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We present a simple method to enable flexible tuning of
non-diffracting beams in a two-dimensional nonlinear
photonic crystal, based on the interference of two or more
non-collinear second-harmonic beams. By manipulating
the wavelengths of the beams and the angle of incidence of
the fundamental wave, the arbitrary period and propagation
length, as well as the wavelength of the generated nonlinear
non-diffracting array beams, can be tuned flexibly. These
light beams can trap and manipulate multiple particles,
create new forms of optical imaging systems, and act within
nonlinear devices to bring novel functionalities to integrated
optics. ©2020Optical Society of America

https://doi.org/10.1364/OL.402876

The non-diffracting beam, i.e., a solution to the Helmholtz
equation, has a transverse intensity distribution that is inde-
pendent of its propagation distance. So far, there are two major
types of non-diffracting beams, Airy and Bessel beams, which
are extensively studied. The Bessel beam was first reported by
Durnin et al. in 1987, when they illuminated a circular slit
located within the focal plane of a lens [1]. Due to its peculiar
properties, the Bessel beams have found a variety of applications
ranging from medical cell imaging [2], particle trapping [3],
optical micromanipulation [4], to microscopy [5]. The exten-
sion to terahertz (THz)-level Bessel beams through the use of a
quarter-wave plate and Teflon axicon is particularly useful [6],
owing to the lack of efficient optics available for this wavelength
range. Additionally, experimental verification of the electron
Bessel beam has gained the intriguing performance [7]. Recent
progress on traditional Bessel beams has been made with axicons
[8,9], multimode optical fibers [10], metasurfaces [11], and
optical coherence lattices [12]. Generating an ideal Bessel beam
is impossible because it carries infinite energy. A couple of other
different methods with better efficiency, such as surface plasmon
polaritons (SPPs) and nonlinear photonic crystals (NPCs), were
proposed and demonstrated experimentally to generate cosine
beams [13–15].

Benefited from the development of the two-dimensional
(2D) NPC [16], numerous optical effects have been discov-
ered. Recently, we reported a novel tunable non-diffracting
array beam in periodically poled LiTaO3 crystals, wherein
non-diffracting beams are formed by the generation of second-
harmonic (SH) waves [15]. The prerequisite to realize the
non-diffracting array beams is the satisfaction of the non-
collinear quasi-phase-matching (QPM) condition. These
observations also offer a flexible way to generate tunable non-
diffracting array beams in nonlinear crystals without changing
the involved devices. Although a theoretical description was
developed to interpret the observed non-diffracting array, the
focus was mainly on non-diffracting array beams under the
QPM condition at normal incidence [15]. Therefore, fur-
ther studies are necessary for the non-diffracting beams under
non-QPM (i.e., the pump wavelength slightly away from the
perfect QPM wavelength, the additional vector is not exactly
compensating the phase mismatch.) conditions both at normal
incidence and oblique incidence.

In this paper, we experimentally demonstrate flexible control
of nonlinear non-diffracting array beams by varying the pump
wavelengths and incident angles in a 2D NPC. As illustrated in
Fig. 1(a), the NPC has a squarely poled structure with a period
of 3= 5.5 µm and a duty cycle of ∼35%. The pump beam is
directed into the NPC at an angle θ along the y axis of the crys-
tal. The QPM diagram exhibited in Fig. 1(b) combines the wave
vectors k1 and k2 (or k′2), which correspond to the beam’s funda-
mental frequency and its SH, respectively. According to the SH
conversion efficiency, the incident angle θ is very small. By using
the reciprocal vectors Gm,−i and Gm, j , non-collinear QPM
SH generation (SHG) can be realized at the oblique incidence,
where m, i , and j are the nonlinear diffraction orders.

The theoretical investigation is similar to that presented in
Ref. [15], here we produce a flexible tuning non-diffracting
array through a SHG process in a 2D NPC as shown in Fig. 1(a).
The coupled-wave equations are given by

∇
2E2 + k2

2 E2 =
1

2
K t(x , y )E 2

1 , (1)
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Fig. 1. (a) Illustration of nonlinear non-diffracting array beam
generation. (b) Non-collinear QPM diagram. (c) Non-diffracting
SH array beam at certain observation planes is obtained at the
λP = 934 nm.

∇
2E ′2 + k′22 E ′2 =

1

2
K t(x , y )E 2

1 , (2)

where E1 and E2 (or E ′2) are the electrical fields of the funda-
mental wave and SH wave, respectively. k2 and k′2 represent
the wave vectors of the SH wave in two SHG processes, which
involve different reciprocal vectors. In Eqs. (1) and (2), K is the
coupling coefficient, and it is determined by the second-order
susceptibility χ (2), while t(x , y ) is the structural function of
the NPC. We seek a non-diffracting solution for the SH waves,
which are given by

E2(x , y )= Aexp
(
ik2y y

)
cos(k2x x ) , (3)

E ′2(x , y )= A′exp
(
ik′2y y

)
cos

(
k′2x x

)
. (4)

The quantities A and A′ are constant, and k2x (k′2x ) and
k2y (k′2y ) are, respectively, the x and y components of the SH
wave vectors. The electrical field distribution along z direction
is uniform in this case. The cosine beams described by Eqs. (3)
and (4) can be considered as two plane wave components and
thus give rise to the non-diffracting solution. Obviously, such
solution has a transverse intensity profile independent of the
propagation direction y , which represents a non-diffracting SH
array.

The QPM conditions under non-collinear configuration
[Fig. 1(b)] at the oblique incidence require

−→
k2 − 2

−→
k1 −
−−−→
Gm,−i = 0, (5)

−→
k′2 − 2

−→
k1 −
−−→
Gm, j = 0. (6)

Interestingly, the reciprocal vectors Gm,−i and Gm, j can
simultaneously generate two asymmetric SH waves as shown
in Fig. 1(b), which can be considered as the decomposed com-
ponents of the cosine beam in Eqs. (3) and (4). They interfere
with each other and result in a non-diffracting SH array, which
is similar to that reported in Ref. [15]. Considering that the two
SH components of the cosine beam have an in-between angle of

α [decided by Eqs. (5) and (6)] in Fig. 1(b), the transverse profile
of the SH intensity can be easily deduced to be

ISH(x )∝ cos

(
2π i
3

x
)

cos

(
2πj
3

x
)

. (7)

The generated SH waves interfere with each other and, there-
fore, produce nonlinear non-diffracting array beams. After some
algebra, the period of the array3′ is obtained as

3′ =3/(i + j ), (8)

where 3 is the period of NPC, and i and j are the dominant
diffraction orders. Here i = j corresponds to normal incidence,
whereas i 6= j denotes the oblique incidence. The propagation
length of the SH array beam is determined by L = d/sin α,
where d is the diameter of the input laser. Unlike the other non-
diffracting beam schemes, in which the periods and propagation
lengths are usually fixed by a sample structure or the device used,
here a given NPC can generate non-diffracting array beams with
varied periods and propagation lengths using different recipro-
cal vectors Gm,−i and Gm, j [see Fig. 1(b)]. The different vectors
can be selected by simply varying the incident angle or tuning
the fundamental wavelength. In our scheme, the prerequisite
for the realization of the non-diffracting array beams is the
non-collinear SH beams, regardless of whether they completely
satisfy the QPM condition or not. The generated SH waves then
interfere with one another to produce the non-diffracting array
beams.

By the aid of the above theoretical study, we perform experi-
mental measurement of the non-diffracting array beam. In the
current configuration, the working wavelength of pump laser is
tuned from 900 nm to 960 nm, and the generated SH wave has a
wavelength from 450 nm to 480 nm. The incident light power
is kept at 60 mW for all the wavelengths. The SHG efficiency
is about 4.7%. In our previous work [15], a NPC was placed
approximately perpendicular to the light propagation direction.
To manipulate the sample accurately, the NPC was fixed using a
rotating stage in the experiment. Similar to our previous studies
on QPM diffraction-free array beam [15], a charge-coupled
device (CCD) camera is used to record the SH patterns. The
pump laser is first set to 934 nm under the normal incidence,
and the generated SH wave is 467 nm. As indicated in Fig. 1(c),
the measured SH array beams at certain observation planes
clearly exhibit the non-diffracting performance. Although the
intensity of the SH beams slightly reduces, the period of the
array does not change from y = 28.6 µm to y = 714.8 µm. In
our experiment, the non-diffracting SH beam can be observed
at a distance of up to 1.7 mm away from the NPC with a pump
wavelength of 934 nm.

Besides, we observed the near-field characteristic of non-
diffracting array beams at normal incidence, wherein the
generated non-collinear SH beams are always symmetrical.
The characteristic SH beams that were recorded at different
input wavelengths at the output face of the NPC are shown on
the left of Fig. 2. To further examine the observed SH patterns,
we have chosen a cross section, which is marked with the red
double arrow at the same location in all the patterns in Fig. 2,
to present period change with wavelength as shown in Fig. 3.
As indicated in Figs. 2(a)–2(c), the diffraction patterns change
considerably when the wavelength was increased. For example,
when the input laser was set to be 909 nm [Fig. 2(a)], the period
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Fig. 2. Measured characteristic cross sections of the non-diffracting
array beams at the output face of the NPC for different input wave-
lengths. (a)–(c) Normal incidence and (d)–(f ) oblique incidence at
an angle of θ = 1.83◦. The red double arrow in (c) denotes the cross
section in all the images in Fig. 2, wherein we measure the period
change with the input wavelength as shown in Fig. 3.

of the generated SH array is 0.928 µm [as indicated by the blue
line in Fig. 3(a)]. It is almost the same period as that at 906 nm
(0.92 µm), which satisfies the perfect QPM condition [15]. So
we can find that the reciprocal vectors G1,3 and G1,−3 played a
key role in the generation of SH array beam at λP = 909 nm.
According to the Eq. (8), the theoretical period of the SH image
is3′ = 5.5 µm

3+3 = 0.917 µm, which is consistent with the exper-
imental data. We vary the pump wavelength to 924 nm and
934 nm. Compared with the pattern in Fig. 2(a), the SH array
beams change dramatically as shown in Figs. 2(b) and 2(c).
The period of the SH pattern at λP = 924 nm is 1.39 µm,
as indicated by the red line in Fig. 3(a), which represents 1/4
of the domain period. It should be noted that the intensity
of the stripes in Fig. 2(b) is almost uniform. When the pump
wavelength is 934 nm [Fig. 2(c)], the SH array period becomes
2.78 µm, which is approximately 1/2 of the sample period as
shown in Fig. 3(a) with a black line. Note that the SH patterns
at λP = 924 nm and λP = 934 nm, respectively, have the same
period with those reported at wavelengths of 928 and 944 nm
under the QPM condition [15]. For these slightly away from
QPM wavelengths, we can deduce that the reciprocal vectors,
which play the major role in generation of non-diffracting SH
array beam, are G1,2/G1,−2 and G1,1/G1,−1 at wavelengths of
924 nm and 934 nm, respectively. So the non-diffracting SH
array beams could still be observed at these pump wavelengths.
Different from the QPM case, the generated non-diffracting
SH array beams have lower intensity in our experiment. We

Fig. 3. Changes between the period and the input wavelength
under two input angles. (a) The measured periods of the arrays are
0.928 µm, 1.39 µm, and 2.78 µm at pump wavelengths of 909 nm,
924 nm, and 934 nm under θ = 0◦, respectively. (b) The periods of the
arrays are 0.80µm, 1.11µm, and 1.86µm at the pump wavelengths of
900 nm, 925 nm, and 935 nm under θ = 1.83◦, respectively.

notice that the wavelength can be tuned about 10 nanometers
away from the QPM resonance when the lower-order reciprocal
vectors are involved to generate non-diffracting array beams, in
contrary, only a few nanometers away from the perfect QPM
wavelength with the higher-order reciprocal vectors under the
normal incidence.

Then, we check the non-diffracting SH array beam at an
oblique incidence (on the right of Fig. 2), i.e., the input angle
θ = 1.83◦. We also analyzed the period change of the SH pat-
terns at different wavelengths [Figs. 2(d)–2(f )]. In comparison
with the θ = 0◦, the SH patterns also exhibit periodic arrays
but with different periods and intensity at the θ = 1.83◦, as
shown in Figs. 2(d)–2(f ). At λP = 900 nm in Fig. 2(d), the
array period reduces to 1/7 of the sample period, i.e., 0.8µm [as
indicated by the navy line in Fig. 3(b)] in the experiment, and
the SH wavelength is 450 nm. Compared with Fig. 2(a), the
SH array shown in Fig. 2(d) is not completely uniform, owing
to the asymmetry SH waves that interfere to form the array
beam. Then the pump wavelength was altered to 925 nm and
935 nm. As shown in Figs. 2(e) and 2(f ), the SH beams change
remarkably compared with the pattern excited by λP = 900 nm
[Fig. 2(d)]. The period of the SH pattern at λP = 925 nm is
1.11 µm [Fig. 2(e) and pink line in Fig. 3(b)], which is 1/5 of
the domain period. When λP further increases to 935 nm, the
period becomes 1.86µm [Fig. 2(f ) and orange line in Fig. 3(b)],
which corresponds to 1/3 of the sample period. The depend-
ence of the period of non-diffracting SH array beams on the
operating wavelength stems from the use of different reciprocal
vectors, which will be discussed in detail in the next section.

We also measured the far-field SH patterns of different
wavelengths at two input angles, where these patterns were
projected onto a screen and recorded using a CCD camera.
Figure 4 shows the vector diagram and the far-field SH beams
at different pump wavelengths. As expected, the SH beams are
arranged symmetrically, and the intensity is uniform under
normal incidence. In contrast, under oblique incidence, the SH
spots with non-uniform intensity are no longer symmetrical.
Higher-order reciprocal vectors [e.g., G1,3/G1,−3 in Fig. 4(b)
at λP = 909 nm and G1,4/G1,−3 in Fig. 4(c) at λP = 900 nm]
emit far-field SH beams at a largeα angle, which result in a non-
diffracting array beam with a small period, as shown in Figs. 2(a)
and 2(d). The SH array beams also have a low intensity, which
agrees well with the near-field profiles shown in Figs. 3(a) and
3(b) (blue line and navy line). Interestingly, the far-field SH
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Fig. 4. Far-field SH beams decomposed from the non-diffracting
beams at different input wavelengths. (a) The vector diagram to show
the far-field image; far-field patterns under (b) normal incidence and
(c) oblique incidence.

patterns change dramatically at pump wavelengths of 934 nm
and 935 nm under different input angles, although these wave-
lengths are very close to each other. As indicated in Fig. 4(b),
five SH spots are observed at 934 nm, which correspond to one
collinear SH beam (G1,0) and two pairs of symmetrical non-
collinear SH beams (G1,1/G1,−1 and G1,2/G1,−2). Among
these five spots, the second and fourth spots show the strongest
intensity, which correspond to the reciprocal vectors G1,1 and
G1,−1, respectively. Therefore, they interfere with each other
to determine the period of SH pattern shown in Fig. 2(c). And
the other spots (G1,0 and G1,2/G1,−2) with the lower inten-
sity interfere with one another to enhance the non-diffracting
beam. According to the Eq. (8), the theoretical period of an
array beam is 3′ = 5.5 µm

1+1 = 2.75 µm, which agrees well with
the experimental result of 2.78 µm. However, there are only
four SH spots at 935 nm as shown in Fig. 4(a) under the oblique
incidence, where these spots from the top to bottom correspond
to the reciprocal vectors G1,2, G1,1, G1,0, and G1,−1. Since
the SH beams G1,2 and G1,−1 have larger intensity, they play
the dominant role in the generation of non-diffracting array
beams at λP = 935 nm. The theoretical period of the SH image
at 935 nm is 1.83 µm, which is in good agreement with our
experimental data 1.86 µm [shown in Fig. 2(f )]. Obviously,
the intensity of the collinear SH beam G1,0 [indicated by the
red arrows in Figs. 4(b) and 4(c)] is very low, which makes
almost no contribution to the generation of non-diffracting
array beams. In addition, the non-collinear SH beams G1,2 and
G1,−2 [at λP = 924 nm in Fig. 4(b)] interfere with each other
to form the pattern shown in Fig. 2(b), and the asymmetrical
SH beams G1,−2/G1,3 [λP = 925 nm in Fig. 4 (c)] participate
in the formation of the image presented in Fig. 2(e). Based on
these observations, the non-diffracting array beams are indeed
generated by the interference of non-collinear SH beams in our
configuration.

As mentioned above, our method can be regarded as the inter-
ference of the non-collinear SH beams, which is similar to the
previously reported methods that are applied an axicon [9] or
SPPs [13,14]. In the nonlinear crystal, the exit angle of the non-
collinear SH beam could be flexibly tuned by varying the pump
wavelength and incident angle. The method, therefore, involves

different reciprocal vectors, which is the key factor for the reali-
zation of tunable non-diffracting array beams. Additionally, we
notice that the generation of non-diffracting SH beams is more
efficient under QPM condition, and it has a good tolerance on
the pump wavelength or angular tuning. This feature was not
confirmed in our previous work [15]. It should also be noted
that although all the SH beams are involved in the formation
of the non-diffracting array, only the two major non-collinear
beams, which have stronger intensity, play a decisive role in the
process. Similar to the 935 nm, the SH beams G1,−1 and G1,2
are predominant, and the collinear SH beam hardly makes any
contribution to the non-diffracting array beam. Therefore, the
collinear QPM could be avoided or a blocker could be used to
remove the collinear SH beam, which would allow better images
to be realized.

In summary, we have presented a method for flexible con-
trol of non-diffracting SH array beams by tuning the pump
wavelengths and incident angles in a 2D NPC. In particular,
our experiments indicate that the non-QPM SHG process
must be taken into account, when analyzing the details of the
non-diffracting beams under different conditions, as is the case
with the QPM SHG process. By including these two factors, the
generated non-diffracting array beams could be flexibly tuned
including their period, propagation distance, and wavelength in
a fixed nonlinear crystal.
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