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Manipulating the orbital-angular-momentum correlation of entangled two-photon states
in three-dimensional nonlinear photonic crystals
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Three-dimensional (3D) nonlinear photonic crystal (NPC) has recently been realized in experiment, which
provides a powerful platform for quantum-state engineering. Here, we propose a fork-grating 3D NPC scheme
to manipulate orbital-angular-momentum (OAM) correlations of entangled two-photon pairs. The spiral spec-
tra, bandwidths, and generation rates of counterpropagating and copropagating photon pairs are theoretically
analyzed. Our results show that 3D NPC is of practical significance to generate high-dimensional OAM
entanglement for quantum precision measurement, quantum computing, and quantum communication.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) in non-
linear crystals is a common method to obtain entangled
two-photon pairs, which plays a key role in fundamental
quantum physics, quantum information, quantum metrology,
and quantum imaging [1–6]. In SPDC, a strong pump light
produces two lower-frequency photons (referred to as signal
and idler), which obeys the conservation law of energy and
momentum. The entanglement of the two-photon state has
been realized in polarizations [7], time bins [8], paths [9],
and transverse spatial modes [10]. The dimension of the path
entanglement has been increased to 100 recently [11].

One convenient and direct way for high-dimensional en-
tanglement is based on the orbital-angular-momentum (OAM)
correlation between signal and idler photons in SPDC.
The spatial modes carrying OAM of l h̄ (here, l is any
integer value) suitably encode high-dimensional quantum in-
formation [12] by utilizing the discrete nature of OAM in
infinite-dimensional Hilbert space. High-dimensional OAM
entanglement has been applied for quantum precision mea-
surement [13–15], quantum spiral imaging [16,17], tests of
the 12-dimensional generalized Bell inequalities [18], as well
as providing resilience to noise [19]. In experiment, it is
generally to produce high-dimensional OAM correlation by
shaping the pump light [20–22].

Quasi-phase-matching (QPM) engineering was proposed
for the spatial manipulation of entangled two-photon states
in two-dimensional (2D) nonlinear photonic crystals (NPCs)
[23]. Such crystals provide a compact and stable platform
for quantum-state engineering [24–28], such as the genera-
tions of high-dimensional path-entangled states [26,28] and
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narrow-band counterpropagating entangled photons [29], and
the on-chip manipulation of entangled two-photon states [25].
However, limited by traditional fabrication techniques, 2D
NPCs can only provide reciprocal-lattice vectors (RLVs) in
two dimensions. Because the manipulation of two-photon
OAM states needs 2D RLVs for full wave-front modula-
tion, the QPM condition generally cannot be maintained in
this case. Therefore, the output of two-photon OAM states
from 2D NPC usually has low efficiency, limiting the bright-
ness of the source [13]. Recently, three-dimensional (3D)
NPCs produced using a femtosecond laser engineering tech-
nique provide a potential solution to an efficient spatial
modulation in 3D QPM configuration for the generation of
high-dimensional entanglement [30–35].

In this paper, we theoretically investigate the manipula-
tion of the spiral spectrum of entangled photon pairs within
a fork-grating 3D NPC. In comparison to 2D NPC case,
the spectral bandwidth of the entangled photon pairs can
be greatly decreased in a 3D NPC. The conversion effi-
ciency is also significantly enhanced by several orders of
magnitude. In addition, we propose the schemes to generate
high-dimensional maximally entangled OAM states within
3D NPCs. Our results show that 3D NPC is capable of pro-
ducing and spatially steering two-photon pairs simultaneously
and efficiently, thereby paving the way to integrate high-
dimensional entangled quantum light source in quantum-state
engineering.

II. DESCRIPTION OF THE SPDC PROCESS IN A
FORK-GRATING 3D NPC

We consider a type-0 (e e e) SPDC process. The 3D NPC
of fork grating can be fabricated by using femtosecond-laser
erasing technique [36,37] in a z-cut lithium niobate (LiNbO3)
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FIG. 1. (a) Schematic of the SPDC process in a fork-grating 3D
NPC. (b) The QPM configurations for counterpropagating (top) and
copropagating (bottom) entangled photon pairs.

crystal [Fig. 1(a)]. The second-order nonlinear coefficient
function χ2(r) in 3D NPC is [38]

χ2(r) = ηd33

∑
m,n

Fm,n exp (−imGyy − inGzz) exp (imlcϕ),

(1)

with

Fm,n = R0√
(m�z )2 + (n�y)2

J1

(
R0

√
(mGy)2 + (nGz )2

)
, (2)

where η denotes the erasing efficiency of femtosecond-laser
writing, d33 the nonlinear coefficient of the LiNbO3 crys-
tal, Fm,n the Fourier coefficients of the RLV Gm,n = mGyŷ +
nGzẑ (m, n = 0, ± 1, ± 2, · ··) with Gy = 2π/�y, and Gz =
2π/�z, lc the topological charge (TC) of the fork-grating
structure in NPC, ϕ = tan−1(y/x) the azimuthal angle in the
x–y plane, J1(ξ ) the first-order Bessel function, �y(�z) the
structure period along the y (z) direction, and R0 the radius of
the erased domain [Fig. 1(a)].

The interaction Hamiltonian ĤI of SPDC is written as

ĤI = ε0

∫
V

d3rχ2(r)E (+)
p E (−)

s E (−)
i + H.c., (3)

where ε0 denotes the vacuum permittivity, E (+) and E (−) de-
note the positive- and negative-frequency parts of the electric
field, respectively, H.c. means the Hermitian conjugate of the
previous term, the subscripts p, s, i on the electric field inten-
sities refer, respectively, to the pump, signal, and idler beams,
and V denotes the interaction volume. Treating the pump light
as a classical field of a single frequency, the formulas for the
electric fields are

E (+)
p = Ep exp (ikpzz − iωpt ) f (x, y), (4)

E (−)
j =

∑
k j

E j exp (−ik j · r + iω jt )â†
j (k j ), ( j = s, i), (5)

with

Ej =
√

h̄ω j/2ε0V n2
j , (6)

where â†, ω, n, and k denote the creation operator, angular
frequency, crystal refractive index, and wave vector of the

electric field, respectively, f (x, y) and Ep denote the trans-
verse profile function and the amplitude of the pump light, and
kpz = Kp − |κp|2/2Kp denotes the longitudinal wave number
inside the crystal, with κp being the transverse wave vector
of the pump field and Kp = npωp/c. The conservation law of
energy holds, ωp = ωs + ωi, where ωs = 
s + νs. 
s and νs

denote the central frequency and deviation of the signal beam,
respectively. The wave vector of the signal beam is

ks = kszs + κs, (7)

with

kszs = kszs (− sin θs,mnŷ + cos θs,mnẑ), (8)

kszs = Ks + νs

us
− |κs|2

2Ks
, (9)

κs = κsxx̂ + κsys cos θs,mnŷ + κsys sin θs,mnẑ, (10)

where |k0
szs

| � |κs|, and Ks = ns
s/c, θs,mn denotes the angle
between the central wave vectors kszs and the z axis in the
y–z plane, κs the transverse wave vector of the signal beam
in the x–ys plane, us the group velocity of signal beam, the
subscript mn is in reference to Gm,n, and κsx(κsys ) denotes the
component of the signal-field transverse wave vector along
the x(ys) direction. Similar expressions hold for the idler
beam.

We assume that the area of the crystal illuminated by the
pump light is sufficiently large. From the first-order perturba-
tion theory, we have an entangled two-photon state:

|ψ〉 = AL
∑
m,n

Fm,n

∫
dωs

∫
dωiδ(ωs + ωi − ωp)

×
∫∫

d2κs

∫∫
d2κiF (�ktr,x,�ktr,y )

× exp (i�kzL/2)sinc(�kzL/2)â†(κs)â†(κi )|0〉,
(11)

with

F (�ktr,x,�ktr,y ) =
∫∫

dxdy f (x, y) exp (imlcϕ)

× exp [−i(�ktr,xx + �ktr,yy)], (12)

where the coefficient A ∝ ηd33, L denotes the crystal length,

�ktr,x = κsx + κix, (13)

�ktr,y = −�k0
tr,y − νs

us
sin θs,mn

− νi

ui
sin θi,mn + κsys cos θs,mn

+ κiyi cos θi,mn + κ2
s

2Ks
sin θs,mn + κ2

i

2Ki
sin θi,mn,

(14)

�kz = �k0
z − νs

us
cos θs,mn − νi

ui
cos θi,mn

− κsys sin θs,mn − κiyi sin θi,mn

− κ2
p

2Kp
+ κ2

s

2Ks
cos θs,mn + κ2

i

2Ki
cos θi,mn, (15)
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�k0
tr,y = Ks sin θs,mn + Ki sin θi,mn − mGy, (16)

�k0
z = Kp − Ks cos θs,mn − Ki cos θi,mn − nGz, (17)

and under the 3D QPM condition, �k0
tr,y = �k0

z = 0.
Next, we analyze the bandwidth of the entangled pho-

tons in a fork-grating 3D NPC. We consider a structure that
satisfies the QPM conditions for the generation of counter-
propagating entangled photons. As shown in Fig. 1(b), the
counterpropagating signal and idler beams are collinear, i.e.,
θs,mn = π − θi,mn = θmn, and the angle θmn is small enough
(i.e., cos θmn = 1). In this type-0 (e e e) SPDC, we consider
nondegenerate frequencies of signal and idler beams, i.e.,

s �= 
i, and νs = −νi = ν because of the conservation law
of energy. Then, the parameters of the two-photon state in
Eq. (11) become

�ktr,x = κsx + κix, (18)

�ktr,y = κsys − κiyi , (19)

�kz = −Dν + ν̄, (20)

with

D = 1

us
+ 1

ui
, (21)

ν̄ = − κ2
p

2Kp
+ κ2

s

2Ks
+ κ2

i

2Ki
. (22)

The joint spectral density for the two-photon state is

h(�kzL) =
∣∣∣∣sinc

(
(−Dν + ν̄)L

2

)∣∣∣∣2

, (23)

and the corresponding bandwidth is �ω = 1.77π/DL.
Under such couterpropagation configuration, one can ob-

tain narrow-band nondegenerate two-photon state. Here, we
set λp = 532 nm, λs = 795 nm, and λi = 1550 nm for exam-
ple. The 795-nm signal photon is compatible to atomic system
for quantum storage and the 1550-nm photon can be used
for long-distance fiber quantum communication. We use a
fork-grating 3D NPC with �y = 8μm, �z = 0.35μm, and
R0 = 0.134 μm for calculations. The involved RLV is G±1,1

for QPM. The working temperature of 3D NPC is 81.9 ◦C.
By using a 2-cm-long 3D NPC, the spectral bandwidth of
the counterpropagating photons is calculated to be �ω =
2π × 3.06 GHz, which is greatly reduced in comparison to

the 2D NPC case [13,39–41]. In addition, we also numeri-
cally simulate the copropagating entangled photons (θs,mn =
θi,mn = θmn). The fork-grating 3D NPC has �y = 8 μm, �z =
12 μm, R0 = 2.548 μm. The crystal temperature is 104.6 ◦C.
The calculated bandwidth is �ω = 2π × 347 GHz.

III. MANIPULATION OF THE OAM CORRELATION IN A
FORK-GRATING 3D NPC

In a SPDC process, the signal and idler photons are OAM
correlated, forming a spiral spectrum of the two-photon states.
One can manipulate the OAM correlation in a fork-grating
3D NPC. We consider two QPM configurations, i.e., the en-
tangled photons are counterpropagating (θs,mn = π − θi,mn =
θmn) and copropagating (θs,mn = θi,mn = θmn) (Fig. 1). For
simplicity, the signal and idler beams are assumed to be
monochromatic, which can be justified by using narrow-band
filters in front of the detectors [42]. With a small angle θmn,
the SPDC processes satisfy the OAM conservation laws, i.e.,
lp + mlc = ls ± li, where ± corresponds to forward (back-
ward propagation) of the idler photon [39,43]. Because the
OAM-carrying Laguerre-Gaussian (LG) mode set is complete
and orthogonal, we decompose a two-photon state |ψ〉 at the
pump beam waist (z = 0) in the LG basis [44],

|ψ〉 =
∑
ls,ps

∑
li,pi

Cls,li
ps,pi

|ls, ps; li, pi〉, (24)

with

Cls,li
ps,pi

= 〈ls, ps; li, pi|ψ〉, (25)

where |ls, ps; li, pi〉 = ∫∫
d2κs

∫∫
d2κiL̃G

ls
ps

(κs)L̃G
li
pi

(κi )×
â†(κs)â†(κi )|0〉, L̃G

l
p(κ) denotes the Fourier transform of the

LG function LGl
p(ρ), and Cls,li

ps,pi
the probability amplitude to

detect the signal photon in the mode of L̃G
ls
ps

(κs) and the idler

photon in the mode of L̃G
li
pi

(κi ). Considering that |Cls,li
ps,pi

|2
corresponds to the weight in the LG basis, one can calculate
the normalized spiral spectrum. We assume that the Rayleigh
range of the pump light is much larger than the 3D NPC
length L, i.e., under the thin crystal approximation [45,46],
and the pump light is in an LGlp

pp (ρ) mode. With a certain
RLV Gm,n satisfying the QPM conditions of Eqs. (16) and
(17) with a small θmn, we obtain (see the Appendix)

Cls,li
ps,pi

∝ LFm,n

√
8pp!ps!pi!(|lp| + pp)!(|ls| + ps)!(|li| + pi )!

π
δlp+mlc,ls±li

1

w3
p

(√
2

wp

)|lp|+|ls|+|li|

× γ |ls|+1
s γ

|li|+1
i

pp∑
jp=0

ps∑
js=0

pi∑
ji=0

(
− 2

w2
p

) jp+ js+ ji 1

(|lp| + jp)! jp!(pp − jp)!

× γ
2 js
s γ

2 ji
i

(|ls| + js)! js!(ps − js)!(|li| + ji )! ji!(pi − ji )!
P(σ, β ), (26)
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with

P(σ, β ) =
∫ ∞

0
dρ exp(−βρ2)ρσ

=
{√

π

2σ
σ !

(σ/2)!

(
1
β

)(σ+1)/2
, σ is even,(

σ−1
2

)
!
(

1
β

)(σ+1)/2
, σ is odd,

(27)

where jp, js, and ji are positive integers, σ = |lp| +
|ls| + |li| + 2( jp + js + ji ) + 1, β = (1 + γ 2

s + γ 2
i )/w2

p,
γs = wp/ws, and γi = wp/wi, with wp, ws, and wi being the
waists of the pump, signal, and idler beams, respectively. In
Eq. (26), the Kronecker delta function δlp+mlc,ls±li ensures
the OAM conservation law, i.e., lp + mlc = ls ± li. For
counterpropagating (copropagating) photons, the OAM
correlation between signal and idler photons is positive
(negative). Notably, the TC of NPC structure (lc) takes part in
the OAM conservation, which distinguishes this work from
the method of shaping the pump light [47]. Figure 2 compares
the spiral spectra by shaping the pump light (lc = 0, lp �= 0)
and introducing fork-grating 3D NPC structure (lp = 0,

lc �= 0). Here, the pump beam is in an LGlp

0 (ρ) mode and the
involved RLV is G1,1. We use ps = pi = 0 and γs = γi = 1 in
detection. The spiral bandwidth by shaping the pump light in
Figs. 2(a) and 2(b) is wider than that modulated by 3D NPC
in Figs. 2(c) and 2(d). This can be attributed to the intensity
profile of the pump light.

Figure 3 shows the spiral spectra with G−1,1 and G1,1.
Here, ps = pi = 0, γs = γi = 1, lc = 2, and lp = 1. With
different RLVs, the OAM correlation between signal and
idler photons stays positive (negative) for counterpropagation

FIG. 2. Normalized spiral spectra for counterpropagation (red,
left side) and copropagation (blue, right side) QPM configurations
with ps = pi = 0 and γs = γi = 1 in detection. (a) and (b) corre-
spond to the method of shaping the pump light (lc = 0, lp = 1), in
which the phase matching condition is satisfied by using a 1D NPC.
(c) and (d) correspond to the method of using forkgrating 3D NPC
(lc = 1, lp = 0). The color bars show the weights in the LG basis.

(copropagation) situation. The spiral spectra of G−1,1 and G1,1

are different in the spiral spectral profiles and the central val-
ues of ls and li. This results from different OAM conservation
conditions, i.e., lp − lc = ls ± li for G−1,1 and lp + lc = ls ± li
for G1,1.

Next, we analyze the probability amplitude of two-photon
pair. In 2D NPC (Fig. 4), two reasons limit the source bright-
ness. First, the QPM condition is not fully satisfied (�k0

z �= 0)
and the effective length is limited to π/�k0

z . Second, the
interacting waves do not couple via the maximum nonlinear
coefficient d33. In comparison, it is feasible to achieve �k0

z =
0 and utilize d33 in a 3D NPC. In addition, one can increase the
3D NPC length to enhance brightness because the conversion
efficiency is proportional to the square of the crystal length in
3D NPC.

We design a 3D NPC for copropagating configuration ac-
cording to the reported femtosecond laser erasing technique
[32]. The 3D NPC structure [Fig. 1(a)] is fabricated inside
a z-cut 5% MgO-doped LiNbO3 crystal. The carried TC is
lc = 1. The laser erasing efficiency is η = 0.15 [32]. In the y–z
plane, the structure period is �z = �y = 3 μm and the radius
of the erased domain is R0 = 0.81 μm [Fig. 1(a)]. The RLVs
G−1,1 and G1,1 take part in a type-0 (e e e) SPDC process. The
corresponding Fourier coefficient is F±1,1 = 0.0993. The NPC
temperature is stabilized at 37.9 °C. The pump wavelength is
417.3 nm. The generation rate with G1,1 of 3D NPC is

R ∝ |ηd33LF1,1|2. (28)

FIG. 3. Normalized spiral spectra with G−1,1 and G1,1 to satisfy
the QPM condition under (a), (b) counterpropagation (red, top side)
and (c), (d) copropagation (blue, bottom side). Here, ps = pi = 0,
γs = γi = 1, lc = 2 and lp = 1. The insets show the spiral spectral
profiles of the idler photons. The color bars show the weights in the
LG basis.
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FIG. 4. Fork-grating 2D poled NPC with a length of Lcoh =
π/�kz = 1.5 μm and a period of �y = 3 μm. The duty cycle is 1/2
and the Fourier coefficient G′

1 is F ′
1 = 0.3185.

We use a fork-grating 2D poled NPC (Fig. 4) for com-
parison. The first-order RLV G′

1 in the transvers direction is
utilized. The generation rate is R′ ∝ |2d22LcohF ′

1 |2. The ratio
of the generation rates in 3D NPC and 2D NPC is

R

R′ ∝
∣∣∣∣ ηd33LF1,1

2d22LcohF ′
1

∣∣∣∣2

, (29)

where d33 = 27.2 pm/V and d22 = 2.1 pm/V in LiNbO3

crystal [48]. Using a 200-μm-long 3D LiNbO3 NPC, the
generation rate of the two-photon state is enhanced by three
orders of magnitude compared with that in 2D NPC. Consider
that a 100-mW pump light is focused into a spot of 0.01 mm2

and is then injected into this 3D NPC. The coincidence rate
for the generated photons is calculated to be 175 s–1 with
1-nm narrow-band filters in front of the detectors. Notably,
the experimental realization requires to increase the length of
3D NPC to enhance the conversion efficiency.

IV. THREE-DIMENSIONAL NPC SCHEME FOR
GENERATING HIGH-DIMENSIONAL MAXIMALLY

ENTANGLED OAM STATES

High-dimensional maximally entangled OAM states are
common sources for quantum key distribution [49] and
quantum communication [50,51]. Because of the nonunifor-
mity of the spiral bandwidth, researchers usually postselect
high-dimensional maximally entangled OAM states via entan-
glement concentration applying Procrustean methods, which,
however, reduces the detection efficiency [18,51,52]. Re-
cently, shaping the pump light to obtain a three-dimensional
maximally entangled state (MES) has been demonstrated
[20,21]. However, it requires strict optimization in shaping the
pump light, i.e., constructing its superposition modes, which
makes it difficult for practical applications. With 3D NPC, one
can directly and efficiently generate MESs with a single-mode
pump light. Here, we give two examples with ps = pi = 0 and
γs = γi = 1 in detection. First, for the situation of counter-
propagation two-photon, we use an LG-mode pump light with
lp = −1 and pp = 0 to pass through a fork-grating 3D NPC
with lc = 1. The RLV G1,1 is involved in the SPDC process,
which can generate a three-dimensional maximally entan-
gled OAM state, i.e., |ψ〉 = (|−1,−1〉 + |0, 0〉 + |1, 1〉)/

√
3.

FIG. 5. Normalized spiral spectra of an entangled two-photon
state for counterpropagation (red, left side) and copropagation (blue,
right side) QPM configurations with ps = pi = 0 and γs = γi = 1 in
detection. (a) lc = −lp = 1, and (b) lc = −lp = 2.

Here, the numbers in the ket vector refer to OAM quanta. The
spiral spectrum is shown in Fig. 5(a). Second, a copropagating
four-dimensional maximally entangled OAM state, i.e., |ψ〉 =
(|−2, 2〉 + |−1, 1〉 + |1,−1〉 + |2,−2〉)/2, can be produced
when lc = −lp = 2 and pp = 0 [Fig. 5(b)]. Our simulation
shows that 3D NPC is a promising platform to generate high-
dimensional maximally entangled OAM states.

V. CONCLUSION

We have theoretically analyzed the spiral spectra of the
counterpropagating and copropagating entangled two-photon
states generated from a fork-grating 3D NPC. In compari-
son to previous works, the proposed method is efficient and
has unique spiral spectral characteristics. Our simulations
also demonstrate that 3D NPC is a potential platform to
generate narrow-band high-dimensional maximally entangled
OAM states. Furthermore, with properly designed structures
of 3D NPC, such as spiral structure and cascade structure
[53], one can utilize wavelength, polarization, time bin, and
path for multidimensional entanglement, which yields high
information capacity in quantum key distribution and quan-
tum communication [49–51,54]. Three-dimensional NPC is a
competitive candidate for quantum-state engineering.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D
Program of China (Grants No. 2021YFA1400803 and No.
2017YFA0303703), the National Natural Science Founda-
tion of China (NSFC) (Grants No. 91950206, No. 11874213,
and No. 11904424), and Fundamental Research Funds for
the Central Universities (Grants No. 021314380191 and No.
021314380105). We thank Prof. Y. Cai and Dr. J. Tang for
useful discussions.

APPENDIX: LAGUERRE-GAUSSIAN MODE
DECOMPOSITION OF ENTANGLED PHOTON STATES

Consider that an LGlp
pp (ρ)-mode pump light illuminates the

3D NPC, the RLV Gm,n is used to complete QPM condition,
and cos θmn = 1. Substituting Eqs. (11)–(17) into Eq. (25),
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we obtain in radial coordinates the coefficient Cls,li
ps,pi

at the beam waist (z = 0),

Cls,li
ps,pi

= AL
∑
m,n

Fm,n

∫
dωs

∫
dωiδ(ωs + ωi − ωp)

×
∫∫

d2κ ′
s

∫∫
d2κ ′

i

∫∫
d2κs

∫∫
d2κiF (�ktr,x,�ktr,y )L̃G

ls∗
ps

(κ ′
s)L̃G

li∗
pi

(κ ′
i )

× exp

(
i
�kzL

2

)
sinc

(
�kzL

2

)
δ(κ ′

s − κs)δ(κ ′
i − κi ), (A1)

with

F (�ktr,x,�ktr,y ) =
∫∫

dxdyLG
lp
pp (x, y) exp (imlcϕ) exp [−i(�ktr,xx + �ktr,yy)], (A2)

�ktr,x = κsx + κix, (A3)

�ktr,y = κsys ± κiyi , (A4)

where ± corresponds to forward (backward) propagation of the idler photon,

LGl
p(ρ) =

√
2p!

π (|l| + p)!

1

w

(√
2ρ

w

)|l|
L|l|

p

(
2ρ

w2

2)
exp

(
− ρ

w2

2)
exp (ilϕ). (A5)

Here, L̃G
l
p(κ) denotes the Fourier transform of LGl

p(ρ), l and p are the azimuthal and radial indices, respectively. w is the
waist of the LG mode beam, and L|l|

p (x) is the associated Laguerre polynomial [47]. We denote the waists of the pump, signal,
and idler beams by wp, ws, and wi. Under the thin crystal approximation, we can ignore the sinc function in Eq. (A1). In the
spatial domain, the coefficient Cls,li

ps,pi
is expressed as

Cls,li
ps,pi

∝ LFm,n

∫ 2π

0
dϕ

∫ ∞

0
ρdρLGlp

pp (ρ, ϕ)LGls∗
ps

(ρ, ϕ)LGli∗
pi

(ρ, ϕ) exp (imlcϕ). (A6)

After calculating Eq. (A6), we obtain

Cls,li
ps,pi

∝ LFm,n

√
8pp!ps!pi!(|lp| + pp)!(|ls| + ps)!(|li| + pi )!

π
δlp+mlc,ls±li

1

w3
p

(√
2

wp

)|lp|+|ls|+|li|

× γ |ls|+1
s γ

|li|+1
i

pp∑
jp=0

ps∑
js=0

pi∑
ji=0

(
− 2

w2
p

) jp+ js+ ji 1

(|lp| + jp)! jp!(pp − jp)!

× γ
2 js
s γ

2 ji
i

(|ls| + js)! js!(ps − js)!(|li| + ji)! ji!(pi − ji )!
P(σ, β ), (A7)

where jp, js, and ji are positive integers, γs = wp/ws and γi = wp/wi are the ratios of the pump beam waist to the respective
signal and idler beam waists, and

P(σ, β ) =
∫ ∞

0
dρ exp(−βρ2)ρσ =

{√
π

2σ
σ !

(σ/2)!

(
1
β

)(σ+1)/2
, σ is even,(

σ−1
2

)
!
(

1
β

)(σ+1)/2
, σ is odd,

(A8)

with σ = |lp| + |ls| + |li| + 2( jp + js + ji ) + 1 and β = (1 + γ 2
s + γ 2

i )/w2
p.
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