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Nonreciprocal light propagation plays an important role in modern optical systems, from photonic networks to
integrated photonics. We propose a nonreciprocal system based on a resonance-frequency-tunable cavity and
intensity-adaptive feedback control. Because the feedback-induced Kerr nonlinearity in the cavity is dependent
on the incident direction of light, the system exhibits nonreciprocal transmission with a transmission contrast of
0.99 and an insertion loss of 1.5 dB. By utilizing intensity-adaptive feedback control, the operating intensity range
of the nonreciprocal system is broadened to 20 dB, which relaxes the limitation of the operating intensity range
for nonlinear nonreciprocal systems. Our protocol paves the way to realize high-performance nonreciprocal
propagation in optical systems and can also be extended to microwave systems. © 2021 Chinese Laser Press
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1. INTRODUCTION

Nonreciprocal components are of significance for both classical
and quantum photon-based information processing. Optical
nonreciprocity can be achieved by using magneto-optical ma-
terials [1–4], spatiotemporal modulation [5–9], chiral light–
matter interactions [10–13], atomic microscopic Doppler effect
[14–16], macroscopic Doppler effect of moving atomic lattices
[17–19], optomechanical interactions [20–22], and optical
nonlinearities [23–31]. Specifically, by using the nonlinearities
of optical resonators, bias-free and integrated nonreciprocal de-
vices can be realized [26–28]. Despite constraints imposed by
dynamic reciprocity [32] under simultaneous excitation from
opposite ports, nonlinear nonreciprocal devices attract intense
research for situations involving pulsed signals because they
have advantages of being compatible with an on-chip platform.
However, besides dynamic reciprocity, the nonreciprocity of
nonlinear optical devices is crucially dependent on the intensity
of incident light. Nonlinear nonreciprocal devices are con-
strained by a narrow operating intensity range [23–26]. A
number of nonlinear nonreciprocal devices are affected by a
trade-off between the maximum forward transmission and
the nonreciprocal intensity range (NRIR) [25–28]. Cascaded
Fano–Lorentzian nonlinear resonators have been demonstrated
to relax the limitation to some degree [27,28]. However, it re-
mains a big challenge to realize nonlinear nonreciprocal devices

with a high transmission contrast, broad bandwidth, wide
NRIR, and low insertion loss simultaneously.

Feedback control is an important method to manipulate the
dynamic evolution of the system [33,34], and it can generate
and amplify nonlinearity in a resonator [35,36]. Here we dem-
onstrate a novel and simple nonreciprocal optical system based
on a cavity with resonance frequency tuned by a feedback con-
trol system via the electro-optic (EO) effect. A part of the in-
formation of the cavity can be detected by a detector. The
output current of the detector is fed back to an electric circuit
to generate effective Kerr nonlinearity in the cavity. In our de-
signed system, the feedback current intensities are dependent
on the incident directions of light, leading to directional, in
other words direction-dependent, Kerr nonlinearities and sub-
sequently nonreciprocal light transmissions. To obtain a broad
NRIR, we explore intensity-adaptive feedback control to
dynamically amplify and tune the induced Kerr nonlinearity.
As a result, our designed nonreciprocal optical system exhibits
a transmission contrast of 0.99 and a broad NRIR at the
same time.

2. SYSTEM AND MODEL

The basic system depicted in Fig. 1(a) consists of a Fabry–Perot
(FP) cavity containing an EO nonlinear crystal, e.g., LiNbO3,
and an intensity-adaptive feedback circuit. The feedback circuit
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includes mainly an electric filter, an electric amplifier, and two
photodetectors (PDs). For a forward input âin, a portion of the
transmitted light through the beam splitter (BS) is reflected by
the cavity and monitored by PD1. Its output is filtered and
amplified to drive the EO nonlinear crystal in the cavity.
Because of the Pockels effect, the modulated EO nonlinear
crystal can induce a resonance frequency shift to the cavity.
However, for a backward input b̂in, a fraction of the transmitted
light through the cavity is partly reflected by BS and monitored
by PD1. Through the feedback circuit, the output current of
PD1 drives the EO nonlinear crystal and induces a resonance
frequency shift different from the forward case. Thus, the
opposite-direction inputs can induce different feedback current
intensities, yielding different resonance frequency shifts. As a
result, the direction-dependent feedback current leads to direc-
tional Kerr nonlinearity in the cavity and the nonreciprocal
transmission of the system. Note that a certain feedback current
from PD1 produces the same resonance frequency shift of
the cavity in opposite input directions. The intensity of the
feedback current caused by feedback light incident on PD1

is dependent on the direction of the input light. This depend-
ence causes the directional resonance frequency shift of the cav-
ity, as depicted in Fig. 1(b). The basic idea is the following: at
the beginning of the input light entering the cavity, the input is
off resonance with the cavity, and the detuning Δin is large. For
the forward input, the feedback-induced resonance frequency
shift of the cavity is close to the detuning but with opposite
signs. Thus, the shift “pulls” the cavity to be near resonance
with the input. As a result, the forward transmission is high.
In contrast, the feedback-induced resonance frequency shift
in the backward-input case is small and cannot compensate
for the initial detuning. The off-resonance backward transmis-
sion is weak. In this arrangement, we obtain a transmission
contrast of 0.99. It is worth noting that our system is still under
the constraint imposed by dynamic reciprocity. Therefore, to
break the time-reversal symmetry, the forward and backward
inputs are applied to the system separately in time.

PD2 is used to monitor the intensity of the forward incident
light. A fraction of forward incident light is reflected by BS and
detected by PD2, whose output modulates the gain of the elec-
tric amplifier. In this way, the gain of the electric amplifier is
adjusted according to the input intensity, which is proportional
to jhâinij2. Utilizing this intensity-adaptive feedback control,
the NRIR can be greatly broadened without reducing transmis-
sion contrast or insertion loss.

A. Forward Propagation
For the forward case, the feedback current produced by PD1 is

ifa �t� � ξγhâ†r �t�âr�t�i, (1)

where ξ is the photoelectric conversion efficiency of PD1, and γ
is the reflection coefficient of BS. According to the input–
output relation of an optical cavity [37,38], the reflected field
operator for the cavity is given in terms of the input and intra-
cavity field operators as

âr�t� � −
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
âin �

ffiffiffiffiffiffiffi
κex1

p
â, (2)

where â is the annihilation operator for the cavity mode excited
by forward incident light, âin is the annihilation operator for the
forward incident field, and κex1 is the decay rate caused by the
cavity mirror (M1). According to Eqs. (1) and (2), the feedback
current is

ifa �t� � ξγ��1 − γ�jαinj2 � κex1jαj2

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex1�1 − γ�

p
Re�α�inα��, (3)

where the coherent amplitudes of the input field and the intra-
cavity field are given by αin � hâini and α � hâi, respectively.
An input power P in corresponds to an input photon
flux jαinj2 � Pin∕ℏωin.

Now we derive the feedback current acting on the optical
cavity after a low-pass electrical filter. The feedback current
is filtered by a low-pass filter with an impulse response function
h�t� � �2ωc∕

ffiffiffi
3

p � exp�−ωc t∕2� sin�
ffiffiffi
3

p
ωc t∕2�, where ωc is

the cutoff frequency. When the incident light enters the cavity
at the beginning time period, the detuning with the cavity is
large and causes oscillation in the feedback. We use this
low-pass filter to block the rapidly oscillating component in
the feedback-induced frequency shift. The high-frequency

Fig. 1. Schematic diagram of the nonreciprocal propagation system.
(a) Schematic of the system consisting of a feedback circuit and an FP
cavity containing an EO nonlinear crystal. The feedback circuit in-
cludes a low-pass filter (LPF), an electric amplifier (Amp), and two
photodetectors (PD1 and PD2). Left-handed incident light propagates
in the forward direction and transmits through the beam splitter (BS)
to excite the cavity. The reflected light of the cavity is reflected by
the BS and a mirror successively, and then it is detected by PD1.
The output current of PD1 is filtered by the LPF and amplified
by the amplifier. Then the current modulates the EO nonlinear crystal
and changes the transmission of the cavity. PD2 is used to monitor a
fraction of the left-handed incident light and control the gain of the
amplifier. Right-handed incident light moves in the backward direc-
tion, transmits through the cavity, and is reflected by the BS and the
mirror and then captured by PD1. In the same way, the output current
drives the EO nonlinear crystal and modulates the transmission of the
cavity. (b) Transmission spectrum of the system. Black curves are for
transmissions of the FP cavity without feedback. Blue (red) curves are
for transmissions of the feedback-modulated cavity in the forward
(backward) case. Green vertical bar is for the frequency of incident
light (ωin). Black vertical bar is for one of the eigenfrequencies of
the cavity (ω0).
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components of the feedback current caused by a high-power
input can be filtered. The filtered feedback current is then am-
plified and modulates the EO nonlinear crystal inside the cav-
ity, yielding a resonance frequency shift:

Δf
a �t� � χG

Z
t

0

ifa �τ�h�t − τ�dτ, (4)

where χ is the coefficient of the EO nonlinear process, and G is
the gain of the electric amplifier. We define conversion-ampli-
fication coefficient A ≡ χGξ for later convenience. Combining
Eqs. (3) and (4), the cavity-excitation-dependent (i.e., jαj2-de-
pendent) resonance frequency shift can be written as

Δf
a �t� � Aγ

Z
t

0

f�1 − γ�jαin�τ�j2 � κex1jα�τ�j2

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex1�1 − γ�

p
Re�α�in�τ�α�τ��gh�t − τ�dτ: (5)

Working in a frame rotating at the incident field frequency
ωin, the system can be modeled as an effective Kerr nonlinear
cavity driven by the forward input αin described by the
Hamiltonian

H fw � �Δin � Δf
a �â†â� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex1�1 − γ�

p
�αinâ† − α�inâ�, (6)

where Δin � ω0 − ωin, ω0 is resonance frequency of the cavity
in the absence of feedback, and κ is the total cavity decay rate,
including the decay rates (κex1∕κex2) caused by cavity mirrors
(M1/M2) and the intrinsic decay rate κi caused by the
absorption and scattering of the EO nonlinear crystal,
i.e., κ � κex1 � κex2 � κi.

For a classical field input, we can apply the mean-field
approximation to the cavity mode α � hâi. In this case, the
feedback produces an effective Kerr nonlinearity to the cavity.
The cavity mode amplitude â in the mean-field approximation
evolves with time according to

_α � −i�Δin � Δf
a �α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex1�1 − γ�

p
αin −

κ

2
α: (7)

According to the input–output relation âout � ffiffiffiffiffiffiffi
κex2

p
â, the

forward transmission amplitude is defined as t fw � hâouti∕αin.
Thus, the corresponding forward transmission coefficient
is T fw � jt fwj2.

We can numerically solve Eqs. (5) and (7) by using the four-
order Runge–Kutta method to find the time evolution of the
resonance frequency shift and the forward transmission.
Additionally, it is possible to obtain an analytical expression for
the steady-state transmission. For the forward case, we assume
the feedback-induced resonance frequency shift stably remains
at a certain value Δf

a,ss when the system reaches the steady state.
We define the residual detuning as δa ≡ Δin � Δf

a,ss. In this
case, the steady-state solution of Eq. (7) is

αss �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex1�1 − γ�

p
αin

iδa � κ∕2
: (8)

According to the input–output relation and
t fw � hâouti∕αin, the steady-state forward transmission is

T fw � 4κex1κex2�1 − γ�
4δ2a � κ2

: (9)

B. Backward Propagation
For the backward case, the intensity of feedback current pro-
duced by PD1 is

ifb �t� � ξγhb̂†t �t�b̂t�t�i: (10)

According to the input–output relation, the transmitted
field operator for the cavity is given by

b̂t�t� �
ffiffiffiffiffiffiffi
κex1

p
b̂, (11)

where b̂ is the annihilation operator for the cavity mode excited
by backward incident light. Note that â and b̂ express the same
cavity mode with different denotations to distinguish the op-
posite incident directions. Combining Eqs. (10) and (11), the
feedback current can be expressed as ifb �t� � ξγ · κex1jβj2, with
the coherent amplitude of the intracavity field β � hb̂i.

The same with the forward case, the filtered feedback cur-
rent is amplified and modulates the crystal with the same con-
version-amplification coefficient A. So the resonance frequency
shift is

Δf
b �t� � Aγκex1

Z
t

0

jβ�τ�j2h�t − τ�dτ: (12)

The Hamiltonian for the backward case is given by

H bw � �Δin � Δf
b �b̂†b̂� i

ffiffiffiffiffiffiffi
κex2

p �βinb̂† − β�inb̂�, (13)

where βin is the backward incident amplitude. The input power
Pin yields the input photon flux jβinj2 � Pin∕ℏωin. In the
mean-field approximation β � hb̂i, the cavity also includes
Kerr nonlinearity due to the feedback control. This effective
Kerr nonlinearity coefficient is different from the forward case.
The evolution of the cavity mode b̂�t� in the mean-field
approximation is given by

_β � −i�Δin � Δf
b �β�

ffiffiffiffiffiffiffi
κex2

p
βin −

κ

2
β: (14)

Because of the input–output relations b̂out �
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
b̂t and

b̂t � ffiffiffiffiffiffiffi
κex1

p
b̂, the backward transmission amplitude is given by

tbw � hb̂outi∕βin, and the corresponding backward transmis-
sion coefficient is T bw � jtbwj2. The time evolution of the fre-
quency shift and the transmission in the backward case can be
found by numerically solving Eqs. (12) and (14).

We assume the resonance frequency shift remains at Δf
b,ss,

and define the residual detuning as δb ≡ Δin � Δf
b,ss. Thus, we

obtain the steady-state solution to Eq. (14) as

βss �
ffiffiffiffiffiffiffi
κex2

p
βin

iδb � κ∕2
: (15)

Using the input–output relations and tbw � hb̂outi∕βin, we
obtain the steady-state backward transmission

T bw � 4κex1κex2�1 − γ�
4δ2b � κ2

: (16)

For simplicity, we assume κex1 � κex2 � κex, such that
κ � 2κex � κi throughout the investigation below.

3. RESULTS

A. Nonreciprocal Steady-State Transmission
We numerically solve Eqs. (7) and (14) with the four-order
Runge–Kutta method to find the time evolution of the state
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of the cavity and its transmission. As shown in Fig. 2, the sys-
tem reaches the steady state ( _α ≈ 0 and _β ≈ 0) after evolving a
time period such that κext ≫ 1. Excited from opposite sides
with the input fields with equal power (Pin � 830ℏωinκex)
and the same detuning (Δin � −15κex), the system reaches a
steady state after a hysteresis (τh ≈ 138κ−1ex ). The steady-state
forward and backward transmissions shown in Fig. 2(a) are
T fw ≈ 0.70 and T bw ≈ 0.005, respectively. The system exhibits
a transmission contrast of η � �T fw − T bw�∕�T fw � T bw�≈
0.99 [10,17] and an insertion loss of ℒ � −10log10�T fw� ≈
1.5 dB.

According to Eqs. (5) and (12), we obtain the feedback-
induced resonance frequency shifts [Fig. 2(c)]. For the forward
case, the feedback-induced resonance frequency shift begins
oscillating from an initial frequency shift determined by the
input, and locks to a certain value close to the input detuning,
i.e., Δf

a,ss ∼ −Δin, and δa∕κex ∼ 0, at the end of hysteresis. Once
the feedback-induced shift is locked, the cavity mode is highly
excited [Fig. 2(b)]. As a result, the feedback control “pulls” the
detuned resonator to near resonance, yielding a high forward
transmission. However, for the backward case, the feedback-in-
duced frequency shift is negligible, compared with the incident
detuning, i.e., Δf

b,ss ≪ −Δin, and δb ∼ Δin. Thus, the cavity is
weakly excited, as shown in Fig. 2(b). It means that the feed-
back control hardly changes the initial detuned state of the
system. As a result, the backward transmission is low.

According to the steady-state analytical solutions, we below
investigate how the nonreciprocal transmissions of the system
are affected by the reflection coefficient of the BS and the in-
trinsic loss of the cavity. From the numerical results shown in
Fig. 2(c), we can find the steady-state feedback-induced reso-
nance frequency shiftsΔf

a,ss ≈ 14.6κex andΔ
f
b,ss ≈ 0.5κex for the

forward and backward cases, respectively. We can set the opti-
mized residual detunings δa � −0.4κex and δb � Δin to calcu-
late the analytical steady-state transmissions with Eqs. (9) and
(16). We also compare our analytic formula with numerical
solutions to Eqs. (7) and (14). It can be seen in Fig. 3 that
the numerical results of steady-state transmissions are in excel-
lent agreement with the analytical solutions.

It can be seen in Figs. 3(a) and 3(b) that the system exhibits
the high insertion loss for γ > 0.1, but the transmission con-
trast is independent of γ, satisfying the steady-state analytical

solutions of η � 2�δ2b − δ2a�∕�2�δ2b � δ2a� � κ2�. As shown in
Figs. 3(c) and 3(d), a stronger intrinsic loss causes a higher in-
sertion loss but the transmission contrast remains nearly con-
stant in spite of small changes in the intrinsic loss, owing
to 2�δ2b � δ2a� ≫ κ2.

The forward and backward transmissions are dependent on
the input light power (P in) and the detuning between the input
and the cavity (Δin). We show the numerically calculated
steady-state forward and backward transmissions as a function
of the input power and detuning in Figs. 4(a) and 4(b). For the
input detuning with a positive value, the feedback will “push”
the cavity resonance farther away from the input, suppressing
transmission in both directions. For a negative detuning Δin

and a moderate input power, e.g., Pin � 500ℏωinκex, if
jΔinj is large, the feedback-induced frequency shift cannot

Fig. 2. Nonreciprocal transmission properties. (a) Nonreciprocal transmission. Blue (red) curve is for the forward (backward) transmission T fw

(T bw). (b) Average photon number inside the cavity. Blue (red) curve is for the forward (backward) case. (c) Feedback-induced resonance frequency
shifts. Blue (red) curve is for the frequency shift in forward (backward) case. In the inset, the black dashed curve indicates the input detuning of
−Δin � 15κex. For the steady state, the feedback-induced frequency shift for the forward (backward) case is Δf

a,ss ≈ 14.6κex (Δ
f
b,ss ≈ 0.5κex). All

calculations are obtained by solving Eqs. (7) and (14) numerically with parameters: γ � 0.01, κi � 0.2κex, ωc � 190κex, A � 12, Δin � −15κex,
and Pin∕ℏωin � 830κex.

Fig. 3. Analytical and numerical steady-state results. Solid curves
are for analytical results, and dots are for numerical results.
(a) Blue (red) curve represents forward (backward) transmission versus
log10�γ�. (b) Blue (red) curve is for transmission contrast η (insertion
lossℒ) versus log10�γ� for κi � 0.2κex. (c) Blue (red) curve represents
forward (backward) transmission versus κi . (d) Blue (red) curve is for
transmission contrast (insertion loss) versus κi for γ � 0.01. Other
parameters are ωc � 190κex, A � 12, and Δin � −15κex. For numeri-
cal calculations, the incident intensities are optimized values for the
maximal forward transmissions.
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be large enough to compensate for this negative detuning. In
this case, the cavity will still be off resonance with the input,
preventing the transmission in both directions. If the detuning
is too small, the feedback in the forward case will pull the cavity
frequency to go beyond the resonance, also blocking the trans-
mission. But for the backward case, the feedback is always too
small to compensate for the initial detuning Δin, resulting in a
low backward transmission.

For a specific value of the detuning Δin � −15κex, the sys-
tem exhibits nonreciprocal transmission versus incident
power [Fig. 4(c)]. The maximal transmission contrast can be
η � 0.99, and the maximal forward transmission reaches
T fw � 0.70. Referring to Refs. [25,28], we define the NRIR
as the ratio of input power from opposite propagation direc-
tions that meet a special transmission contrast. For instance,
to meet η � 0.99, NRIR�0.99� � 10log10�Pin2∕Pin1� ≈
1.4 dB, where Pin,1 � 634ℏωinκex and Pin,2 � 876ℏωinκex
are the lower and upper power boundaries of the NRIR, respec-
tively, as shown by the green area in Fig. 4(c).

The nonreciprocal transmission as a function of the detun-
ing is shown in Fig. 4(d) for a fixed incident power of
P in � 830ℏωinκex as an example. As shown by the green area
in Fig. 4(d), the nonreciprocal bandwidth meeting η � 0.99
and ℒ ⩽ 3 dB is about 24.2κex. Within this nonreciprocal
bandwidth, the backward transmission and transmission con-
trast almost remain unchanged, but the forward transmission
linearly decreases with the detuning jΔinj.
B. Intensity-Adaptive Feedback
When the conversion-amplification coefficient (A) is fixed, the
system holds nonreciprocal transmissions only over a small

range of the incident intensity, as shown in Fig. 4(c). To
broaden the NRIR, we apply intensity-adaptive feedback con-
trol to the system. PD2 is used to monitor the power of inci-
dent light (Pin) and control the gain of the electric amplifier
(G), which are proportional to jαinj2 and A, respectively. As
a result, the conversion-amplification coefficient adjusts with
the incident intensity.

At the beginning of the light incident into the system, the
cavity mode is not excited, i.e., α � 0, as shown in Fig. 2(b).
According to Eq. (5), we define the input-induced resonance
frequency shift

Δf
a,in ≡ Aγ�1 − γ�Pin∕ℏωin, (17)

where the input power P in is determined by jαinj2 in the for-
ward case and jβinj2 in the backward case. We assume that the
optimal forward transmission is T fw , corresponding to an op-
timal input power Popt

in . The adaptive feedback circuit generates
an optimized input-induced frequency shift Δf ,opt

a,in �
Aγ�1 − γ�Popt

in ∕ℏωin. To maintain the optimal forward trans-
mission, we need to use the adaptive circuit to fix this in-
put-induced resonance frequency shift to Δf ,opt

a,in . To do so,
we can set the intensity-adaptive amplification coefficient to

Ã � ℏωinΔ
f ,opt
a,in

γ�1 − γ�Pin

, (18)

for different input powers Pin. In this way, for various input
light intensities, the system beginning with the same input-
induced frequency shift Δf ,opt

a,in will evolve to the same steady
state, yielding the same forward transmission T fw . In the back-
ward case, the feedback circuit shares the same amplification
coefficient Ã with the forward case. In intensity-adaptive feed-
back control, the coefficient A in Eqs. (5) and (12) is replaced
with Ã.

From numerical results shown as an example in Fig. 4(c), for
a specific incident power range, the maximal forward transmis-
sion of T fw ≈ 0.70 is obtained for optimal parameters A � 12
and γ � 0.01. We take the upper boundary Popt

in �
876ℏωinκex for optimal input power. To improve the
NRIR, the system needs to adjust the coefficient Ã according
to Eq. (18) via the intensity-adaptive feedback circuit. In con-
sideration of experimental feasibility, 1000-fold current gain of
an electric amplifier has been achieved [39]. Here we set
1 ⩽ Ã ⩽ 100, varying over 20 dB.

The steady-state forward and backward transmissions of the
intensity-adaptive feedback control system are shown in
Figs. 5(a) and 5(b). Compared with the non-adaptive feedback
system shown in Figs. 4(a) and 4(b), the intensity-adaptive
feedback system exhibits a broader NRIR for incident light
with some certain frequencies. For instance, for a specific value
of the detuning Δin � −15κex, the NRIR �0.99� is greatly im-
proved to 20 dB. Within the NRIR, the forward transmission
T fw and the transmission contrast η maintain 0.70 and 0.99,
respectively. At the same time, the backward transmission T bw

is also extremely low, as is shown in Fig. 5(c).
To improve the NRIR, the coefficient Ã, limited by the per-

formance of the electric amplifier of the feedback circuit, adap-
tively adjusts to different incident intensities [Fig. 5(d)].
According to Eq. (18), Ã is inversely proportional to the input

Fig. 4. Steady-state transmissions of the non-adaptive feedback con-
trol system. (a), (b) Forward and backward transmissions versus input
intensities and the detunings. (c) Forward (blue curve) and backward
(red curve) transmissions versus input intensities for Δin � −15κex
[white dotted transverse lines in (a) and (b)]. (d) Forward (blue curve)
and backward (red curve) transmissions versus detunings for
P in∕ℏωin � 830κex [white dotted vertical lines in (a) and (b)]. All cal-
culations are obtained by solving Eqs. (7) and (14) numerically with
parameters: γ � 0.01, κi � 0.2κex, ωc � 190κex, and A � 12.
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power (Pin). Therefore, the NRIR is determined by the lower
boundary ÃL and the upper boundary ÃU of Ã, so NRIR �
10 log10�ÃU∕ÃL�. For instance, if 1 ⩽ Ã ⩽ 1000, varying over
30 dB, NRIR �0.99� is broadened to 30 dB.

C. Nonreciprocal Pulse Transmission
To avoid the dynamic reciprocal problem by temporal multi-
plex, we input pulsed signals into the system from two opposite
directions. Rectangularly pulsed signals are incident in both for-
ward and backward directions with a long enough delay τd, so
that the temporal overlap in the system between the forward
and backward propagating pulses can be avoided. We assume

the time delay of feedback circuit τf is short enough, and
the pulse duration τp is longer than the feedback delay and
hysteresis duration τh but shorter than the pulse delay,
i.e., τf , τh ≪ τp < τd . We take the pulse repetition interval
400πκ−1ex , and τp � 400π∕3κ−1ex , τd � 200πκ−1ex . The transmis-
sions of pulsed signals in two opposite directions are shown in
Fig. 6. The upper panel shows high transmissions of the pulse
trains in the forward direction, while the lower panel indicates
very low backward transmissions of the pulse streams.

4. DISCUSSION AND CONCLUSION

We proposed a feedback-induced nonreciprocal optical system
using the experimentally existing technique. The frequency-
tunable cavity can be made by using a 2 cm long FP cavity
consisting of two mirrors with reflectivity of R � 98% and
a 0.15 cm long LiNbO3 nonlinear crystal. The external loss
of the cavity caused by the two mirrors is calculated to be about
κex ≈ 2π × 22.1MHz. The LiNbO3 crystal typically has an ab-
sorption loss of 0.3 m−1. We assume that two ends of the crystal
are coated with 99.9% anti-reflection coating, leading to a total
internal cavity loss of κi ≈ 2π × 5.4MHz ∼ 0.2κex. In such de-
sign, the free spectral range (FSR) of the cavity is calculated to
be FSR ≈ 311κex, which ensures that the input detunings Δin

and the resonance frequency shifts Δf
a�b� cannot exceed the FSR

and retains the system in a single cavity mode. Note that all our
calculation results meet the conditions of FSR > fΔin,Δ

f
a�b�g.

The higher the input power Pin, the larger the feedback-
induced shift Δf

a�b� and the required cut-off frequency ωc. In
some sense, the aforementioned conditions related to FSR also
limit the applicable highest Pin and thus the available NRIR.

Alternatively, the tunable cavity can also be realized by uti-
lizing an FP cavity attached to a piezoelectric element [40]. The
feedback signals drive the piezo to produce the resonance fre-
quency shifts. This setup with much smaller intrinsic cavity loss
can achieve a lower insertion loss, as shown in Fig. 3(d).

Our proposed method can also be applied to a microwave
system. In the microwave system, the frequency-tunable FP
cavity can be replaced with a microwave resonator (transmis-
sion-line resonator) made from a superconducting electronic
circuit [41,42]. The feedback signals can change the frequency
of the electric field in transmission line resonators through the
tunable inductance of a superconducting quantum interference
device (SQUID) [35,43,44], leading to resonance frequency
shifts. Thus, in the same way, nonreciprocal microwave trans-
mission can be realized by utilizing direction-dependent feed-
back signals. Moreover, a microwave-frequency photon source,
BS, filter, amplifier, and detectors can be integrated on a chip
[45]. Thus, nonreciprocal transmission of pulsed microwave
signals can also be realized on-chip with our protocol.

In principle, fast switching can also isolate the reflected
pulses from the pulsed input if the arriving time is precisely
known. However, conventional switching is reciprocal because
it does not break the time-reversal symmetry in any sense. On
the other hand, the realization of a high-speed photonic switch
is changing [28,46].

In our design, the feedback current is generated by the op-
tical signal itself and creates an effective Kerr nonlinearity to the
optical subsystem. Our nonlinear nonreciprocal device breaks

Fig. 5. Steady-state transmissions of intensity-adaptive feedback
control system. (a), (b) Forward and backward transmissions versus
input intensities and detunings. (c) Blue (red) line is for forward (back-
ward) transmission versus input intensities for Δin � −15κex [white
dotted line in (a) and (b)]. (d) Conversion-amplification coefficients
versus input intensities. All calculations are obtained with parameters:
γ � 0.01, κi � 0.2κex, ωc � 190κex, and Δf ,opt

a,in � 104κex.

Fig. 6. Propagation of rectangle pulses in forward and backward
directions. Solid curves are the input rectangle pulse trains, and dashed
curves are the transmitted pulses. Blue (red) curve shows the forward
(backward) propagation of the pulses. τp is the pulse duration, and τd
is the pulse delay between forward-input and backward-input pulses.
All calculations are obtained by solving Eqs. (7) and (14) numerically
with parameters: γ � 0.01, κi � 0.2κex, ωc � 190κex, A � 12,
Δin � −15κex, and Pin∕ℏω � 830κex. The hysteresis duration τh is
about 138κ−1ex .
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the time-reversal symmetry, and the scattering matrix is asym-
metric when the input and reflected pulses do not arrive at the
same time [47]. Our feedback approach takes a step towards
isolation of pulsed signals and has the potential to bypass
the constraint due to dynamic reciprocity, if the reflected pulses
are delayed by a long enough time from the arrival of the input
pulsed signal.

In conclusion, we have explored feedback control to induce
a directional Kerr nonlinearity in the cavity to achieve nonre-
ciprocal transmission. By using intensity-adaptive feedback, we
have realized a broad NRIR maintaining the transmission con-
trast of 0.99. Our protocol can also be implemented in a super-
conducting electronic circuit for nonreciprocal microwave
transmission. Despite our system being subject to dynamic reci-
procity, we have presented a general method to solve the out-
standing challenge of integrated nonreciprocal devices. The
proposed scheme promises useful applications in situations
involving pulsed signals.
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