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Vacuum-induced surface-acoustic-wave phonon blockade
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Photon blockade via a giant self-Kerr nonlinearity in an optical resonator induced by an N-type quantum
system is one of the main routines towards photon-based quantum information processing. However, such an
N-type system for phonons is lacking. We propose an effective N-type quantum system for phonons, forming
from a superconducting transmon qubit and a microwave resonator. In the absence of any external driving, the
quantum vacuum-qubit interaction causes the surface acoustic wave (SAW) phonon blockade. Such a vacuum-
induced phonon blockade paves the way to prepare single SAW phonons from a weak coherent phononic state
for SAW accessible superconducting quantum computation.
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I. INTRODUCTION

A superconducting quantum circuit (SQC) is one of the
most promising candidates for scalable quantum computation
[1–4]. SQCs have the capabilities of entangling multipartite
qubits [5], solving linear equations [6], cooling nanomechan-
ical resonators [7–9], and quantum walk [10].

Typically, SQCs are accessed by microwave (MW) fields.
However, the MW crosstalk is an inevitable issue when SQCs
continue to scale up, due to the large MW wavelength and
radiation [11,12]. To tackle this crosstalk issue, surface acous-
tic wave (SAW) phonons are successfully used to manipulate
SQCs very recently [13–17], thanks to the small wavelength
and the absence of radiation. Because of these merits of
SAWs, hybrid quantum systems consisting of SAWs and
SQCs, in particular, superconducting transmon qubits, have
received intensive attention [13–20]. The superconducting
transmon qubit is treated as an ideal bridge for constructing
the hybrid quantum system due to its long dephasing time
and immunity to charge noise [2,3,21–26], and its capability
of electrically coupling to a SAW. The experimental and
theoretical progresses in hybrid SAW-SQC quantum systems
lead to the emergence of the so-called “circuit quantum acous-
todynamics” [27–30]. Recent experiments have demonstrated
that a SAW can also interact with electronic spins [31,32].
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Therefore, a SAW has become a candidate for building a
hybrid quantum interface between SQCs and optical photons
in mediate of spins. However, the control of SAW phonons
in phonon-based quantum systems is not as mature as that
of photons. Manipulation of a single SAW phonon such as
a phonon blockade can provide versatile manners for phonon-
based quantum information processing.

Photonic Kerr nonlinearities have been intensively studied
for control of the propagation of photons, allowing photon
delay [33,34] and photonic chirality [35,36]. Apart from
an atom-cavity system [37], photon blockade can also be
achieved by using photonic Kerr nonlinearities [38–43]. In
stark contrast, phonon Kerr nonlinearity and blockade have
only been discussed for trapped ions [44] or “static phonons”
in micromechanical resonators vibrating at low frequency
[45–51]. An N-type quantum system is extensively used to
create a giant Kerr nonlinearity for photons [33,36,52–59]
and thus is highly demanded for photon blockade and trans-
port [38–41,60]. However, such an N-type system for SAW
phonons with high frequency is so far elusive. Below, we
will propose an experimentally feasible scheme for quantum
vacuum-induced blockade of SAW phonons.

The quantum vacuum field is a basic concept of quantum
physics, which is of great significance in fundamental physics
and importance to quantum technology [61,62]. Due to the
limitation of experimental technology, it has been difficult to
study the vacuum field before. With the recent progress of
quantum technology, the unique nature of quantum vacuum
field has been continuously revealed and its applications as a
quantum resource have been exploited [63–67]. Our proposal
makes full use of the quantum vacuum field to achieve a
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phonon blockade in a SAW-superconducting hybrid quantum
chip. It may provide an on-chip platform for studying the
quantum vacuum field.

In this paper, we construct an N-type artificial atom for
SAW phonons using a SAW-SQC hybrid quantum system.
Further, we propose two methods for blockade of propagating
SAW phonons: (i) The SAW phonon blockade results from a
large self-Kerr nonlinearity, created by the strong interaction
between the superconducting qubit and the vacuum field in a
MW resonator. (ii) The vacuum-qubit coupling causes bound
states for a propagating SAW, leading to phonon blockade.

This paper is organized as following: In Sec. II, we exploit
the interaction of the quantum vacuum field of a microwave
resonator and a superconducting qubit to realize an effec-
tive N-type four-level system. Using this N-type system, we
propose a way to create the vacuum-induced giant self-Kerr
phononic nonlinearity in the resonator-qubit-resonator (RQR)
system and the vacuum-induced bound states of phonons in
the waveguide-qubit-resonator (WQR) system, respectively.
Then, we show the SAW phonon blockade in these two
kinds of systems and calculate the SAW-phonon statistics,
indicated by the second-order correlation functions in Sec. III.
Moreover, we also present the corresponding transmission. In
the end, we present a feasible implementation of our schemes
in Sec. IV, and discussion and conclusion of our work in
Sec. V.

II. SYSTEM AND MODEL

In photonic systems, natural atoms with four-level struc-
tures are widely used to achieve the photon blockade by
coupling to optical cavities or waveguides [38–41,53,68].
However, a phononic version of such four-level systems is
elusive. Below we propose a scheme to construct an efficient
N-type four-level system coupled to a phonon resonator or a
phonon waveguide. With this N-type system, we first present
the vacuum-induced giant self-Kerr phononic nonlinearity in
a RQR system. Then, we show the phononic bound states in a
WQR system.

A. Two-level model of the superconducting qubit

In experiment, the superconducting transmon qubit has
a few ladder quantum states, the ground state |g〉 with en-
ergy ωg, the first excited state |e〉 with energy ωe, and the
second excited state | f 〉 with energy ω f . For simplicity, we
take ωg = 0 below. In our schemes, the MW resonator is in
the quantum vacuum state. The qubit is mostly excited by
the weak SAW phonon. As we can see below, because the
phonon-qubit coupling is much weaker than the MW-qubit
one, the excitation of the state |e〉 is negligible, and that of
| f 〉 is even smaller. Moreover, a superconducting transmon
qubit can be engineered to have a large enough anharmonicity
α = ω f − 2ωe, typically, α/2π ∼ 200 − 300 MHz [17,69].
Thus, the qubit anharmonicity can be much larger than the
field-qubit coupling and the decay rate γ of the state |e〉, also
the bandwidth of SAW phonons involved in our schemes. In
this case, it is reasonable to treat the transmon qubit, to a
good approximation as a two-level system only involving the
ground and excited states, |g〉 and |e〉 [14,28–30,69–73].

FIG. 1. Schematic diagram of the hybrid quantum system of
cavity types for the SAW phonon blockade. (a) Schematic of the
resonator-qubit-resonator (RQR) system. A superconducting trans-
mon qubit couples to a SAW resonator and a MW resonator. gs (gm )
is the qubit-SAW (MW) coupling strength. (b) Effective N-type
four-level system modeling this RQR hybrid quantum system. The
detuning between the SAW (MW) resonator frequency and the qubit
is denoted as �A = ωA − ωe (�M = ωm − ωe).

B. Vacuum-induced giant self-Kerr phononic nonlinearity

The RQR system for the SAW phonon blockade is depicted
in Fig. 1(a). The SAW resonator with resonance frequency
ωA couples to the superconducting transmon qubit. The latter
simultaneously couples to the MW resonator with resonance
frequency ωm. The SAW mode ĉ and the qubit interact with
a rate gs. Such a RQR system has been demonstrated in
experiment for detection of the SAW near the quantum limit
[17]. In this RQR system, a weak coherent SAW αin with
frequency ωin incidents from port 1 to the SAW resonator. The
outgoing SAW from port 2 shows the phonon blockade. The
qubit also couples to the MW resonator with a strength gm. In
this RQR system, we take gs, gm � α ∼ 2π × 250 MHz that
the two-level model of the superconducting qubit is valid [69].
Note that both the qubit and MW resonator have transition
frequencies of several GHz and can be prepared in the ground
and the vacuum states when cooled down to 20 mK.

In the case of a weak SAW probe and gs � gm that the
zero-photon state in the MW resonator is mostly populated,
we can truncate the MW resonator up to the Fock state
|1m〉. The qubit-MW-resonator subsystem can be modeled
as a four-level system with |1〉 = |g, 0m〉 for the vacuum
state, |2〉 = |e, 0m〉, |3〉 = |g, 1m〉, and |4〉 = |e, 1m〉 [74] [see
Fig. 1(b)]. The energies of these four states are 0, ωe, ωm, and
ωe + ωm, respectively. The SAW resonator mode ĉ couples
to the transitions |1〉 ↔ |2〉 and |3〉 ↔ |4〉. The MW quantum
vacuum field drives the transition |2〉 ↔ |3〉. Note that the
MW-qubit subsystem is mostly populated in the state |1〉. In
this case, we construct an N-type artificial atom for the SAW
phonon.

For the RQR system without the probe in a rotating frame,
defined by a unitary transformation Û1 = exp{i[ωAĉ†ĉ +
ωAâ†â + ωAσee]t}, the Hamiltonian takes the form (h̄ = 1),

ĤRQR = (�M − �A)â†â − �Aσ̂ee

+ gm(â†σ̂ge + σ̂egâ) + gs(ĉ
†σ̂ge + σ̂egĉ), (1)

where â is the annihilation operator of the MW resonator,
and σ̂kl ≡ |k〉〈l|(k, l = g, e). We have �A = ωA − ωe (�M =
ωm − ωe), denoting the detuning between the SAW (MW)
resonator and the qubit. The third (fourth) term describes the
interaction of the qubit and the MW (SAW) resonator.
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In the basis of {|1〉, |2〉, |3〉, |4〉}, the Hamiltonian ĤRQR

becomes

Ĥ ′
RQR = (�M − �A)(Ŝ33 + Ŝ44) − �A(Ŝ22 + Ŝ44)

+ (gmŜ32 + gsĉ
†Ŝ12 + gsĉ

†Ŝ34 + H.c.), (2)

with Ŝmn = |m〉〈n| (m, n = 1, 2, 3, 4). Our system is very dif-
ferent from the previously studied N-type atomic systems for
photonic Kerr nonlinearity [36,60] or the polariton blockade
[51], where a strong coherent field is needed to drive the
system. Instead, the external control field is replaced by the
vacuum-qubit coupling in our system.

The MW vacuum field can create a giant self-Kerr nonlin-
earity for SAW phonons. In our case, we have ρ̂11 ≈ 1. We can
use a perturbation approach to solve the master equation and
obtain the effective self-Kerr nonlinear coefficient [36,60,75–
77]( see Appendix A):

η = 2ig4
s

γ g4
m

(
1

F ∗ − 1

F

)(
1

F
+ 1

F ∗

)
, (3)

with F = 1/[−κm/2 + i(−�A + �M )] − (γ /2 + �φ/2 +
i�A)/g2

m. For simplicity, we set �φ = 0. The self-Kerr
nonlinearity causes an energy shift η(ĉ†ĉ)2 in the SAW
resonator, dependents on its excitation 〈ĉ†ĉ〉. Now the RQR
system is equivalent to a nonlinear SAW resonator.

Applying a second unitary transformation, Û2 =
exp{i(ωin − ωA)ĉ†ĉt}, to the RQR system with the probe,
we obtain an effective Hamiltonian modeling the probe of
this nonlinear SAW resonator as

Ĥeff = (�̃ − η − �a)ĉ†ĉ + ηĉ†ĉĉ†ĉ + i
√

2κp,e1αin(ĉ† − ĉ),

(4)

where �a = ωin − ωA, κp,e1 is the external decay of the
SAW resonator due to the coupling to the input port, αin

is the weak SAW phonon signal, and a linear shift �̃ =
(g2

s�A/g2
mγ )(1/F + 1/F ∗) + (ig2

s/g2
m)(1/F ∗ − 1/F ). The

output from port 2, ĉout = √
2κp,e2ĉ, can be found according to

the cavity input-output relation [78], where κp,e2 is the external
decay caused by the output port.

It is instructive to look at the approximate analytical results
of the self-Kerr nonlinear coefficient for selecting parameters
of the numerical simulation in Sec. III. We present two cases:
(i) When we consider two-phonon resonance, i.e., �M = �A,
the effective self-Kerr nonlinear coefficient can be solved as

η ≈ −4
(
g4

sκ
3
m/g4

mγ
)(

�A/g2
m

)
, (5)

from Eq. (3). If g2
m � �A, the value of η compared to the

decay rate of the SAW resonator will become very small. (ii)
In order to obtain a greater self-Kerr nonlinearity in g2

m � �A,
we consider the case of �M �= �A, the coefficient can be
derived as

η ≈ −4
(
g4

s/g4
mγ

)
(�M − �A)κm. (6)

It can be seen from this expression that the value of η is
proportional to gs/gm and the absolute value of �M − �A.
We can achieve a large phononic self-Kerr nonlinearity by
adjusting the values of g4

s/g4
m and |�M − �A|. Our aim is to

achieve phonon blockade with a large self-Kerr nonlinearity.
Obviously, a large difference |�M − �A| is preferable. The

case of a small difference between the detunings will not be
considered here.

The evolution of the system can be found by solving the
master equation,

˙̂ρ(t ) = −i[Ĥeff, ρ̂(t )] + κp[2ĉρ̂(t )ĉ† − ĉ†ĉρ̂(t ) − ρ̂(t )ĉ†ĉ].

(7)

The SAW resonator has three decay channels: the input and
output ports, and the intrinsic decay channel leading to a decay
rate κp,i. Thus, its total decay rate is κp = κp,e1 + κp,e2 + κp,i.
We assume that κp,e1 = κp,e2 = κp,e. The phonon blockade
using a nonlinear cavity can be derived directly from the
effective Hamiltonian in Eq. (4). Once the SAW resonator
absorbs an on-resonance phonon from the probe field when
�a = �̃, “eating” a second phonon requires additional 2η

energy, due to the self-Kerr nonlinearity. Because of this
energy mismatching, the SAW resonator is prevented from
high-phonon excitation, forming a phonon blockade in the
resonator. According to the standard input-output relation, the
statistical properties of the output phonon mode is the same as
that in the SAW resonator, and can thus be evaluated with the
steady-state second-order correlation at zero delay:

g(2)(0) = 〈ĉ†(t )ĉ†(t )ĉ(t )ĉ(t )〉
〈ĉ†(t )ĉ(t )〉2 . (8)

The outgoing phonons tend to exit the SAW resonator one by
one, resulting in the sub-Poissonian distribution, if g(2)(0) <

0.5. Here, our Kerr-nonlinear SAW resonator can achieve this
goal.

Next, we present the derivation of the transmission. In our
RQR system, we can get the dynamics of the SAW resonator
from the effective Hamiltonian given in Eq. (4) as

d

dt
ĉ = −i(�̃ − �a)ĉ − 2iηĉ†ĉĉ + √

2κp,e1αin − κpĉ. (9)

When adjusting the frequency of the probe field to �̃ = �a,
we obtain the steady-state solution,

ĉ =
√

2κp,e1αin

2iη〈ĉ†ĉ〉 + κp
. (10)

Here, we assume ĉ†ĉĉ ≈ 〈ĉ†ĉ〉ĉ by neglecting the quantum
correlation and applying the mean value approximation. Ac-
cording to the cavity input-output relation, ĉout = √

2κp,e2ĉ
[78], the transmission of the system is

T = 〈ĉ†outĉout〉
|αin|2

= 4κ2
p,e

4η2〈ĉ†ĉ〉2 + κ2
p

. (11)

We are mainly interested in the case of a weak SAW probe.
Thus, the phonon number in the SAW resonator, 〈ĉ†ĉ〉, is
small and can be solved by an iterative method using Eq. (10),
i.e.,

ĉi+1 =
√

2κp,e1αin

2iη〈ĉ†ĉ〉i + κp
. (12)

Here, the subscript i represents the ith-order approx-
imation. We assume that 2η〈ĉ†ĉ〉0 � κp at the same
time. Then, we get 〈ĉ†ĉ〉1 ≈ (2κp,e/κ

2
p )|αin|2 and 〈ĉ†ĉ〉2 ≈
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FIG. 2. Schematic diagram for the blockade of SAW phonon
propagating in an 1D SAW waveguide. (a) Schematic of the
waveguide-qubit-resonator (WQR) system. As in Fig. 1(a), the SAW
resonator is replaced by a 1D SAW waveguide. The qubit-waveguide
coupling rate is V . (b) Effective N-type four-level system modeling
this WQR system. The detuning between the SAW waveguide mode
and the qubit is denoted as δ. The transition |2〉 ↔ |3〉 is coupled by
the MW vacuum field with the strength gm and detuning �M .

[2κp,eκ
4
p /(16η2κ2

p,e|αin|4 + κ6
p )]|αin|2. Therefore, the first-

order and second-order approximations of the transmission
can be written as

T (1) ≈ 4κ2
p,eκ

4
p

16η2κ2
p,e|αin|4 + κ6

p

, (13a)

T (2) ≈ 4κ2
p,e

4η2〈ĉ†ĉ〉2
2 + κ2

p

. (13b)

C. Vacuum-induced bound state of phonons

The WQR system for the SAW phonon blockade is shown
in Fig. 2(a). Instead of coupling to the SAW resonator, the
qubit couples to a SAW mode with a coupling constant V ,
which propagates at a velocity vg in the one-dimensional (1D)
SAW waveguide. This coupling causes the qubit to decay at
a rate of � = V 2/vg to the waveguide. Similarly, the qubit
simultaneously couples to a MW resonator with resonance
frequency ωm and the coupling strength is gm. It decays
to the environment with an intrinsic rate γ . We consider a
weak SAW pulse with a narrow bandwidth propagating in
the 1D SAW waveguide and that the qubit couples to the
MW resonator mode much stronger than the SAW waveguide
mode. Note that the propagating SAW pulse is coherently
generated by electrical signals via the interdigital transducer
[20,28,79–81]. Because it is mature to control the temporal
duration and the shape of an electric signal, the spectrum
of a SAW pulse can be narrow and well controlled [79].
Recently, it has been experimentally demonstrated that a
propagating SAW pulse with MHz-level bandwidth couples
to a two-level transmon qubit [28,81]. In this WQR system,
we take the phononic bandwidth and the couplings to the
SAW and quantum vacuum field to be much smaller than the
anharmonicity to ensure that the state |e〉 is barely excited.
Thus, the second excited state | f 〉 can be excluded in the
model [81–83]. In this arrangement, we can treat the qubit
as a two-level system, and truncate the MW resonator up to
the Fock state |1m〉. The qubit-MW-resonator subsystem can
be modeled as a four-level system with |1〉 = |g, 0m〉 for the
vacuum state, |2〉 = |e, 0m〉, |3〉 = |g, 1m〉, and |4〉 = |e, 1m〉
[74] [see Fig. 2(b)].

Considering a linear dispersion of the waveguide at ωin,
we have the Hamiltonian describing a moving SAW pulse
coupling to the WQR system as [84–86]

ĤWQR = −i
∫

dxvg

[
ĉ†R(x)

d

dx
ĉR(x) − ĉ†L(x)

d

dx
ĉL(x)

]

+
∫

dxV δ(x)[σ̂+ĉR(x) + ĉ†R(x)σ̂−

+ σ̂+ĉL(x) + ĉ†L(x)σ̂−]

+ (�̄m − iκm)â†â + (�̄q − iγ )σ̂ee

+ gm(â†σ̂− + σ̂+â), (14)

where ĉ†R,L (x) are the creation operators for the right-moving
(left-moving) phonons at x, �̄m = ωm − ωin, and �̄q =
ωe − ωin.

In the N-type picture, the Hamiltonian ĤWQR reads

Ĥ ′
WQR = −i

∫
dxvg

[
ĉ†R(x)

d

dx
ĉR(x) − ĉ†L(x)

d

dx
ĉL(x)

]
+ (�̄q − iγ )Ŝ22 + (�̄m − iκm)Ŝ33

+ (�4 − iκm − iγ )Ŝ44

+
∫

dxV δ(x){[ĉ†R(x) + ĉ†L(x)](Ŝ12 + Ŝ34) + H.c.}

+ gm(Ŝ23 + Ŝ32), (15)

with �4 = (�̄m + �̄q). In this model, a phonon mode propa-
gating in the 1D waveguide drives the transitions of |1〉 ↔ |2〉
and |3〉 ↔ |4〉. The excited states |2〉, |3〉, and |4〉 decay at the
rates of γ , κm, and κm + γ , respectively.

Typically, an N-type atom coupling to a 1D photonic
waveguide generates photon-photon bound states with the
help of a coherent control field and thus results in photon
blockade [68,87]. Here, we show that a phonon-phonon bound
state can also be created by a MW quantum vacuum field,
yielding blockade of propagating SAW phonons. In our pro-
tocol, the MW quantum vacuum field, coupling to the qubit
with a rate gm, plays the role of the external control field
in the previous protocol [87]. Following Refs. [68,85,87–
89], the scattering eigenstates can be constructed explicitly
by imposing an open boundary condition and setting that the
incident phonon state be a freely moving SAW.

After converting the right- and left-moving modes to the
odd-even mode basis, we can conveniently solve the eigen-
states of one-phonon and two-phonon scattering, and get
the corresponding scattering matrices for deriving the output
state |ψ〉 (see Appendix B). For a weak incident SAW, the
second-order correlation function g(2)(0) of the transmission
mode [87], considering the contribution of both one- and
two-phonon states, is given by

g(2)(0) = |∫ dk1dk2α(k1)α(k2)(tk1tk2 − rk1 rk2 )|2
|∫ dk1dk2α(k1)α(k2)tk1tk2 |2

, (16)

where tk1,2 and rk1,2 correspond to single-phonon transmission
and reflection coefficients, respectively. In the numerator, the
first term comes from the plane wave (PW), and the second
one from the bound state (BS), as in [87] (see Appendix B).
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FIG. 3. (a) Kerr nonlinearity η versus �A with gm/gs = 5,
gs/κm = 10. (b) Kerr nonlinearity η versus gm/gs. When scanning
�A, we take the value of �A at the point where η is at its maximum.
The solid red (dashed blue, dotted black) curve is calculated with
�M/�A = 11.4 (4.20, 1.36) and γ /κm = 0.05 both in (a) and (b).

To show the effect of the microwave vacuum field, we take
the single-phonon transmission as an example. According to
the scattering state |ψ (1)〉 in Eq. (B10a), the transmission T
for the one-phonon state can written as

T =
∫

k>0
dk|〈k|ψ (1)〉|2

=
∫

k>0
dkα2(k)|tk|2.

(17)

III. RESULTS

In the following investigation, we consider an experimental
available qubit anharmonicity of α ∼ 2π × 250 MHz and a
typical value of κm ∼ 2π × 1 MHz [10,17,26].

A. Self-Kerr-nonlinearity-induced SAW phonon blockade

Below we first numerically calculate the self-Kerr non-
linearity in our RQR system (see Fig. 3), and then present
evidences for the phonon blockade, indicated by g(2)(0) <

0.5 in Fig. 4, with experimental accessible parameters. In
Fig. 3(a), we take gm = 5gs that 〈ρ̂11〉 ≈ 1. The self-Kerr

FIG. 4. (a) The second-order correlation g(2)(0) (the solid red
curve) and the transmission (dashed blue and dotted green curves)
as a function of �A, where the dashed blue curve is the result of
numerical simulation, and the dotted green curve is the analytic result
approximating to the first order. (b) g(2)(0) as a function of gm/gs and
�M/�A. When scanning �A, we take the value of �A at the point
where η is at its maximum. �φ = 0, γ /κm = 0.05, κp,i/κm = 0.2, and
κp,e1 = κp,e2 = 2κp,i in both (a) and (b), and gm/gs = 5 in (a).

nonlinearity η has a “dispersive” profile and is zero at �A = 0.
When �M/�A = 1.36, the maximal absolute value |η| is close
to κm in the region |�A|/κm > 30. It increases to 3κm at �A =
±13κm for �M/�A = 4.20. For a larger ratio �M/�A, e.g.,
�M/�A = 11.4, the Kerr nonlinearity |η| reaches a peak value
6κm at about �A = ±8κm, much larger than the decay rate
κp of the SAW resonator; here we take κp ≈ κm. Using these
values for parameters of our system, the SAW and the MW
field decouple from the transition between |e〉 and | f 〉. The
qubit can be treated as a two-level system. The nonlinearity |η|
becomes larger as �M/�A increases. Furthermore, the avail-
able strongest nonlinearity decreases as gm/gs increases [see
Fig. 3(b)]. The results above are well understood and incon-
sistent with the approximate formulas in Sec. II [see Eq. (6)].

Here, we present an intuitive picture to explain these
trends. In our system, we use the self-Kerr nonlinear modu-
lation to implement the phonon blockade. From the energy
level diagram in Fig. 1(b), we can see that, to create a
strong phononic nonlinearity, the phonon needs to drive the
transitions of 1 ↔ 2 and 3 ↔ 4 simultaneously. However,
if a very large coupling rate gm is applied, the population
of ρ̂33 will be negligibly small, and thus the transition of
3 ↔ 4 will become null and have no contribution. As a result,
the N-type energy level will reduce to a three-level �-type
system. This eventually significantly suppresses the self-Kerr
nonlinearity. On the contrary, with the decrease of gm/gs and
the increase of �M/�A, the system has a greater probability
of excitation to the higher energy levels |2〉, |3〉, and |4〉 [57].
In this sense, a larger self-Kerr nonlinearity can be obtained.
On the other hand, the perturbation analysis method requires
the assumption of ρ11 ≈ 1, i.e., most of the population of
atoms in the ground state |1〉. Thus, there is a competition
between making the perturbation approach effective and get-
ting a large nonlinearity. Measuring this competitive rela-
tionship is difficult, and we will make a qualitative analysis
of this relationship in the following paragraph. In practice,
we can obtain η > 3κm for a large ratio gm/gs > 5, yielding
〈ρ̂11〉 ≈ 1, by choosing a proper value of �M/�A. This large
self-Kerr nonlinearity allows us to achieve a strong phonon
blockade.

Phonon blockade can be identified with the second-order
correlation function g(2)(0) as shown in Fig. 4. To eliminate
the influence of the unwanted linear shift term, we choose
�̃ = �a, which can be achieved by adjusting the probe
frequency ωin. We evaluate the performance of the phonon
blockade by using the experimental available values
κp,i = 0.2κm and κp,e1 = κp,e2 = 2κp,i [15,17,29,30,90].
As expected, the dips of g(2)(0) appear where the nonlinearity
is the strongest value for given parameters, as shown in
Fig. 4(a). For η = 3κm, the second-order correlation function
(red solid curve) is small, g(2)(0) < 0.1, at �A = ±13κm.
Phonon blockade disappears in the vicinity of �A = 0
because the Kerr nonlinearity is weak. In Fig. 4(b), g(2)(0)
is shown as a function of gm/gs and �M/�A. We find that,
to achieve the phonon blockade, the ratio �M/�A needs to
be larger as the ratio gm/gs increases. If �M/�A is not large
enough, one can only obtain a weak phonon blockade, as
indicated by the white curve for g(2)(0) = 0.5. In contrast, we
can achieve g(2)(0) < 0.1, corresponding to a deep phonon
blockade, when �M is very different from �A.
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FIG. 5. The steady-state excitation of the state |1〉 (a) and
the MW resonator and the qubit as a function of �A. γ /κm =
0.05, κp,i/κm = 0.2, κp,e1 = κp,e2 = 2κp,i, gs/κm = 10, gm = 5gs,
αin/

√
κm = 0.2, and �M/�A = 4.2. In (b), the solid green curve is

for the MW resonator, and the dashed blue curve for the qubit.

Equation (3) and the subsequent numerical simulations
are valid only on the basis of the perturbation approach
[36,60,75–77]. This approach requires gs � gm and a weak
SAW probe so that the zero-photon state in the MW resonator
is mostly occupied, i.e., ρ̂11 ≈ 1. In deriving the self-Kerr
nonlinearity, we ignore some terms that are proportional to
gs, which are smaller than the gm terms (see Appendix A).
However, this condition reduces the nonlinearity and weakens
the effect of the phonon blockade according to Eq. (3) and
the above analysis. In our system, we have the controllable
detunings �M and �A, and we can compensate for the loss of
nonlinearity when we want the system to satisfy the perturba-
tion method.

To proof our assumption of 〈ρ̂11〉 ≈ 1, the steady-state
population of 〈ρ̂11〉 and the excited MW photon in the MW
resonator are shown in Fig. 5. Clearly, the N-type system
is mainly in the state |1〉 = |g, 0m〉 and satisfies the assump-
tion 〈ρ̂11〉 ≈ 1. Meanwhile, the MW resonator is mostly in
its quantum vacuum state, since the mean number of MW
photons is about 10−5, shown in Fig. 5(b).

It is important to achieve the high transmission with a small
g(2)(0) for quantum information processing, but this target
is usually challenging [43,91]. In contrast, our system can
achieve a small g(2)(0) = 0.1 and a high transmission of about
0.6 [see the dashed blue curve in the numerical simulation and
the dotted green curve in the analytical result to approximate
the first order in Fig. 4(a)].

From Eq. (11), we can find that, the transmission returns to
its standard form Ts = (2κp,e)2/κ2

p in the absence of self-Kerr
nonlinearity, i.e., η = 0. At this time, the transmission can ap-
proach one, when κp,e � κp,i. When η > κm, the transmission
decreases and the phonon blockade prevents the transmission
of high phonon states, due to a strong self-Kerr nonlinearity.
Numerical and analytical results are in quantitative agreement
as shown in Fig. 6. When η = 3κm, the phonon self-Kerr non-
linearity can lead to the phonon blockade and subsequently
a small g(2)(0) = 0.1 at �A ≈ ±13κm [see Fig. 4(a)]. At the
same time, the transmission is 0.605 [see Fig. 6(a) (solid red
curve)]. This value is in good agreement with the analytical
results calculated from the first- and the second-order approx-
imations within a range where the absolute value of �A/κm

is small (blue dashed and green dotted curves). However,

FIG. 6. Transmission of the RQR system as a function of
the detuning �A/κm. (a) Transmission for the SAW resonator
with κp,i/κm = 0.2, κp,e1 = κp,e2 = 2κp,i. (b) Transmission for the
SAW resonator with κp,i/κm = 0.05, κp,e1 = κp,e2 = 8κp,i. Both in
(a) and (b), γ /κm = 0.05, gs/κm = 10, gm/gs = 5, αin/

√
κm = 0.2,

�M/�A = 4.2, η/κm = 3, and �̃ = �a, yielding a zero effective
detuning. The solid red curve is the result of numerical simulation,
and the blue dashed and green dotted curves are the analytical results
approximating the first and second order.

when the absolute value of �A/κm is relatively large, η/κm

will become larger (see Fig. 3), and then the assumption of
2η〈ĉ†ĉ〉0 � κp used in our model calculation will become
weaker. Therefore, the numerical and analytical results will
be slightly different. When the external coupling is stronger,
e.g., κp,i/κm = 0.05 [17], a higher transmission with T = 0.82
is achieved at �A ≈ ±13κm [see Fig. 6(b)]. It can also be
clearly seen that the second-order approximation including
more precise correction fits the numerical result better than
the first-order one. Thus, improving the ratio κp,e/κp,i can lead
to a larger transmission, which is limited by Ts = (2κp,e)2/κ2

p .
We also analyze the effects of η and αin on the transmission

as shown in Fig. 7. As expected, the transmission T decreases
when the self-Kerr nonlinear interaction strength η increases.
For a weak probe with αin � 0.3

√
κm, the population of high

phonon states is small, and the phonon resonator is weakly
excited, i.e., 〈ĉ†ĉ〉 ∼ 0. In this regime, the transmission T is
relatively large and the analytical results are in good agree-

FIG. 7. (a) Transmission of the RQR system versus self-Kerr
nonlinearity η with αin/

√
κm = 0.2. (b) Transmission of the RQR

system versus αin with �M/�A = 4.2. Here γ /κm = 0.05, κp,i/κm =
0.2, κp,e1 = κp,e2 = 2κp,i, gs/κm = 10, gm/gs = 5. The solid red curve
is the result of numerical simulation, and the blue dashed and green
dotted curves are the analytical results approximating the first and
second order.
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FIG. 8. (a) The second-order correlation g(2)(0) (blue solid
curve) versus the detuning δ = ωin − �̄q. The black dotted line is
for g(2)(0) = 1. Taking γ = κm, �M = 0, gm = 3.5κm, � = 12.8κm,
and σ = 0.2κm. (b) g(2)(0) (blue curve), the PW contribution (black
dotted line) and the BS contribution (red dotted-dashed curve) as a
function of waveguide caused decay �. Setting δ = 0, other parame-
ters are the same as in (a).

ment with the numerical calculation. As αin increases, the first
term of the denominator of Eq. (11), including αin, becomes
larger and thus leads to a smaller transmission. Note that the
analytical results are based on the iteration method, which no
longer applies when 〈ĉ†ĉ〉 and η is large.

B. Bound-state-induced SAW phonon blockade

Now we show the vacuum-induced bound states of a SAW
and the resulting phonon blockade in the 1D SAW waveg-
uide. We consider a Gaussian SAW wave function α(k) =
(1/(2πσ 2)1/4) exp (−(k − k0)2/(4σ 2)) for the input, where
σ is the bandwidth, and k0 = ωin (vg = 1 for simplicity).
In calculation, we take κm = γ , �M = 0, gm = 3.5κm, � =
12.8κm, and σ = 0.2κm ∼ 2π × 0.2 MHz. Experiments have
demonstrated the generation of SAW pulses with such narrow
bandwidth [20,79–81]. Thus, the bandwidth of the SAW
phonon pulse and the SAW-qubit coupling are much smaller
than the anharmonicity of the qubit, avoiding the driving to
the state | f 〉. Without the BS contribution, the transmitted
phonon shows a trivial Poissonian distribution and g(2)(0) = 1
[black dotted lines in Fig. 8(b)]. When the BS part is taken into
account, we obtain the phonon blockade, i.e., g(2)(0) < 0.5, in
the region of |δ| < 0.43κm [see blue curve in Fig. 8(a)]. When
the PW and BS contributions are out of phase, the quantum
destructive interference between the plan wave and the bound
state parts can lead to the phonon blockade, as shown by
blue solid and red dotted-dashed curves in Fig. 8(b). When
� is small, indicating a weak waveguide-qubit coupling, the
BS contribution is negligible. Thus, the phonon blockade is
not achievable as the case without the BS contribution. As
� increases, the BS contribution becomes larger. When the
BS component cancels out the PW contribution, the phonon
statistics is antibunching that g(2)(0) < 1. As � increases fur-
ther, the BS contribution overwhelms the PW part, resulting
in g(2)(0) > 1 again. As our analysis in Sec. II B, the phonon
bound state is induced by the N-type system resulting from
the vacuum-qubit coupling. Therefore, we clearly show the
vacuum-induced phonon blockade in a traveling SAW field.

FIG. 9. The transmission of one phonon as a function of δ =
ωin − �̄q for gm/κm = 3.5 (solid red curve) and gm/κm = 0 (dashed-
dotted blue curve). Other parameters take values κm = γ , �M = 0,
�/κm = 12.8, σ/κm = 0.2.

High transmission is important in creating a Fock state via
blockade but normally difficult. Here, we show a relatively
high transmission in the phonon blockade using our WQR
configuration. As shown in Fig. 9, without the MW resonator,
i.e., gm = 0, the transmission is zero at δ = 0 (dashed-dotted
blue curve). The single SAW phonon wave packet is reflected
by the qubit [68]. When the qubit strongly couples to the
MW resonator, e.g., gm/κm = 3.5, and the transmission signif-
icantly increases and reaches 0.25 near resonance (δ/κm ∼ 0)
(see the red curve in Fig. 9). This is similar to the vacuum-
induced-transparent phenomenon in the optical regime, and
in principle enables MW-photon-number-dependent quantum
devices [66].

IV. IMPLEMENTATION

The schematic design of our protocol is depicted in Fig. 1.
It involves a superconducting qubit coupling to a SAW res-
onator or waveguide and a MW resonator. The SAW probe
can be input into and lead out the system via IDTs. The
required experimental technology has been developed re-
cently [17,20,28]. The key requirement of our system is the
strong coupling of the transmon qubit to a SAW resonator
or a 1D SAW waveguide. Using the existing experimental
technique, a transmon qubit can couple to a SAW resonator
[17,28] or a waveguide [20] via the IDT made on a AlN or
LiNbO3 film. The coupling strength can be further enhanced
by applying a larger IDT with more fingers or focusing
the SAW to a smaller region with a curved IDT [92,93].
The coupling strength varies from a few to tens of MHz
using AlN [17,20] and can be even stronger using LiNbO3

due to the larger Pockels coefficient. The decay rate of a
transmon qubit recently reduces to a few kHz [10], and its
pure dephasing �φ is negligible. The MW-qubit coupling can
reach 2π × 100 MHz, e.g., gm/2π ∼ 60 MHz [17], or even
to GHz [94]. A MW resonator normally decays at a rate
of about κm/2π ∼ 1 MHz [17]. The decay rate of the SAW
resonator is much smaller, e.g., κp,i/2π = 36 kHz [17]. In
the estimate of the performance of the phonon blockade, we
consider a superconducting qubit with an anharmonicity α ∼
2π × 250 MHz, which can be treated as a two-level system
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well. We also take experimentally available values for pa-
rameters that κm/2π = 1 MHz, gm/2π = 50 MHz, γ /2π =
50 kHz. When gs/2π = 10 MHz, �M/2π = 91.2 MHz, and
�A/2π = 8 MHz that �M = 11.4�A in the RQR system, and
obtain g(2)(0) = 0.029, indicating a deep phonon blockade.
In the WQR system, we take �/2π = 12.8 MHz, �M = 0,
and gm = 3.5 MHz and consider a weak SAW pulse with
bandwidth σ = 2π × 0.2 MHz, and we have g(2)(0) < 0.5 for
|δ| < 0.43κm.

V. DISCUSSION AND CONCLUSION

The vacuum-induced effects have been observed in several
experiments recently [63,65,66]. Controlling or manipulation
of a quantum system via the quantum vacuum field can be es-
sentially different from a classical coherent control version. In
our systems, the transition 2 ↔ 3 is driven by the MW quan-
tum vacuum field with a rate gm. It is worthy of noting that
the photon number variance, 〈�â†â〉 = 〈(â†â)2〉 − 〈â†â〉2, of
the quantum vacuum field is zero. Therefore, we can obtain
a shot-noise-free self-Kerr phononic nonlinearity as given
by Eq. (3). However, in the classical version, the classical
coherent field |α〉 has a quantum uncertainty proportional to
α [77,95–97]. This intensity-dependent uncertainty can cause
fluctuation in the controlled quantum system. In previous
conventional schemes creating the giant photonic self-Kerr
nonlinearity with an N-type system, a coherent control field
|α〉 is applied. The vacuum-field-qubit coupling gm need to
be replaced by gc = g′

m

√
N̂c, where N̂c is the phonon number

operator of the coherent field |α〉 and g′
m is the average single-

photon coupling rate. As in Eq. (3), the induced self-Kerr
nonlinearity is crucially dependent on the intensity of the
control field. As a result, the phonon number uncertainty,
∝

√
N̂c, of the coherent control field inevitably causes fluc-

tuation of the self-Kerr nonlinearity and subsequently in the
photon blockade. Therefore, our vacuum-field-control version
has potential advantages over the conventional coherent-field
scheme. But a detailed discussion and numerical simulation
are beyond the topic of this paper. We will address this point
in the future work.

In conclusion, we have proposed an N-type quantum sys-
tem for SAW phonon blockade with simultaneously achiev-
ing high transmission. By coupling this system to a SAW
resonator, we have created a large self-Kerr phononic non-
linearity and shown the phonon blockade. When this N-type
system couples to a propagating SAW via a 1D SAW waveg-
uide, it creates a bound state and also leads to blockade of
transmitted phonons moving in the waveguide. Interestingly,
the phonon blockade is induced by the vacuum-qubit cou-
pling. Our proposal may pave the way for SAW-phonon-based
quantum information processing in SQC platform. We note
that a �-type atom can be transparent to a freely propagat-
ing weak probe light when its states are strongly dressed
by a cavity vacuum field, leading to the vacuum-induced
transparency (VIT) [66]. Our vacuum-induced phonon block-
ade studies the quantum statistics of transmitted SAW
phonons through a resonator and thus is essentially different
from VIT.
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APPENDIX A: THE EFFECTIVE SELF-KERR
NONLINEAR COEFFICIENT

In this subsection, we derive the effective self-Kerr non-
linear coefficient using the perturbation approach [60,75–77].
The RQR system consists of a microwave (MW) resonator, a
superconducting transmon qubit, and a SAW resonator [see
Fig. 1(a) in the main text]. The qubit is treated as a two-
level system with the ground and excited states, |g〉 and |e〉,
respectively. The resonance frequencies, ωA, ωe, and ωm, of
the SAW resonator, the qubit, and the MW resonator are about
a few GHz.

For the RQR system without the probe, the Hamiltonian
can be written as (h̄ = 1)

˜̂HRQR = ωAĉ†ĉ + ωmâ†â + ωeσ̂ee + gs(ĉ
†σ̂ge + σ̂egĉ)

+ gm(â†σ̂ge + σ̂egâ), (A1)

ĉ (â) is the annihilation operator of the SAW (MW) resonator,
and σ̂kl ≡ |k〉〈l| (k, l = g, e). gs and gm are the coupling
strengths. In the rotating frame, defined by the unitary trans-
formation as

Û1 = exp{i[ωAĉ†ĉ + ωAâ†â + ωAσ̂ee]t}, (A2)

the Hamiltonian in the interaction picture takes the form,

ĤRQR = (�M − �A)â†â − �Aσ̂ee + gm(â†σ̂ge + σ̂egâ)

+ gs(ĉ
†σ̂ge + σ̂egĉ), (A3)

where �A = ωA − ωe (�M = ωm − ωe) denotes the detuning
between the SAW resonator (the MW resonator) and the qubit.
The third (fourth) describes the interaction of the qubit and the
MW (SAW) resonator.

At cryogenic temperature, e.g., 20 mK, the thermal excita-
tion of the MW resonator is negligible. The MW resonator is
mostly populated in the vacuum state |0m〉. The qubit is also
in its ground state without external driving. We consider the
situation that the qubit-MW interaction is much stronger than
the coupling of the qubit to the SAW phonon resonator. In this
case, the qubit and the MW resonator mostly stays in the state
|g, 0m〉. We can truncate the MW resonator up to the Fock state
|1m〉, and obtain an N-type four-level system (4LS) modeling
the RQR system, shown in Fig. 1(b). The four states of the N-
type configuration are denoted as |1〉 = |g, 0m〉, |2〉 = |e, 0m〉,
|3〉 = |g, 1m〉, and |4〉 = |e, 1m〉. The SAW phonon drives the
transitions of |1〉 ↔ |2〉 and |3〉 ↔ |4〉. Here, the typically co-
herent control driving in the photonic counterpart is replaced
by the quantum vacuum-field-qubit coupling gm. This N-type
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system is used to create a giant self-Kerr nonlinearity in the
SAW phonon resonator.

In the basis of {|1〉, |2〉, |3〉, |4〉}, the Hamiltonian ĤRQR in
Eq. (A3) becomes

Ĥ ′
RQR = (�M − �A)(Ŝ33 + Ŝ44) − �A(Ŝ22 + Ŝ44)

+ (gmŜ32 + gsĉ
†Ŝ12 + gsĉ

†Ŝ34 + H.c.), (A4)

where Ŝmn = |m〉〈n| (m, n = 1, 2, 3, 4). The decay and de-
phasing of the system can be described by the Lindblad
operator:

L̂ Q̂ = κm

2
{2â†Q̂â − â†âQ̂ − Q̂â†â}

+ γ

2
{2σ̂+Q̂σ̂− − σ̂+σ̂−Q̂ − Q̂σ̂+σ̂−}

+ �φ

2
{2σ̂eeQ̂σ̂ee − σ̂eeQ̂ − Q̂σ̂ee}, (A5)

where κm and γ are the decay rates of the microwave resonator
and the qubit, respectively. �φ represents the dephasing of the
excited state of the qubit. Then, the Heisenberg’s equations
for the system take the form,

˙̂S11 = igs(Ŝ21ĉ − ĉ†Ŝ12) + κmŜ33 + γ Ŝ22, (A6a)

˙̂S22 = igm(Ŝ32 − Ŝ23) + igs(ĉ
†Ŝ12 − Ŝ21ĉ) + κmŜ44 − γ Ŝ22,

(A6b)

˙̂S33 = igm(Ŝ23 − Ŝ32) + igs(Ŝ43ĉ − ĉ†Ŝ34) − κmŜ33 + γ Ŝ44,

(A6c)

˙̂S44 = igs(ĉ
†Ŝ34 − Ŝ43ĉ) − (κm + γ )Ŝ44, (A6d)

˙̂S21 = igmŜ31 + igsĉ
†(Ŝ11 − Ŝ22) − i�AŜ21

+ κmŜ43 −
(

γ

2
+ �φ

2

)
Ŝ21, (A6e)

˙̂S23 = igm(Ŝ33 − Ŝ22) + igsĉ
†(Ŝ13 − Ŝ24)

−
(

i�M + κm

2
+ γ

2
+ �φ

2

)
Ŝ23, (A6f)

˙̂S43 =
(

−i�A − κm − γ

2
− �φ

2

)
Ŝ43 + igsĉ

†(Ŝ33 − Ŝ44)

− igmŜ42, (A6g)

˙̂S31 = igmŜ21 + igsŜ41ĉ − igsĉ
†Ŝ32

+
[
i(�M − �A) − κm

2

]
Ŝ31 + γ Ŝ42, (A6h)

˙̂S41 = igsĉ
†Ŝ31 − igsĉ

†Ŝ42

+
(

i�M − 2i�A − κm

2
− γ

2
− �φ

2

)
Ŝ41, (A6i)

˙̂S42 =
[
i(�M − �A) − κm

2
− γ

]
Ŝ42 + igs(ĉ

†Ŝ32 − Ŝ41ĉ)

− igmŜ43. (A6j)

We can derive the self-Kerr nonlinearity for the SAW
phonon from Eq. (A6) by using the perturbation approach
[60,75–77]. The operators can be expanded as Ŝmn = Ŝ(0)

mn +
Ŝ(1)

mn + Ŝ(2)
mn + Ŝ(3)

mn + · · · . In our configuration with gs � gm,

the system can be assumed in the ground state |1〉 to zeroth
order, that is, Ŝ(0)

11 = 1, Ŝ(0)
22 = Ŝ(0)

33 = Ŝ(0)
44 = 0. The terms with

Ŝmngs(m �= n) can be neglected when solving Ŝmn. Then we
obtain the first-order solutions for the operators,

Ŝ(1)
21 = − igsĉ†

gm
2F

, (A7a)

Ŝ(1)
31 = − gsĉ†

gmF
[− κm

2 + i(�M − �A)
] , (A7b)

with

F = 1[− κm
2 + i(�M − �A)

] −
γ

2 + �φ

2 + i�A

g2
m

. (A8)

As for a closed system, the total population is conserved,
i.e., Ŝ11 + Ŝ22 + Ŝ33 + Ŝ44 = 1. The second-order diagonal
elements satisfying the relationship,

Ŝ(2)
11 + Ŝ(2)

22 + Ŝ(2)
33 + Ŝ(2)

44 = 0. (A9)

Substituting Eqs. (A7) and (A9) to Eqs. (A6a)–(A6d), we
obtain the second-order diagonal elements,

Ŝ(2)
11 = −g2

s ĉ†ĉ

g2
mγ

(
1

F
+ 1

F ∗

)
, (A10a)

Ŝ(2)
22 = g2

s ĉ
†ĉ

g2
mγ

(
1

F
+ 1

F ∗

)
. (A10b)

Similarly, substituting Eqs. (A10) into Eq. (A6a)–(A6e),
we obtain S(3)

21 to third order,

Ŝ(3)
21 = −2ig3

s ĉ
†ĉ†ĉ

g4
mFγ

(
1

F
+ 1

F ∗

)
. (A11)

The first- and third-order approximations of S43 = S(1)
43 + S(3)

43 ,
S(1)

43 , and S(3)
43 are zero. Using this perturbation approach, we

get S21 = S(1)
21 + S(3)

21 . Substituting these formula for S21 into
the Hamiltonian Eq. (A4), we obtain the effective Hamiltonian
for the SAW phonon resonator only,

Ĥ ′
eff = (�̃ − η)ĉ†ĉ + ηĉ†ĉĉ†ĉ, (A12)

with an nonlinear interaction strength,

η = −g2
sF

(
1

F ∗ − 1

F

)
χ (3) = 2ig4

s

γ g4
m

(
1

F ∗ − 1

F

)(
1

F
+ 1

F ∗

)
,

(A13)

due to the induced third-order polarization,

χ (3) = − 2ig2
s

g4
mFγ

(
1

F
+ 1

F ∗

)
. (A14)

�̃ is a linear shift and can be evaluated as

�̃ = g2
s�A

g2
mγ

(
1

F
+ 1

F ∗

)
+ i

g2
s

g2
m

(
1

F ∗ − 1

F

)
. (A15)

Throughout our investigation, we take �φ = 0.
Now we can consider the probe field with a central fre-

quency ωin, We define the second unitary transformation as

Û2 = exp{i(ωin − ωA)ĉ†ĉt}, (A16)
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the effective Hamiltonian of the system finally is
represented by

Ĥeff = (�̃ − η − �a)ĉ†ĉ + ηĉ†ĉĉ†ĉ + i
√

2κp,e1αin(ĉ† − ĉ),

(A17)

where �a = ωin − ωA. ωin is the central frequency of the
probe phonon wave packet. αin corresponds to the amplitude
of the weak coherent probe, and κp,e1 is the external loss of
the SAW resonator due to the coupling to the input port. The
coupling of the SAW phonon resonator to the output port also
causes a decay rate κp,e2. We set κp,e1 = κp,e2 = κp,e. The SAW
resonator decays at a total rate of κp = κp,i + κp,e1 + κp,e2.

APPENDIX B: g2(0) IN THE WQR SYSTEM

Here we consider the WQR setup. In this case, a qubit
couples to a SAW phonon mode propagating at a velocity vg

in a 1D SAW waveguide with a strength V ; see Fig. 1(b) in the
main text. The qubit couples to a MW resonator. Similar to the
RQR system, we can model the composite system consisting
of the qubit and the MW resonator as an N-type 4LS as shown
in Fig. 2(b). The SAW propagating in the waveguide drives the
transitions of |1〉 ↔ |2〉 and |3〉 ↔ |4〉. The incident phonon
coherent state is weak that we only need to consider the zero-
and one-photon states in the MW resonator. The scattering of
photons in the 1D photon waveguide by a 4LS controlled by
a strong coherent light field has been studied in Refs. [68,87].
Here, we study the phonon scattering problem using the
scattering matrix method [68,85,87] and show the bound-state
resulted phonon blockade. In stark contrast to the previous
photonic counterpart, the quantum vacuum field of the MW
resonator plays the role of the coherent light field. Without
an external driving in our system, the MW resonator is in its
quantum vacuum state and the qubit in the ground state. The
phonon bound state is created by the quantum vacuum-qubit
coupling. Below, we mainly focus on the quantum phonon-
phonon correlation induced by this bound state.

By linearizing the dispersion of the waveguide at the
central frequency ωin [84], we have the Hamiltonian for a
moving SAW pulse coupling to the WQR system as

Ĥ = −i
∫

dxvg

[
ĉ†R(x)

d

dx
ĉR(x) − ĉ†L(x)

d

dx
ĉL(x)

]
+ (�̄q−iγ )Ŝ22 + (�̄m−iκm)Ŝ33 + (�4 − iκm − iγ )Ŝ44

+
∫

dxV δ(x){[ĉ†R(x) + ĉ†L(x)](Ŝ12 + Ŝ34) + H.c.}

+ gm(Ŝ23 + Ŝ32), (B1)

with �4 = (�̄m + �̄q). Where ĉ†R,L(x) are the creation opera-
tors for the right-going(left-going) phonon at x, �̄m = ωm −
ωin, and �̄q = ωe − ωin. The rate of the spontaneous emission
of the qubit to the 1D waveguide is given by � = V 2/vg [85].

Transforming the right- (left)-moving modes to even (odd)
modes:

ĉ†e (x) = ĉ†R(x) + ĉ†L(−x)√
2

, (B2a)

ĉ†o(x) = ĉ†R(x) − ĉ†L(−x)√
2

. (B2b)

Under these two decoupled modes, the Hamiltonian be-
comes

Ĥ = Ĥe + Ĥo, (B3a)

Ĥe = −i
∫

dxvgĉ†e (x)
d

dx
ĉe(x)

+
∫

dx
√

2V δ(x){ĉ†e (x)(Ŝ12 + Ŝ34) + H.c.}

+ (�̄q − iγ )Ŝ22 + (�̄m − iκm)Ŝ33

+(�4 − iκm − iγ )Ŝ44 + gm(Ŝ23 + Ŝ32), (B3b)

Ĥo = −i
∫

dxvgĉ†o(x)
d

dx
ĉo(x). (B3c)

Since the total number of excitations in both the even and
odd spaces are separately conserved [68], we mainly focus on
finding the nontrivial even-mode solution and then transform
back to the left-right representation. The n-excitation state in
the even space is given by

|ψn〉e =
[∫

dxnφ(n)ĉ†e (x1) · · · ĉ†e (xn)

+
∫

dxn−1
∑
j=2,3

f (n)
j Ŝ j1ĉ†e (x1) · · · ĉ†e (xn−1)

+
∫

dxn−2 f (n)
4 Ŝ41ĉ†e (x1) · · · ĉ†e (xn−2)

]
|∅, 1〉,

(B4)

where |∅, 1〉 is the zero-phonon state with the 4LS in the state
|1〉. The scattering eigenstates are constructed by imposing
the open boundary condition that φ(n)(x1, · · · , xn) is a free
plane wave in the incident region x1, . . . , xn < 0 [88]. Then
we can obtain the scattering of one- and two-phonon eigen-
states following Refs. [68,87,89].

The one-phonon eigenstate with eigenenergy E = vgk and
wave vector k, and the transmission amplitude are

φ(1)(x) = φk (x) = eikx

√
2π

[θ (−x) + t̄kθ (x)], (B5a)

t̄k = (vgk − �̄m + iκm)[vgk − �̄q + i(γ − �)] − g2
m

(vgk − �̄m + iκm)[vgk − �̄q + i(γ + �)] − g2
m

,

(B5b)

where θ (x) is the step function. For the two-phonon eigenstate
with eigenenergy E = vg(k1 + k2) and wave vectors k1 and k2

of the two phonons, the wave function and bound state are

φ(2)(x1, x2) = 1

2

∑
Q

φk1 (xQ1 )φk2 (xQ2 )

+ 1

2

∑
P,Q

BkP1 ,kP2
(xQ1 , xQ2 )θ (xQ1 ), (B6a)

BkP1 ,kP2
(xQ1 , xQ2 ) = eiExQ2

∑
j=1,2

Cje
−μ j |x2−x1|θ (xQ2 − xQ1 ),

(B6b)
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where P = {P1, P2} and Q = {Q1, Q2}, and

vgμ1 = � + γ + κm

2
− ξ − i

(
�M

2
− �̄q − ϑ

)
,

vgμ2 = � + γ + κm

2
+ ξ + i

(
�M

2
+ �̄q + ϑ

)
,

ξ =
√

2

4

(√
χ2 − 4�2

M�2
p − χ

) 1
2 ,

ϑ =
√

2

4

(√
χ2 − 4�2

M�2
p + χ

) 1
2 ,

χ = �2
M + 4g2

m − �2
p,

�p = � + γ − κm,

C1 = β − αλ2

λ1 − λ2
,

C2 = −β + αλ1

λ1 − λ2
,

λ1 = �p

2
+ ξ − i

(
�M

2
− ϑ

)
,

λ2 = �p

2
− ξ − i

(
�M

2
+ ϑ

)
,

β = �g2
m

2π

(
t̄k1 − υ

ρk2

+ t̄k2 − υ

ρk1

)
,

α = −
(
t̄k1 − 1

)(
t̄k2 − 1

)
2π

,

υ = �̄m + �̄q − E − i(κm + γ − �)

�̄m + �̄q − E − i(κm + γ + �)
,

ρk1 = (vgk1 − �̄q − �M + iκm)

× [vgk1 − �̄q + i(γ + �)] − g2
m,

ρk2 = (vgk2 − �̄q − �M + iκm)

× [vgk2 − �̄q + i(γ + �)] − g2
m. (B7)

We consider a right-moving incident phonon. In our case,
the microwave resonator is in its quantum vacuum state and
the qubit in the ground state. The incident phonon state is a
wave packet, and can be described by the continuous-mode
phonon creation operator as

ĉ†R,L =
∫

dkα(k)ĉ†R,L (k), (B8)

where the amplitude α(k) satisfies the normalization con-
dition

∫
dk|α(k)|2 = 1. The corresponding continuous-mode

n-phonon Fock state is

|n〉R,L = (ĉ†R,L )
n

√
n!

|∅〉. (B9)

From the scattering eigenstates, we can construct the scat-
tering matrices [89]. Applying the scattering matrices on the

incident phonon states, we can then obtain the scattering
one-phonon state,

|ψ (1)〉 =
∫

dkα(k)(tk ĉ†R(k) + rkĉ†L(k))|∅〉, (B10a)

tk = (t̄k + 1)/2, rk = (t̄k − 1)/2 , (B10b)

and the scattering two-phonon state,

|ψ (2)〉 =
∫

dk1dk2dx1dx2
1√
2
α(k1)α(k2)

×
[

1

2
tk1,k2 (x1, x2)ĉ†R(x1)ĉ†R(x2)

+�k1,k2 (x1,−x2)ĉ†R(x1)ĉ†L(x2)

+1

2
rk1,k2 (−x1,−x2)ĉ†L(x1)ĉ†L(x2)

]
|∅〉, (B11)

with

tk1,k2 = 1

2π
tk1tk2 eik1x1+k2x2

+ 1

4
Bk1,k2 (x1, x2) + (k1 ↔ k2),

�k1,k2 = 1

2π
tk1 rk2 eik1x1+k2x2

+ 1

4
Bk1,k2 (x1, x2) + (k1 ↔ k2),

rk1,k2 = 1

2π
rk1 rk2 eik1x1+k2x2

+ 1

4
Bk1,k2 (x1, x2) + (k1 ↔ k2),

Bk1,k2 (x1, x2) = ei(k1+k2 )x2
∑
j=1,2

Cje
−μ j |x2−x1|θ

(
xQ2 − xQ1

)
+ (x1 ↔ x2). (B12)

tk1,k2 and rk1,k2 represent the two-phonon transmission coef-
ficient and two-phonon reflection, respectively. �k1,k2 is the
coefficient for the one-photon transmitted and one-photon
reflected. BkP1 ,kP2

(xQ1 , xQ2 ) describes the phonon bound state.
The denotation k1 ↔ k2 (x1 ↔ x2) means to exchange k1 and
k2 (x1 and x2) [87].

From the scattering state |ψ〉 = |ψ (1)〉 + |ψ (2)〉, we can
calculate the second-order correlation function g(2)(0) of the
transmitted SAW through the N-type system with the formula
[87],

g(2)(0) = 〈ψ |ĉ†R(x)ĉ†R(x)ĉR(x)ĉR(x)|ψ〉
|〈ψ |ĉ†R(x)ĉR(x)|ψ〉|2 . (B13)

Substituting Eq. (B10) and Eq. (B11) into Eq. (B13), we can
obtain

g(2)(0) = |∫ dk1dk2α(k1)α(k2)(tk1tk2 − B)|2
| ∫ dk1dk2α(k1)α(k2)tk1tk2 |2

, (B14a)

B = π (C1 + C2) = −2rk1 rk2 . (B14b)

In the numerator, the first term comes from the plane wave
(PW), and the second one is the contribution of the bound state
(BS).
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