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Abstract: We propose and experimentally demonstrate an optical image reconstruction in the
Laguerre-Gaussian (LG) domain. Because LG mode features circular symmetry, it has unique
advantages to decompose an image with rotational symmetry. In the experiment, we realize a
high-fidelity reconstruction of an optical image by using about 104 LG modes. In the proposed
configuration, the radial sampling points are much fewer than those in the existing methods,
which can significantly improve the efficiency. Furthermore, we show azimuthal image noise
reduction through LG domain filtering. Our results open a door for LG-mode based optical
image processing.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Orbital angular momentum (OAM) carrying beams have promoted many fascinating techniques
from optical trapping and optical tweezer [1,2] to optical communications [3,4], super-resolution
imaging [5], precision measurement [6,7], and quantum information processing [8,9]. Driven
by the mapping between azimuthal angle and OAM [10], the recent advances of digital spiral
imaging techniques [11–13] have demonstrated that OAM is a promising tool to detect object’s
geometrical information, such as object’s azimuthal identification [14–16], rotating object’s
sensing [17] and optical image rotation [18]. However, OAM itself is unable to reconstruct a
complete optical image.

As a complete and orthogonal basis, Laguerre-Gaussian (LG) mode is a potential candidate to
accomplish this task. LG mode [19] carries OAM, which is characterized by an azimuthal index
l and a radial index p. LG modes are the Eigen solutions of the paraxial wave equation, which
can be used for mode decomposition and optical image processing under paraxial approximation
[20]. Particularly, featuring circular symmetry, LG basis has advantages in analyzing the images
with rotational symmetry. For example, consider an optical image featuring N-fold circular
symmetry. The energy of its LG spectrum is concentrated in the components with their l indices
being multiples of N [10,14,17]. In previous researches, many approaches have been proposed to
measure OAM spectrum (i.e., l spectrum) [21–27]. However, it still lacks an efficient way to
measure the complete LG spectrum (i.e., both l and p spectra) [28,29].

In this letter, we propose a systematic approach to decompose a full optical image based on LG
modes. In our method, we calculate the radial mode distribution by adopting least squares fitting.
The required radial sampling points are much fewer than those in the existing methods [28,29],
which can significantly improve the efficiency. An optimal beam waist is critical to minimize the
LG mode number needed for image reconstruction. Furthermore, we demonstrate LG domain
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filtering to reduce the azimuthal noise, which shows the potential application in optical image
processing.

2. Method

An arbitrary optical image U can be expressed as a coherent superposition of LG modes,

U(r, θ, z) =
∑︂
l,p

Al,pLGl,p(r, θ, z) (1)

where Al,p is a complex variable that defines the amplitude and relative phase of LG mode, r is
the radius, θ is the azimuthal angle, and z is the propagation distance.

To simplify the analysis, we consider the image expansion at the position of the beam waist
(z=0). The field distributions of LG modes are given by [20]
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where w0 is the beam waist, and l and p are the azimuthal and radial indices, respectively. L |l |
p is

the generalized Laguerre polynomial. According to Eqs. (1) and (2), to expand or reconstruct an
optical image U in the LG domain, one should decide the coefficient, the beam waist w0 and the
mode expansion range. Note that all LG modes used for image decomposition are defined by the
same w0.

The LG mode range for image reconstruction is related to l, p, and w0. As shown in Eq. (2),
the azimuthal distribution of the LG mode is related to the helical phase as well as the l index.
The azimuthal expansion of an image can be written as

Bl(r) =
∫ 2π

0
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. Bl(r) shows the radial distribution in

different OAM subspaces, which can be understood as the l spectrum at different radius.
Numerical computation of the integral in Eq. (3) is generally time-consuming. Here, we exploit

the Fourier relationship between angular position and OAM [10] and calculate Eq. (3) by FFT at
each radius after transforming the image U to polar coordinate. In our experiment (Fig. 1(a)), the
original image is recorded by a 512×512 CCD detector with 50 µm pixel size and the largest
circumference contains 1609 pixels. We set the radial and azimuthal pixels of the target image to
be 256 and 1609, respectively (Fig. 1(b)). Here, we adopt the bicubic interpolation to replenish
the azimuthal pixel numbers at small radii to 1609.

To ensure high fidelity, we define the truncation l order by using the following criterion,

m∑︂
l=−m

Pl(r) = F · P(r) (4)

P(r) and Pl(r) are the total power and the power of the l-order component at radius r, respectively.
F is a coefficient, which is set as 0.99 in our experiment. Equation (4) indicates that the azimuthal
expansion is truncated when the l spectrum from –m order to m order contains 99% power at
the corresponding radius. The calculated truncation l order for each radial position is shown
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Fig. 1. (a) Experiment setup. The incident beam is from a 1064 nm laser. The image is
produced by a DMD (ViALUX, DLP7000) and then recorded by a CCD with 512*512
pixels (Xenics, Lynx-11279). Note that our method works for both coherent and incoherent
light illumination. (b) Image transformation from Cartesian coordinates to polar coordinates.
(c) The azimuthal truncation l order at each radius.

in Fig. 1(c). The highest order is 200 at r= 8.65 mm. It should be noted that, to analyze the
p components in Bl(r), the range of the l spectrum at each radius is required to be consistent.
Thus, we extract the l components between ±200 orders to perform the azimuthal expansion. The
actual azimuthal expansion accuracy of the whole image is more than 99% in the experiment.

For an arbitrary l order, Bl(r) can be seen as a coherent combination of many p components.
Generally, an integral method can be used to calculate the weights of the p components [28,29],
in which a large sampling number is required to ensure high accuracy. Here, we propose a
method to acquire the mode coefficient with a significantly reduced sampling number.

In experiment, we measure Bl(r) at different radial positions. Then, we can re-write Eq. (3) as
a multivariate linear equation with different r,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where r1, r2 . . . rm are different radial position and m is the radial sampling number. There are
p+1 unknown variables (Al,0, Al,1,. . . , Al,p) to be ascertained.

Equation (5) can be re-written as
B = LG · A (6)
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where B =
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In our method, the minimal radial sampling number is p+1 to decide the radial mode coefficient;
this is much smaller than that in integral method [28,29]. When the radial sampling number m
is larger than p+1, Eq. (6) forms an over-determined system of equations, which is solved by
calculating its least-square solution,

A∗ = arg min
x

| |LG · A − B| |2 = (ATA)−1ATb (7)

where (ATA)−1AT is the pseudo-inverse matric of A. The least-square fitting is implemented by
QR decomposition algorithm.

To demonstrate the advantage of this fitting method, we analyze several LG mode fields (p=8
in Fig. 2(a), p=50 in Fig. 2(b), and p=9, 15, 28 superposed with 1:2:1 amplitude ratio in Fig. 2(c)).

Fig. 2. Comparison of least squares fitting and the integral method. The target images
are (a) a pure LG mode with p=8 and w0=3000 µm, (b) a pure LG mode with p=50 and
w0=1260 µm, and (c) a superposed LG field with p=9, 15, 28 (1:2:1 amplitude ratio) and
w0=1700µm. The decomposition accuracy in (d)-(f) corresponds to the fields in (a)-(c),
respectively.
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Note that LG modes with l=0 are used since we focus on the radial components here. The
decomposition accuracy is defined by

η = 1 -

∑︁
p
|As

p − A0
p |

2

∑︁
p
|A0

p |
2 (8)

where A0
p and As

p are the theoretical and calculated coefficients of the LG modes, respectively. As
shown in Figs. 2(d)–2(f), in comparison to the integral method, the least squares fitting method
can well preserve a high accuracy with fewer sampling points.

Generally, the used LG mode basis for expansion is strongly related to beam waist. To
choose a suitable beam waist, one should have a clear knowledge of the radial feature of the LG
beam. Figure 3(a) shows the radial distribution of the LGp=50

l=6 mode with a beam waist w0. Its
amplitude oscillates along the radial direction. When the radius is small, the local oscillatory
period increases slowly with the increase of the radius. The outer area, with an obviously larger
period, offers limited spatial frequency for image decomposition. Thus, we define the region
where the oscillatory period varies slowly as the effective area of the LG mode. In this work,
we remove the outermost eight nodes and define the remaining inner part as the effective area.
Figure 3(b) shows Bl=6(r), i.e., the l=6 subspace of the image to be decomposed. One can
calculate the spatial domain width rl=6 = 0.0082 m with 99% accuracy and the frequency domain
width fl = 6 = 703.125 m−1 with 90% accuracy.

 

Fig. 3. Optimization of beam waist. (a) The radial distribution of LG mode (l=6, p=50) and its effective area. (b) The radial 

distribution of OAM subspace of l=6. (c) The truncation p order with different w0.  

Fig. 3. Optimization of beam waist. (a) The radial distribution of LG mode (l=6, p=50)
and its effective area. (b) The radial distribution of OAM subspace of l=6, (c) The truncation
p order with different w0.

To decompose the image, the effective area of the truncation LG mode must cover the radial
distribution of the image and offer sufficiently high frequency. Therefore, the truncation order for
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p is decided by the following criteria,
Nl,p

1 w0>rl (9a)

2(Nl,p
1 − Nl,p

2 )w0 ≤ 1/fl (9b)

where Nl,p
1 and Nl,p

2 are the outermost and second outermost node of the effective area of LG
mode. The value of w0 should satisfy Eqs. (9a) and (9b) in all OAM subspaces.

Figure 3(c) shows the calculated truncation p order (i.e., the smallest p that satisfies Eq. (9a)
and Eq. (9b)) with different w0. A larger w0 requires a lower truncation p order in general.
However, the truncation p order in some OAM subspaces could be extremely high for large w0.
For example, when w0 is 675um, the truncation p order in the l=±109 subspace is 268, which
indicates a sampling number of at least 269 to solve all the radial components by using least
square fitting method. However, the maximal sampling number is 256 due to the limitation of the
detector area in our experiment. Taking the above factors into consideration, we choose 650 µm
as the optimal w0.

3. Results

By applying least square fitting, one can obtain the amplitude and phase LG spectrum of the
image as shown in Figs. 4(a) and 4(b), respectively. Most of the condition numbers of matrices
LG in Eq. (6) are lower than 10. The total LG mode number is 12647 and the reconstructed image
is shown in Fig. 4(c). The structural similarity (SSIM) between the reconstructed image and the
original image is 0.94, which demonstrates a good accuracy by using LG basis. In comparison,
we also reconstruct the image by using Fourier basis with 12769 modes (Fig. 4(d)) and the
corresponding SSIM is 0.79. Clearly, when decomposing an image with rotational symmetry,
LG basis provides a higher image quality by using the same mode number.

Fig. 4. Results of image decomposition in LG domain. (a) The amplitude of LG mode
spectrum. (b) The phase of LG mode spectrum. (c) The reconstructed image by using 12647
LG modes in (a) and (b). (d) The reconstructed image by using 12769 Fourier components.

Linear CCD rotated scanning is a popular imaging method. However, high-frequency dark
noise of the detector could introduce an azimuthal periodic noise, which has a severe influence
on the recorded image (Fig. 5(a)). It is hard to recognize this kind of noise in Fourier domain as
shown in Fig. 5(b). However, it is convenient to filter such noise in LG mode domain because
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the major information for a natural image is carried by low-order LG modes. Figure 5(c) shows
the l spectrum of the scanned image. The periodic noise exists near ±180-order. By using the l
components ranging from −150 to 150, the recomposed image (Fig. 5(d)) clearly exhibits an
improved quality.

Fig. 5. Results of image noise filtering. (a) Raw image with azimuthal noise recorded by
linear CCD. (b) The corresponding Fourier spectrum. (c) The corresponding l spectrum. (d)
The reconstructed image after LG domain filtering.

4. Conclusion

In conclusion, we have introduced an efficient approach to decompose an optical image based
on LG modes. It is convenient to analyze the image of rotational symmetry by using the LG
spectrum. The measured SSIM proves a high quality reconstruction. It should be noted that
the reconstructive image by using LG mode is not perfect because an optical image is typically
defined over a finite area. We have developed an effective method to significantly reduce the
radial sampling number. The LG mode range for decomposing the image is related to the optimal
beam waist. In addition, we experimentally demonstrate the azimuthal noise filtering in LG
domain. Our results pave a way for utilizing LG-mode basis for optical image processing.
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