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Talbot effects induced by gain-loss modulated optical lattices in a coherent atomic medium
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We investigate the electromagnetically induced Talbot effects resulting from the gain-loss modulated optical
lattices constructed in a coherent four-level N-type atomic system. Both integer and fractional Talbot effects are
studied in a parity-time (PT ) symmetric optical lattice, quasi-PT -symmetric optical lattices, and a conventional
electromagnetically induced transparency (EIT) optical lattice. Additionally, the visibilities of Talbot images
from a PT -symmetric optical lattice, quasi-PT -symmetric optical lattices, and a conventional EIT optical lattice
are examined. This study provides insights for understanding the Talbot effects in experiments based on coherent
atomic systems with gain and loss properties.
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I. INTRODUCTION

The Talbot effect is a near-field diffraction and interference
phenomenon, which is also called self-imaging or lensless
imaging [1–4]. This effect emerges when a periodic structure
is illuminated by a quasimonochromatic coherent light. The
original periodic image is replicated at certain imaging planes.
These imaging planes are located at even integer multiples of
the Talbot distance zT = d2/λ, where d is the spatial period
of the pattern and λ is the wavelength of the illuminating
light. This effect is called the integer Talbot effect. At a dis-
tance z = (p/q)zT (here, p and q are positive integers, p < q),
complicated subimage patterns can appear. This property is
referred to as the fractional Talbot effect. Nowadays the Talbot
effects have already found important applications in optical
computing [5], lithography [6], and optical metrology [7].
Recent research on the Talbot effect has further extended to
the temporal Talbot effect [8], nonlinear Talbot effect [9,10],
quantum Talbot effect [11], angular Talbot effect [12,13], and
gain-loss induced Talbot effect [14,15]. These Talbot effects
are studied in Bose-Einstein condensates [8], solid materials
[9–12,14], and coherent atomic systems [13,15].

Coherent atomic systems provide a fertile platform
for observing Talbot effects due to their easy in situ
reconfigurability and flexible tunability of the parameters
[16–18]. The Talbot effect based on an electromagnetically
induced grating [19] was theoretically proposed in a
three-level ultracold atomic medium [20], which is referred to
as an electromagnetically induced Talbot effect (EITE). The
integer and fractional EITEs have all been experimentally
demonstrated in three-level �-type [21] and ladder-type [22]
atomic systems, respectively.

Recently, non-Hermitian parity-time (PT ) symmetric
Hamiltonians have attracted considerable attention since they
were first proposed by Bender and Boettcher two decades
ago [23]. It was found that this class of Hamiltonians can
exhibit entirely real eigenvalue spectra when they satisfy the

PT -symmetry condition. Many interesting phenomena, such
as non-Hermitian optical solitons [24,25], unidirectional
invisibility [26–28], non-Hermitian Bloch oscillations
[29,30], coherent perfect absorbers [31–33], PT -symmetric
lasers [34,35], orbital angular momentum lasers [36], and
sensing enhancement [37–39] have been discovered in
PT -symmetric optical configurations. The realizations of
PT -symmetric potentials in multilevel atomic systems
were theoretically proposed [40,41] and an experimental
observation of a PT -symmetric lattice was demonstrated
in a four-level N-type atomic system [42,43]. With many
intriguing phenomena [24–39] observed in PT -symmetric
optical systems, we envision that it is important to broaden our
research on the traditional EITE into the gain-loss modulated,
as well as the PT -symmetric, coherent atomic systems.

In this article, we investigate the gain-loss modulated Tal-
bot effects in a four-level N-type atomic configuration. This
configuration is driven by a weak signal field and two sets
of standing-wave (coupling and pump) laser fields [42]. The
induced gain-loss modulated optical lattices inside the atomic
vapor are established by the interference of a pair of coupling
and pump laser beams, respectively, and an expanded signal
field is launched into the dual optical lattices. We study the
features of integer and fractional Talbot effects in such a gain-
loss modulated optical lattice platform and electromagneti-
cally induced transparency (EIT) optical lattice, in addition to
the visibilities of Talbot images from the same optical lattices.
This work provides additional insights into the experimental
observations of the Talbot effects in the gain-loss modulated
optical lattices established in coherent atomic systems.

II. MODEL

We consider a four-level N-type atomic system as shown
in Fig. 1(a). It consists of two hyperfine states F = 2 (level
|1〉) and F = 3 (level |2〉) of the ground state 5S1/2 and two

2469-9926/2021/103(6)/063516(6) 063516-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8727-2292
https://orcid.org/0000-0002-0718-9518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.063516&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1103/PhysRevA.103.063516


FENG, ZHANG, AND XIAO PHYSICAL REVIEW A 103, 063516 (2021)

�

�

�

�� �
�

FIG. 1. (a) The energy-level diagram of the four-level N-type
configuration in 85Rb atomic vapor. (b) The spatial arrangement of
the signal, coupling, and pump fields inside the atomic medium.
(c) Schematic of the interfering wave fronts of the two coupling
beams Ec and E ′

c. x and z represent the transverse and longitudinal
directions of propagation, respectively.

excited states 5P1/2 (level |3〉) and 5P3/2 (level |4〉). The signal,
coupling, and pump fields drive the atomic transitions |1〉 ↔
|3〉, |2〉 ↔ |3〉, and |1〉 ↔ |4〉, respectively. The coupling field
consists of two laser beams that propagate at an angle 2θ

symmetrically with respect to the z direction as shown in
Fig. 1(c). When they intersect, a standing wave is generated
in the rubidium cell along the x direction with a spatial period
d = λc/2 sin θ , where λc is the wavelength of the coupling
beam. Similarly, two pump beams, overlapped with the two
coupling beams, enter the cell at the same angle 2θ to form
the periodic pump field. The expanded signal beam propagates
in the z direction covering the two sets of optical lattices, as
shown in Fig. 1(b).

Under the rotating-wave approximation, the density-matrix
equations for the four-level N-type atomic system are given
by [44]

ρ̇22 = �42ρ44 + �32ρ33 − �21ρ22 + i

2
(ρ32 − ρ23)�c, (1a)

ρ̇33 = �43ρ44 − �32ρ33 − �31ρ33

+ i

2
[(ρ23 − ρ32)�c + (ρ13 − ρ31)�s], (1b)

ρ̇44 = −(�43 + �42 + �41)ρ44 + i

2
(ρ14 − ρ41)�p, (1c)

ρ̇21 = −γ̃21ρ21 + i

2
(ρ31�c − ρ24�p − ρ23�s), (1d)

ρ̇31 = −γ̃31ρ31 + i

2
[ρ21�c − ρ34�p + (ρ11 − ρ33)�s], (1e)

ρ̇41 = −γ̃41ρ41 + i

2
[−ρ43�s + (ρ11 − ρ44)�p], (1f)

ρ̇32 = −γ̃32ρ32 + i

2
[ρ12�s + (ρ22 − ρ33)�c], (1g)

ρ̇42 = −γ̃42ρ24 + i

2
(ρ12�p − ρ43�c), (1h)

ρ̇43 = −γ̃43ρ43 + i

2
(ρ13�p − ρ42�c − ρ41�s), (1i)

where �s = μ13Es/h̄, �c = μ23Ec/h̄, and �p = μ14Ep/h̄ are
the Rabi frequencies corresponding to the signal, coupling,
and pump fields, respectively, and μi j is the dipole moment
between levels |i〉 and | j〉. �i j is the decay rate between levels
|i〉 and | j〉, and γi j = (�i + � j )/2 is the decoherence rate.
γ̃21 = γ21 − i(	s − 	c), γ̃31 = γ31 − i	s, γ̃41 = γ41 − i	p,
γ̃32 = γ32 − i	c, γ̃42 = γ42 − i(	c + 	p − 	s), γ̃43 = γ43 −
i(	p − 	s). 	s = ωs − ω31, 	c = ωc − ω32, and 	p = ωp −
ω41 are the frequency detunings of the signal, coupling,
and pump fields, respectively. The susceptibility of the
atomic medium can be obtained through the expression χ =
2Nμ13

ε0Es
ρ31. Given that n = √

1 + χ ≈ 1 + χ/2, χ = χ ′ + iχ ′′,
and n = n0 + nR + nI , the real and imaginary parts of the
refractive index can be written as nR ≈ 1

2χ ′ = Nμ13

ε0Es
Re(ρ31)

and nI ≈ 1
2χ ′′ = Nμ13

ε0Es
Im(ρ31). Here, n0 = 1 is the background

index of the atomic medium.

III. CONSTRUCTIONS OF A PT -SYMMETRIC OPTICAL
LATTICE AND A CONVENTIONAL EIT

OPTICAL LATTICE

We begin by considering the realization of a PT -
symmetric optical lattice. By solving the coupled equations
in Eq. (1) numerically under properly chosen parameters,
one can obtain the real (dispersion) and imaginary (gain or
absorption) parts of the susceptibility versus the transverse
position x as shown in Figs. 2(a) and 2(b) [40,42]. The fact
that the real and imaginary parts of the susceptibility are
even and odd functions with respect to the position x and
the relationship of nR ≈ 1

2χ ′ and nI ≈ 1
2χ ′′ indicates that the

condition n(x) = n∗(−x) is approximately satisfied, meaning
that the PT -symmetric structure with alternating gain and
loss waveguides can be established in such an atomic config-
uration. To achieve the exact PT -symmetric condition in the
current scheme, the values of the real part of the susceptibility
versus 	s at �p = 0 and �p �= 0 must be the same, while the
corresponding imaginary parts must have the same absolute
value but opposite signs. In our calculation, we only found
one signal frequency detuning 	s = −2π×15.05 MHz which
can make this condition satisfied. Thus, this PT -symmetry
condition cannot be easily obtained without specially selected
parameters.

When the pump beams are absent, the atomic system
becomes a traditional three-level �-type EIT configuration
[45,46]. The induced optical lattice established by the in-
terference of the pair of coupling beams is referred to as a
conventional EIT optical lattice. The numerically calculated
real and imaginary parts of the susceptibility versus the trans-
verse position x under specially chosen parameters are shown
in Figs. 3(a) and 3(b). One can see that both of them are
even functions of x. There is no Raman gain in this simple
configuration because the imaginary part of the susceptibility
is always greater than 0.

IV. TALBOT EFFECTS INDUCED IN A PT -SYMMETRIC
OPTICAL LATTICE AND A CONVENTIONAL

EIT OPTICAL LATTICE

The propagation dynamics of the signal field within the
cell obeys the Maxwell’s equation, and its transmission at the
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FIG. 2. (a) Real and (b) imaginary parts of the susceptibility for
a signal field as a function of position x with the coupling and pump
intensities spatially modified. N = 1013 cm−3, �s = 2π×10 MHz,
�c = 2π×0.2[1 + cos(πx/d )] MHz, �p = 2π×6 MHz in the gain
region and �p = 0 in the loss region, 	p = 40 MHz, 	c =
−100 MHz, and 	s = −2π×15.05 MHz. d is the periodicity of the
coupling and pump fields.

output surface is

Es(x, L) = Es(x, 0) exp(−ksχ
′′L/2) exp(iksχ

′L/2), (2)

where χ ′ and χ ′′ are the real and imaginary parts of the
susceptibility χ , respectively, ks = 2π/λs, Es(x, 0) is the input
signal profile, and L is the length of the cell.

Using the Fresnel-Kirchhoff diffraction integral, the output
signal field Es at a distance z from the output surface of the
medium is proportional to [47]

Es(X, z) ∝
∫ ∞

−∞
Es(x, L) exp

[
iks

(
z+ x2

2z
− xX

z
+ X 2

2z

)]
dx,

(3)

where x and X are the coordinates in the object and observa-
tion planes, respectively. Because of the periodicity of χ in

FIG. 3. (a) Real and (b) imaginary parts of the susceptibility for
a signal field as a function of position x with only the spatially
modulated coupling field turned on to connect a three-level system.
Relevant parameters are the same as in Fig. 2 except �p = 0. d is the
periodicity of the coupling field.

Figs. 2 and 3, Es(x, L) can be recast into a Fourier series,

Es(x, L) =
+∞∑

n=−∞
Cn exp(i2πnx/d ), (4)

where Cn = 1
d

∫ d
0 e−ksχ

′′L/2eiksχ
′L/2e−i2πnx/d dx is the coeffi-

cient of the nth harmonic field. By substituting Eq. (4)
into Eq. (3) and completing the integral, we can obtain the
traditional Talbot effect described by [47]

Es(X, z) ∝
+∞∑

n=−∞
Cn exp(−iπn2z/zT ) exp(i2πnX/d ), (5)

where zT = d2/λs is the Talbot length, d is the spatial period
along the transverse direction, and λs is the wavelength of the
signal field.

According to Eq. (5), the signal transmission with a dis-
tance of mzT can repeat the field amplitude at the output
plane of the cell with and without a shifted half period d/2
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FIG. 4. Normalized intensity distributions of the diffracted signal
field at various propagation distances within two spatial periods
under (a) the four-level N-type configuration and (b) the three-level
EIT configuration at z = 0, z = zT /4, z = zT /2, z = 3zT /4, z = zT ,
z = 5zT /4, z = 3zT /2, z = 7zT /4, z = 2zT . λs = 794.97 nm, ks =
2π/λs, and d = 114 μm. L = 2.5 is given in the units of ksd2. The
optical detunings used are the same as the ones in Fig. 2.

for odd and even integers m, respectively. Moreover, the frac-
tional Talbot images appear at all rational multiples of zT , i.e.,
z = (p/q)zT , where p, q are positive integers, p < q.

Figures 4(a) and 4(b) give typical transverse profiles of
the normalized intensity of the diffracted signal wave under
the four-level N-type configuration and the three-level EIT
configuration at distances z = (p/4)zT (p = 0, 1, 2, . . . , 8)
from the output surface of the medium. Figure 4(a) shows
that the intensity of the diffracted wave can be substantially
larger (i.e., 107) than the intensity of the input signal beam.
This intensity increase is caused by the gain channels in the
PT -symmetric optical lattice. For fractional Talbot planes,
the field amplitude and periodicity of the image undergo sig-
nificant changes. The diffraction pattern is periodic but its
intensity no longer replicates the amplitude at the output of the
cell. The transverse profile at each fractional Talbot distance
displays a distinct pattern and the period of the fractional
Talbot image is always smaller than that of the integer Talbot
image pattern. One can also see that the maximum intensity

FIG. 5. Normalized intensity distributions of the diffracted signal
field at various propagation distances within two spatial periods un-
der the four-level N-type configuration. z = 0, z = zT /4, z = zT /2,
z = 3zT /4, z = zT , z = 5zT /4, z = 3zT /2, z = 7zT /4, z = 2zT when
(a) gain/loss = 3.17 and (b) gain/loss = 0.22, respectively. Other
parameters are the same as in Fig. 4.

of the fractional Talbot images is always smaller than that of
the integer Talbot images under this PT -symmetric condition.
From Fig. 4(b) we can see the intensity of the diffracted
signal wave is decreased due to residue absorption of the
medium under the three-level EIT configuration. In this case,
the fractional Talbot images are noisier, mainly due to the lack
of gain channels in the EIT optical lattice which reduces the
visibility of the Talbot images (see more discussions below).
In addition, the periods for the fractional Talbot images are
smaller as compared to the period for the integer Talbot im-
ages, which is consistent with the experimental observation
reported previously [21,22].

As mentioned before, the PT -symmetry condition, that
is, balanced gain and loss (gain/loss = 1), is not a common
scenario. To complement, we have studied the Talbot effects
for unbalanced gain and loss cases (gain/loss �= 1), namely,
quasi-PT -symmetric cases [48,49]. Figures 5(a) and 5(b)
exhibit the transverse profiles of normalized intensity of the
diffracted signal wave under the four-level N-type configu-
ration at distances z = (p/4)zT (p = 0, 1, 2, . . . , 8) from the
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FIG. 6. Visibility comparisons of the Talbot images for the
conventional EIT optical lattice, PT -symmetric optical lattice,
and quasi-PT -symmetric optical lattices (for gain/loss = 3.17 and
gain/loss = 0.22, respectively) as a function of propagation distance
within one Talbot length.

output surface of the medium when gain/loss = 3.17 and
gain/loss = 0.22, respectively. In our numerical simulations,
we only allow the frequency detuning of the signal field to
change such that the ratio of gain to loss varies along with the
changing frequency detuning of the signal field. The value of
gain/loss = 3.17 can be obtained when the signal frequency
detuning is set to 	s = −2π×15.25 MHz, and gain/loss =
0.22 can be obtained at 	s = −2π×14.80 MHz. In Figs. 5(a)
and 5(b), one can see that the intensity of the diffracted sig-
nal wave increases for both cases, i.e., gain/loss = 3.17 and
gain/loss = 0.22, and when gain/loss = 3.17, the intensity in-
creases more. This indicates that a larger gain can give rise
to a greater intensity. On the other hand, the periods of the
fractional Talbot images are always smaller than that of the
integer Talbot images, and distinct image patterns occur at the
same fractional Talbot distances under the two conditions (i.e.,
gain/loss > 1 and gain/loss < 1).

From Figs. 4 and 5, one can see that the Talbot lengths for
the PT -symmetric optical lattice, conventional EIT optical
lattice, and quasi-PT -symmetric optical lattices (gain and
loss are not balanced) are the same, in line with the result
reported in Ref. [50]. There is a half-period shift with respect
to the output profile of the signal field at the first Talbot
length for all cases. This is in agreement with the prediction
from Eq. (5). The periods of the fractional Talbot images at
distances z = 1

2 zT and z = 3
2 zT are the same, to be half the

period of the integer Talbot images for all the optical lattices,
supported by the theoretical calculation.

The intensity visibilities, defined as visibility = (Imax −
Imin)/(Imax + Imin), of the fractional Talbot images are likely
to provide additional information about the coherent atomic
medium; thus, we examined the intensity visibilities for the

conventional EIT optical lattice, PT -symmetric optical lat-
tice, and quasi-PT -symmetric optical lattices (gain/loss =
3.17 and gain/loss = 0.22, respectively) as shown in Fig. 6.
It is clear that the intensity contrast (visibility) for the PT -
symmetric optical lattice and quasi-PT -symmetric optical
lattices is higher than that for the conventional EIT optical
lattice at most of the propagation distances. When the ratio
of gain to loss is greater, the visibility would be better at
most of the propagation distances. For this reason, we can
obtain an improvement of the intensity contrast of the Talbot
images by employing a medium with gain. In other words, the
introduction of the gain which exists in the four-level N-type
atomic system would make it easier to observe the fractional
Talbot images. Collectively, our scheme offers a nondestruc-
tive way to image ultracold atomic gas samples [20]. In this
study, the signal refers to the intensity of the bright fringe, that
is, Imax in the definition of visibility, and the noise denotes
the intensity at the dark fringe, i.e., Imin in the definition of
visibility. The signal-to-noise ratio of the Talbot images can
increase by improving the visibility and contrast of the Talbot
images, therefore allowing more accurate information about
the density distribution and other coherent properties of the
ultracold atomic gas samples.

V. SUMMARY

We have investigated the integer and fractional Talbot ef-
fects induced in a PT -symmetric optical lattice, conventional
EIT optical lattice, and quasi-PT -symmetric optical lattices.
The intensity of the diffracted signal wave from the PT -
symmetric optical lattice and quasi-PT -symmetric optical
lattices can be substantially increased due to the gain channels
in the optical lattices, while for the conventional EIT optical
lattice, the intensity of the diffracted wave is decreased be-
cause of the absorption in the optical lattice. The visibilities
of the fractional Talbot images from the PT -symmetric opti-
cal lattice and quasi-PT -symmetric optical lattices are larger
than that from the conventional EIT optical lattice for most
of the propagation distances. This increase of visibility can
be explained by the gain that exists in the four-level N-type
atomic system. Compared to the scheme used in Ref. [50], we
would like to emphasize that there is no intrinsic restriction
for the signal beam size in our proposed scheme. Considering
the inhomogeneous distribution of the atomic gas samples, we
believe that a proper beam size is essential for practical experi-
ments since more accurate information on atomic distribution
would be obtained via the output signal patterns when more
of the atomic cloud is covered by the signal beam. Any beam
size that is required to cover the entire atomic cloud should
be suitable for the current scheme. Considering the large Kerr
nonlinearity [51] that exists in this system, this research can
be extended to further study the features of the PT -symmetric
nonlinear Talbot effects.
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