical fluctuations are unavoidable. Therefore, instead of directly applying Eq. (6), 
maximum likelihood estimation (MLE) [46–48] can be used to mitigate the effect of noise. 

3. Sample and experimental setup 

In the experiment, we utilize a typical plasmon-assisted EOT system to investigate the 
fundamental mechanism inside the photon-plasmon-photon conversion process. The sample is 
a hexagonal metal-hole array in a 100nm -thick Au film sputtered on a glass substrate, which 
is fabricated by using a focused ion beam system (FEI Helios 600i). Each circular hole has a 
diameter of 460nm  and the array period is 759nm . The shape of the transmission spectrum 
of such hexagonal hole array does not depend on the input polarization [49]. Because of the 
plasmon resonance, the transmissivity of our sample is greatly enhanced to be about 62.0%  
at 1080nm  as shown in Fig. 1(a). The metal holes occupy about 33.4%  of the area in our 
sample. The transmission efficiency Bη  normalized to the aperture area is 1.86 , which 

indicates that the EOT effect happens [50]. The discrepancy between the experimental data 
and theoretical simulations is due to the imperfections in the fabrication. It should be noted 
that the phase shift of the transmitted light passing through metallic holes is also a function of 
wavelength [51]. We prepare a set of probe states and transmit them through the sample. The 
quadrature distribution of the output states are measured with a homodyne detector, which 
allows to reconstruct the Wigner function and density matrix of the output states [52,53] as 
well as the process tensor. 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13811 



 

Fig. 1. Transmission spectrum of gold plasmon sample and Experimental setup. (a) The blue 
slope is EOT transmissivity slope and the red dot is theory transmissivity slope (FDTD 
simulation). Their characteristic peaks are both at 1080nm . Inset: The electron microscope 

photo of our metal-hole arrays fragment. Its full size is 65 65m mμ μ× . Period is 759nm . 

Hole diameter is 460nm . (b) A coherent infrared light at 1080nm  is amplitude modulated 
with an electrooptical modulator and passes through a calibrated neutral density filter to 
prepare the probe states that incident on the plasmonic sample. The output state is measured 
with a homodyne detector. The relative phases between the probe states and local oscillator of 
the homodyne detector are set with a piezoelectric transducer. EOM is amplitude electrooptical 
modulator. ND is neutral attenuation piece. BS is beam splitter. PZT is piezoelectric 
transducer. OSC is high frequency signal generator. LPF is low frequency filter. 

The schematic experimental setup is shown in Fig. 1(b). The signal field is a coherent 
infrared light at 1080nm , which is amplitude-modulated by an electro-optical modulator 
(EOM). The modulation frequency is set at 2MHz  and the applied voltage on the EOM is 
tunable between 0V  and 10V . The modulated signal field is attenuated by a neutral density 

filter to prepare the probe states α  with average photon number 2| |α  less than 10  and then 

is focused on the metal hole array sample. A two-lens system is used to reshape the incident 
beam to match the sample area. For the experiment we use 9  different probe states with the 
modulation voltage of the EOM from 0V  to 8V  with 1V  increment, which give 0α = , 
0.1375 , 0.2750 , 0.4125 , 0.5500 , 0.6875 , 0.8250 , 0.9625 , and 1.100 , respectively. The 
transmitted light after the photon-plasmon-photon conversion process is measured with a 
homodyne detection system. The signal field passes through the metal hole sample and then 
interferes with a strong local field. The relative phase between the two fields is scanned by a 
piezoelectric transducer (PZT) from 0  to 2π  and tracked with an ancillary beam. A pair of 
photodiodes are used to detect the interference intensity and a subtraction is performed on the 
AC signals. The subtracted AC signal is sent to a lock-in system. After frequency mixing and 
low-frequency filtering, the signal is collected with an oscilloscope. Such homodyne 
detection method can efficiently increase the signal-to-noise ratio in our measurement. We 
can obtain the quadrature information at different angles by slowly scanning the PZT with a 
frequency of 2Hz . In our experiment, we measure the interference signal between the probe 
field and the local oscillator, which both evolve with the same frequency. Therefore, the free 
time evolution factor can be taken out. 
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4. Quantum state tomography 

First, we remove the sample and perform the quantum state tomography of the input coherent 
states at various modulation voltages to calibrate the input states and test the system. By 
scanning the phase of the local field between 0  and 2π , we collect 55 10×  data points, which 
are equally divided into 20  phase sections. The collected data are used to reconstruct the 
density matrices ˆ inρ  in Fock basis of the input states with MLE [46,54]. For a given local 

oscillator phase θ , the probability to detect a quadrature value x  is proportional to 

 ˆ ˆ( ) ( , ) ,pr x Tr xθ θ ρ = Π   (7) 

where ˆ ( , ) , ,x x xθ θ θΠ =  is the projector onto this quadrature eigenstate. The likelihood of 

the data set ( ){ },i ixθ  is given by 

 ln ln ( ).
i iL pr xθ=  (8) 

And we introduce the iteration operator [46] 

 
ˆ ( , )ˆ ˆ( ) ,

( )
i

i i

i
i

x
R

pr xθ

θρ Π
=  (9) 

where 1,..., 20i =  enumerates individual sections. We choose the initial density matrix as, 

e.g., (0) ˆˆ [1]Nρ = , and apply repetitive iterations [54] 

 ( 1) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ,k k k kN R Rρ ρ ρ ρ+  =    (10) 

where N denotes normalization to a unitary trace. The iterative scheme can be applied to find 
the density matrix ˆ inρ  which maximizes the likelihood. 

The phase-space quasi-probability distribution, known as the Wigner function can be 
calculated from ˆ inρ  

 
1 1 1

ˆ( , ) exp( ) ,
2 2 2

inW X Y X X X X iX Y dXρ
π

+∞

−∞
′ ′ ′ ′= + − −  (11) 

where X and Y are two quadratures. 
The Wigner functions of the input states at 2V , 6V , and 8V  modulation voltages are 

shown in Figs. 2(a), 2(c) and 2(e), respectively. Clearly, the center of the Wigner function 
moves away from the origin of the coordinates as increasing the modulation voltage since the 
amplitude of the input state increases with the modulation voltage. The Wigner functions 
possess Gaussian shapes and the distances between the centers and the origin are 0.2750 , 

0.8250 , and 1.100 , which correspond to coherent stats α  with 0.2750α = , 0.8250 , and 

1.100 , respectively. 
Next, we set up the sample and repeat above procedure to perform the quantum state 

tomography for the output states after the photon-plasmon-photon conversion. The measured 
Wigner functions of the output states are shown in Figs. 2(b), 2(d) and 2(f), which are 
corresponding to the input states in Figs. 2(a), 2(c) and 2(e), respectively. By carefully 
examining the input and output Wigner functions, we find the distance from the center of the 
Wigner function of the output state is reduced compared to that of the input state for all three 
states, which is due to the attenuation in the conversion process. There exists a small 
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deviation in the calculated transmittance of ( )2
/out inα α , which results from statistical 

fluctuations, experimental errors and the density matrices reconstruction. Moreover, the 
Wigner function of the output state is rotated by 0.92  radian around the original with respect 
to the input state, which suggests the conversion process adds a 0.92  radian constant phase to 
the state. Such differences should be closely related to the mechanism of the plasmon-assisted 
EOT process. 

 

Fig. 2. Wigner function of input and output light. (a/c/e) The Wigner functions of input fields 

( , )inputW X Y  with 2V , 6V , and 8V  modulation voltage of the EOM, respectively. 

(b/d/f) The Wigner functions of output fields ( , )outputW X Y with 2V , 6V , and 8V  

modulation voltage of the EOM, respectively. inα corresponds to the input state and outα
corresponds to the output state. 
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5. Quantum process tomography of metal-hole arrays 

The changes in the Wigner functions of specific input states do not reveal all the information 
about the conversion process. We further apply CSQPT on the EOT process with 9  coherent 
states, which is based on quantum expectation-maximization [55]. We collect the outcomes of 
the homodyne detectors for each output state, and apply MLE algorithm [55,56] to 
reconstruct process tensor mn

klε . The method relies on the Jamiolkowski isomorphism and 

iteratively reconstructs the process tensor in the Fock basis directly from the experimental 
data [55]. Here, mn

klε  is a four-dimensional tensor. Since the EOT process has influences on 

both the amplitude and phase characteristics of the input states, we investigate them 
separately. 

We extract the diagonal elements of the tensor mn
klε  to investigate the amplitude 

information (Fig. 3(a)). We choose m n=  in the input state and k l=  in the output state, 
which corresponds to the diagonal elements of the density matrices and describes the effect of 
the process on the photon-number distribution of the state. By analyzing the diagonal 
elements mm

kkε  of the process tensor, one can see the evolution of photon numbers from input 

field ( m ) to output field ( k ). For a given input photon number m , the output photon number 
k  has a Binomial-like distribution, which hints the Bernoulli transformation of the process. 
By assuming a linear loss process with transmissivity 62.0%T = , we perform numerical 
simulations as shown in Fig. 3(b). By comparing the experimental results in Fig. 3(a) and the 
theoretical simulations in Fig. 3(b), we can get the fidelity [21] 99.68%F =  between the two 
matrices. Clearly, the EOT effect on the amplitude of the input state can be understood as a 
linear loss. 

 

Fig. 3. The results of CSQPT. (a)The diagonal elements of the process tensor mm
kkε  with input 

field index m  and output field index k  for an EOT process. (b)Numerical results of a linear 

loss process with transmissivity of 62.0% . (c/d/e) The off-diagonal elements of the process 

tensor (c) { }01Im ln mnε   , (d) { }02Im ln mnε   , (e) { }03Im ln mnε   , where m and n 

represent the input field index in the Fock basis. 

In addition to changes in the photon-number distributions, the reconstructed process 
tensor also reveals the effect on the off-diagonal elements of the density matrix, i.e. the 
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coherence between different photon-number components. In particular, we can acquire the 
effect of the process on the phases of the input state. Such information can be extracted from 
the tensor elements mapping the input state density matrix to certain off-diagonal element of 
the output state. For example, the phase value the 01

outρ  element of the output state is 

determined by the phases { }01Im ln mnε    of 01
mnε  process tensor elements [57], and 01ln mnε    

denotes imaginary unit i multiplies by the phase value. To elaborate this relation, we 
decompose the process ε  into a phase shift superoperator and a phase-symmetric process ε ′  

 
† †ˆ ˆ†ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,out in in i a a in i a aU U e eφ φρ ε ρ φ ε ρ φ ε ρ −′ ′= = =  (12) 

where φ  is a constant phase shift. From Eq. (3), we can get the process tensor 
( )| |

mn
klimn mn i k l

kl kl e eϕ φε ε −′= ⋅  and 

 { }Im ln ( ) ,mn mn
kl kl k lε ϕ φ  = + −   (13) 

where mn
klϕ  is the phase of mn

klε ′ , which accounts for photon-number-dependent, i.e. nonlinear 

phase shifts. 

Figures 3(c), 3(d) and 3(e) show several phase values { }Im ln mn
klε    of the EOT process, 

which are extracted from 01
mnε , 02

mnε , and 03
mnε , respectively. Note for a phase-symmetric 

process, only the tensor elements mn
klε  with k l m n− = −  are non-zero [42]. The figures show 

that for given k  and l , the phase changes are the same for various m  and n , which well 
matches the prediction from the Wigner functions (Fig. 2). These results indicate that the 
nonlinear phase shift mn

klϕ  is negligible in the process. In addition, the average values of the 

phases of 01
mnε , 02

mnε , and 03
mnε  are 0.9200 , 1.8182 , and 2.7849 , respectively, which are 

linearly dependent on k l− . In short, the metal-hole arrays apply a constant phase shift with a 
value about 0.92  radian to the input state. 

6. Discussion and conclusion 

Although to fully understand the photon-plasmon-photon conversion process requires a 
detailed microscopic model, the reconstructed process tensor suggests that the conversion 
process can be effectively described with a beam-splitter model plus a constant phase. With 
this model, the input field operator ˆina  is transferred to the output field operator ˆouta  through 

the equation 

 ˆ ˆ ˆ1 ,i
out bath ina a e aφη η= − +  (14) 

where ˆbatha  is the field operator of the lumped Markovian environment in vacuum, η  is the 

overall transmissivity and φ  is the constant phase added by the process. The linear-loss 

model has been proposed in Refs [8,21]. and tested with squeezed light [21] and heralded 
single photons [58]. Our tomography results go beyond the previous works by confirming 
validity of the model for arbitrary input states. Moreover, the new results also highlight the 
effect of the coupling process on the phase of the input state, which is closely related to 
quantum coherence. The model given in Eq. (14) can be applied to both classical and 
quantum optical field, and explains the extraordinary high transmissivity of light and 
entanglement survival [11,20–22]. 

To summarize, we have performed complete quantum tomography to reconstruct a 
photon-plasmon conversion process, i.e., EOT in a metal-hole array. Such reconstruction 
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procedure discovers the fundamental characteristics including both the amplitude and phase 
information of a typical plasmonic process, which allows us to precisely estimate the 
interaction of arbitrary classical or quantum optical fields with such plasmonic structure, as 
well as to develop the microscopic model to interpret the process. Our experimental 
demonstration provides a fundamental understanding of a plasmon-assisted EOT process, 
which paves a way for the proper design of a quantum plasmonic components for future 
applications in on-chip quantum information processing. It should be noted that our 
experimental observations based on single input mode can be readily extended to the case 
with multiple optical modes. Since the applications of quantum plasmonics have been further 
extended to quantum plasmonic sensing and quantum plasmonic networks beyond the 
classical limit, the complete quantum tomography of various quantum plasmonic process will 
benefit the optimization of on-chip plasmonic devices. 

Funding 

National Key R&D Program of China (2017YFA0303700, 2016YFA0302500), National 
Natural Science Foundation of China (NSFC) (91636106, 11874213, 11621091, 11474159, 
61490711, 11874213), Fundamental Research Funds for the Central Universities 
(021314380105). 

References 

1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme 
light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). 

2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–
193 (2006). 

3. Y. Zhu, D. Wei, Z. Kuang, Q. Wang, Y. Wang, X. Huang, Y. Zhang, and M. Xiao, “Broadband variable meta-
axicons based on nano-aperture arrays in a metallic film,” Sci. Rep. 8(1), 11591 (2018). 

4. Y. Wang, X. Fang, Z. Kuang, H. Wang, D. Wei, Y. Liang, Q. Wang, T. Xu, Y. Zhang, and M. Xiao, “On-chip 
generation of broadband high-order Laguerre-Gaussian modes in a metasurface,” Opt. Lett. 42(13), 2463–2466 
(2017). 

5. D. Wei, Y. Wang, D. Liu, Y. Zhu, W. Zhong, X. Fang, Y. Zhang, and M. Xiao, “Simple and nondestructive on-
chip detection of optical orbital angular momentum through a single plasmonic nanohole,” ACS Photonics 4(4), 
996–1002 (2017). 

6. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. 
Phys. 9(6), 329–340 (2013). 

7. F. Marquier, C. Sauvan, and J.-J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic 
resonators,” ACS Photonics 4(9), 2091–2101 (2017). 

8. M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation 
of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008). 

9. Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo, and G.-C. Guo, “High-
Visibility On-Chip Quantum Interference of Single Surface Plasmons,” Phys. Rev. Appl. 2(1), 014004 (2014). 

10. M.-C. Dheur, E. Devaux, T. W. Ebbesen, A. Baron, J.-C. Rodier, J.-P. Hugonin, P. Lalanne, J.-J. Greffet, G. 
Messin, and F. Marquier, “Single-plasmon interferences,” Sci. Adv. 2(3), e1501574 (2016). 

11. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” 
Nature 418(6895), 304–306 (2002). 

12. X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional 
orbital angular-momentum entangled state,” EPL 76(5), 753–759 (2006). 

13. D. Wang, C. Xia, Q. Wang, Y. Wu, F. Liu, Y. Zhang, and M. Xiao, “Feedback-optimized extraordinary optical 
transmission of continuous-variable entangled states,” Phys. Rev. B Condens. Matter Mater. Phys. 91(12), 
121406 (2015). 

14. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, 
“Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–
406 (2007). 

15. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center 
to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011). 

16. A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of 
nonclassical light,” ACS Photonics 5(9), 3447–3451 (2018). 

17. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, 
and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 
535(7610), 127–130 (2016). 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13817 



18. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single 
quantum emitter limit,” Nat. Commun. 7(1), 11823 (2016). 

19. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and 
metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012). 

20. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in 
plasmon-assisted light transmission,” Phys. Rev. Lett. 94(11), 110501 (2005). 

21. A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration 
of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102(24), 246802 (2009). 

22. B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum 
correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013). 

23. S. G. Dlamini, J. T. Francis, X. Zhang, Ş. K. Özdemir, S. N. Chormaic, F. Petruccione, and M. S. Tame, 
“Probing Decoherence in Plasmonic Waveguides in the Quantum Regime,” Phys. Rev. Appl. 9(2), 024003 
(2018). 

24. J. S. Fakonas, A. Mitskovets, and H. A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17(2), 
023002 (2015). 

25. Y. S. Tokpanov, J. S. Fakonas, B. Vest, and H. A. Atwater, “Quantum Coherence is Preserved in Extremely 
Dispersive Plasmonic Media,” arXiv:1810.00114 (2018). 

26. C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption 
in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017). 

27. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single 
plasmon detection,” Nano Lett. 10(2), 661–664 (2010). 

28. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and 
H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–
479 (2009). 

29. R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. 
Nanotechnol. 8(10), 719–722 (2013). 

30. J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 
8(4), 317–320 (2014). 

31. G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. 
Maier, “Observation of Quantum Interference in the Plasmonic Hong-Ou-Mandel Effect,” Phys. Rev. Appl. 1(3), 
034004 (2014). 

32. G. Fujii, D. Fukuda, and S. Inoue, “Direct observation of bosonic quantum interference of surface plasmon 
polaritons using photon-number-resolving detectors,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085430 
(2014). 

33. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. 
Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009). 

34. S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint 
polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7(1), 11490 
(2016). 

35. C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: beyond the 
shot-noise and diffraction limit,” ACS Photonics 3(6), 992–999 (2016). 

36. M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum 
plasmonic networks,” Optica 3(9), 985–988 (2016). 

37. J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise 
reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A (Coll. Park) 96(3), 033833 
(2017). 

38. J.-S. Lee, S.-J. Yoon, H. Rah, M. Tame, C. Rockstuhl, S. H. Song, C. Lee, and K.-G. Lee, “Quantum plasmonic 
sensing using single photons,” Opt. Express 26(22), 29272–29282 (2018). 

39. S. Fasel, M. Halder, N. Gisin, and H. Zbinden, “Quantum superposition and entanglement of mesoscopic 
plasmons,” New J. Phys. 8, 13 (2006). 

40. W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92(5), 053812 (2015). 
41. M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” 

Optica 5(5), 628–633 (2018). 
42. M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C. Sanders, and A. I. Lvovsky, “Complete 

characterization of quantum-optical processes,” Science 322(5901), 563–566 (2008). 
43. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission 

through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). 
44. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–

1290 (2007). 
45. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave 

contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012). 
46. A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B 

Quantum Semiclassical Opt. 6(6), S556–S559 (2004). 
47. J. Fiurášek and Z. Hradil, “Maximum-likelihood estimation of quantum processes,” Phys. Rev. A 63(2), 020101 

(2001). 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13818 



48. M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68(1), 012305 
(2003). 

49. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission 
through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999). 

50. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). 
51. Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of Interference 

between localized and propagating surface waves on the extraordinary optical transmission through a 
subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008). 

52. G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical 
homodyne tomography without filtered back projection,” Phys. Rev. A 50(5), 4298–4302 (1994). 

53. U. Leonhardt, M. Munroe, T. Kiss, T. Richter, and M. G. Raymer, “Sampling of photon statistics and density 
matrix using homodyne detection,” Opt. Commun. 127(1-3), 144–160 (1996). 

54. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 
81(1), 299–332 (2009). 

55. A. Anis and A. I. Lvovsky, “Maximum-likelihood coherent-state quantum process tomography,” New J. Phys. 
14(10), 105021 (2012). 

56. S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I. Lvovsky, and B. C. Sanders, “Quantum process 
tomography with coherent states,” New J. Phys. 13(1), 013006 (2011). 

57. C. Kupchak, S. Rind, B. Jordaan, and E. Figueroa, “Quantum process tomography of an optically controlled kerr 
non-linearity,” Sci. Rep. 5(1), 16581 (2015). 

58. G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, “Quantum 
statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012). 

 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13819 




