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Catastrophic transition between dynamical patterns in a phonon laser
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The bifurcations or transitions of the classical nonlinear systems with finite degrees of freedom exhibit some
dynamical behaviors that are similar to those in the phase transitions of many-body systems. A dynamical
type of them in the form of a sudden transition of the amplitudes between two harmonic oscillations, which
are stable under periodically driving force, is not so common to see. We show that a sudden transition of
this type can be realized in a system of coupling a microresonator that supports a mechanical vibration to
another microresonator, and the system was experimentally demonstrated as a phonon laser. If the pump laser
power or the intercavity coupling strength is adjusted to a critical value, the cavity field patterns will suddenly
change, together with a jump of the stabilized mechanical amplitude. Such transition can be applied to a precise
measurement of the optomechanical coupling constant, which is hard to measure due to its proportion to a tiny
zero-point mechanical fluctuation amplitude.
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The phenomena bearing similarity to the phase transitions
of many-body systems exist in the few-body systems of non-
linear dynamics [1,2]. A particle moving in a potential with
two stable equilibria, for example, undergoes such transition
termed bifurcation when the two equilibria degenerate into
one due to varying a control parameter. Near the transition
point the perturbed particle takes a much longer time to re-
turn to equilibrium, a phenomenon known as critical slowing
down [3,4], which was observed with optical bistability [5,6]
and also exists in chaotic systems [7,8]. Nonlinear dynamical
systems can also stabilize on periodic orbits [1,9–20], and
the bifurcations involving such limit cycles of dynamical evo-
lutions were previously seen in mode-locked lasers [21,22],
nonlinear resonators [23,24], and lasers with feedback [25].
The most complicated bifurcations among them are those of
coexisting multiple limit cycles [26–29]. To a planar system,
for instance, a transition between two limit cycles is possible
only when one of them is unstable. Beyond the mathematical
understandings, the direct transitions between deterministic
orbits due to changing the system parameters have been rarely
encountered in the realistic classical or semiclassical sys-
tems with finite degrees of freedom. Except for a few recent
examples in the semiclassical context [30,31], the currently
ongoing research on nonequilibrium transitions mostly con-
cerns the driven open quantum systems or the hybrid systems
with atomic ensemble (see, e.g., [32–38]).
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Here we demonstrate that a special kind of transition
between two stable limit cycles is realizable in a system
illustrated in Fig. 1(a). An optical resonator can be slightly
deformed under the radiation pressure [39], to have its wall
stabilized in stationary oscillation when the external driving
field is blue-detuned [40–46]. By coupling this whispering-
gallery-mode microresonator μR1 to another μR2 that may
contain optical gain medium, the two coupled cavity field
modes can enjoy the parity-time (PT ) symmetry and the
system thus exhibits plenty of interesting properties [47,48].
The stimulated amplification of the mechanical oscillation on
μR1 can be realized under certain conditions, making a type of
phonon laser [49–55], which has been experimentally demon-
strated [49,56,57]. We here explore a previously unknown
phenomenon in the system—a sudden transition of the cavity
fields and mechanical oscillation due to varying the system
parameters.

The system in Fig. 1(a) has the following elements: (1)
the field in μR1 exerts a radiation pressure proportional to
the constant gm on the mechanical mode, while it linearly
couples to the field in μR2 with a coupling rate J; (2) relative
to μR1 with the damping rate κ = κe + κi (κe is the coupling
rate to the pump laser and κi the intrinsic cavity loss), the
pump laser with the amplitude E = √

κeP/(h̄ωl ) (P is the
laser power and ωl the laser frequency) has its detuning fixed
at the point � = ωc − ωl = −ωm; (3) inside μR2 with the
total damping rate γ , the optical gain g(t ) saturates from the
initial value g0 and at a speed indicated by the dimensionless
rate IS [58,59]. Then, in terms of the dimensionless quadra-
tures Xc,1(2) and Pc,1(2) of a cavity field, which contribute
to the field intensity I1(2) = 1

2 (X 2
c,1(2) + P2

c,1(2)) equivalent to
the cavity photon number, together with the dimensionless
mechanical displacement Xm [differed from the real one by
the factor

√
h̄/(mωm) determined by the effective mass m and
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FIG. 1. (a) A system of coupled microresonators similar to some
experimental phonon laser setups [49,56,57]. The mechanical motion
xm(t ) on μR1 stabilizes to an oscillation (an exaggerated view is
given here). The coupling strength J is adjustable by the gap distance
between μR1 and μR2. (b) The change of the stable cavity field
patterns due to a small increase from E = 1 837 165.781 145κ to
E = 1 837 165.781 146κ . The single-frequency pattern before the
transition is due to the optical gain, which makes I2 higher than I1

on both sides of the transition. The simulations are performed with
an initially static mechanical mode of Em(0) = 0. κt is the dimen-
sionless time scale. (c) The corresponding effect on the evolution
paths for the mechanical energy Em = 1

2 (X 2
m + P2

m ), a dimensionless
quantity equivalent to a phonon number. The used system param-
eters: gm = 2 × 10−6κ , ωm = 10κ , γ = 0.01κ , g0 = 2κ , IS = 1010,
γm = 0.01κ , and J = 0.3κ .

the mechanical frequency ωm] and dimensionless mechanical
momentum Pm, one has the following dynamical equations:

Ẋc,1 = −κXc,1 − gmXmPc,1 + JPc,2 +
√

2E cos(ωmt ),

Ṗc,1 = −κPc,1 + gmXmXc,1 − JXc,2 −
√

2E sin(ωmt ); (1)

Ẋm = ωmPm,

Ṗm = −ωmXm − γmPm + 1

2
gm

(
X 2

c,1 + P2
c,1

)
; (2)

Ẋc,2 = −γ Xc,2 + g0

1 + X 2
c,2+P2

c,2

2IS

Xc,2 + JPc,1,

Ṗc,2 = −γ Pc,2 + g0

1 + X 2
c,2+P2

c,2

2IS

Pc,2 − JXc,1, (3)

given in the reference frame rotating at the resonance
frequency ωc of μR1(2). The numerical simulations with
Eqs. (1)–(3) are performed with the system parameters scaled
with respect to the damping rate κ of μR1.

We start from a single microresonator μR1 (J = 0). If the
pump power goes up across a threshold, its supported mechan-
ical mode will stabilize to an oscillation (the initial phase is
chosen to be zero) [45]

Xm(t ) = A sin(ωmt ) + d (4)

with the amplitude A and a small displacement d under the
radiation pressure, instead of slowing down to a standstill.
Across this point of supercritical Andronov-Hopf bifurcation
for the mechanical mode, the cavity field quadrature will
become

Xc(t ) ∼
∞∑

n=−∞

{
κJn

( − gmA
ωm

)
(nωm + �)2 + κ2

E cos(nωmt )

+ (nωm + �)Jn
( − gmA

ωm

)
(nωm + �)2 + κ2

E sin(nωmt )

}
, (5)

with its harmonic components (n � 1) gradually appearing
with the continuous increase of the mechanical amplitude A
from zero, where Jn(x) is the Bessel function of the first
kind. Such a gradual change from a static cavity field inten-
sity to an oscillation spectrum of nωm is like a generalized
Neimark-Sacker bifurcation that brings about the extra fre-
quency components. However, this smooth transition will be
gone once another microresonator μR2 is coupled to μR1.
Then, as in Fig. 1(b), only a tiny pump power increase δP ∼
h̄ωlκ (in the order of picowatt if κ ∼ 100 MHz and ωl is
an optical frequency) across a certain point will lead to a
multifrequency cavity field, which is much stronger than the
single-frequency one induced by the optical gain before the
transition. Meanwhile, as shown in Fig. 1(c), the mechanical
mode initially with Em(0) = 0 will evolve to an orbit with
〈Em〉 ≈ 9.4 × 1013, higher than the one with 〈Em〉 ≈ 7.2 ×
1011 before the transition.

A model of three coupled oscillators, respectively repre-
senting the cavity and mechanical modes, abstracts the setup
in Fig. 1(a). One of the oscillators (μR1) interacts with the me-
chanical one through the cubic potential − 1

2 gmXm(X 2
c,1 + P2

c,1)
and couples to another oscillator (μR2) through the quadratic
potential J (Xc,1Xc,2 + Pc,1Pc,2). The former interaction pro-
portional to the small constant gm is enhanced by the pump
field with the amplitude E [39–46,60]. The dominance of the
latter in the limit of large J reduces the system to a linear
coupler with negligible optomechanical interaction. The bal-
ance of these two competing factors will be tipped if E or J
goes across a critical value, to give rise to a sudden transition
depicted in Figs. 1(b) and 1(c).

Because the dynamical evolutions of the three parts of
the coupled system proceed together, one can see the overall
picture from a subsystem. The resonance effect of the cavity
field component with the frequency ωm leads to a simple
form of the stabilized mechanical motion in Eq. (4), so it is
convenient to follow the mechanical oscillator for the purpose.
To this model of dynamical system, the mechanical oscillator
can be hit at t = 0, to gain the different initial conditions
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FIG. 2. (a) The evolved time-average mechanical energy under
a fixed cavity coupling J = 0.3κ , for two different values of Em(0).
(b) The evolved time-average mechanical energy under the condition
gmE = 10κ2, for the same values of Em(0) in (a). (c1) The distribu-
tion of the evolved time-average mechanical energy from Em(0) = 0.
(c2) The changed distribution of the sudden transition boundary due
to Em(0) = 1014. The fixed parameters are the same as those in Fig. 1.

as those displayed in Fig. 1(c), which can make the sudden
transition occur at different critical values Ec. One example
is in Fig. 2(a): the oscillator with Em(0) = 1014 evolves to
a higher orbit at point C, where the pump drive amplitude
is lower than that at point B, the transition point under the
condition Em(0) = 0; the comparison is seen more clearly
from the evolved mechanical energy distributions in Figs.
2(c1) and 2(c2), where point B and point C are on the different
boundaries of sudden transition. Point B is a limit point where
the oscillator under any initial condition must evolve to the
higher orbit, which is detectable by the corresponding cavity
field pattern. The arrowed trajectory without lagging behind
toward point D indicates that the evolution from a fixed initial
condition does not display a hysteresis in the parameter space.

The orbits at any J �= 0 inherit the stability of the limit cy-
cles from a supercritical Andronov-Hopf bifurcation at J = 0
[the part above point “X” in Fig. 2(c1)]. Such stability can be
also seen from the equation

δẌm + γmδẊm + ω2
mδXm = gmωmδI1 (6)

governing the behavior of a small deviation from a mechanical
orbit. δXm responding linearly to δI1 will not diverge unless
the field intensity in μR1 suddenly jumps to a higher value.

From the left side of Fig. 2(b) there comes a trajectory of the
stable orbits from the unique stable limit cycle at J = 0. It
splits into two parts with a sudden transition when J reaches
the value at point “E,” from which all those with the initial
energy Em(0) < 1.6 × 1011 will evolve to the lower stable
orbit. In the parameter space such splitting of the orbit occurs
on the diagonal boundary in Fig. 2(c1). The required initial
mechanical energy Em(0) for maintaining on the higher orbit
goes up quasilinearly with J , as shown in the inset of Fig. 2(b),
so that the higher one will gradually disappear where the
two microresonators are strongly coupled. Across point F in
Fig. 2(b), another sudden transition turns the oscillating pat-
tern induced by the optical gain [58,59] into a static pattern for
Em, and the boundary on which the point locates is delineated
by a black curve in Fig. 2(c1).

Our concerned sudden transition between two stable orbits,
both of which are equivalent to the form in Eq. (4), resembles
the catastrophic bifurcations between two stable equilibria [4].
However, in addition to the fact that an unstable equilibrium
also exists in a catastrophic bifurcation, the location of the
transition, as exemplified by the sudden jump boundaries in
Figs. 2(c1) and 2(c2), is relevant to the system’s initial con-
dition. To such a nonlinear coupler under external driving, its
limit cycles in the phase space are determined by the system
parameters, but whether the higher orbit can be reached on the
right side of the diagonal boundary in Fig. 2(c1) depends on
its initial energy. The existing initial condition should be con-
sidered in an experiment of slowly varying the pump power
toward the transition point.

A phenomenon of critical slowing down associated with
the sudden transition distinguishes it from those due to
crossing the exceptional points (somewhere the system’s
eigenstates have a qualitative change) [61–64] of the PT -
symmetric systems of coupled cavities. To capture the
essential features, we simply look at the phenomenon without
optical gain, like the phonon laser setups reported in Refs. [49]
and [57]. The numerical simulations displayed in Figs. 3(a1)
and 3(a2) show the different critical behaviors at J �= 0 from
those near the Andronov-Hopf bifurcation at J = 0. From the
same distance E − Ec < 0 before a transition point, the slow-
ing down is intensified by the coupling with μR2. However,
across the transition point to E > Ec, the tendency is reversed
and the finally evolved orbits for the different E become very
close to each other, indicating a distinction of the sudden
transition from a gradual increase of the limit cycle size at
J = 0. Two critical exponents η and δ quantify the altered
critical dynamics by μR2, to have the power laws

tst ∼ (Jc − J )−η (J < Jc),

td ∼ (J − Jc)−δ (J > Jc) (7)

for the evolution timescales toward stability, where tst is the
time for the system to stabilize, and td for the field intensities
to decay to e−1 of the maximum indicates the evolution speed
on the other side of the transition (the practice is similar to the
one in Ref. [8]). The linear relations between log(κtst (d ) ) and
log |(J − Jc)/Jc|, obtained from the numerical calculations
with some different Jc as in Figs. 3(b1) and 3(b2), give the
exponents η = 0.901 and δ = 0.964 as the slopes.
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FIG. 3. (a1),(a2) The comparison of the critical slowing-down
tendencies between those of a single-cavity setup with J = 0 and
a two-coupled-cavity setup with J = κ . The multimode pattern for
Em(t ) at J = κ is due to the large optomechanical force that renders
the small displacement d in Eq. (4) time dependent. The evolutions
are from a static initial condition and with the system constants
in Fig. 1 except that g0 = 0. (b1),(b2) The numerically obtained
relations for determining the critical exponents.

In the situation of J = 0, there is a previously discovered
scenario of sudden transition from a static steady state (A = 0)
to a stable oscillation (A �= 0) around the blue-detuned side-
bands � = −2ωm,−3ωm, etc. [65], which is connected with
the possible existence of the multiple attractors of dynamics in
the regime [43]. With the currently applied system parameters,
for example, such a transition at � = −2ωm requires a driving
power equivalent to gmE/κ2 ≈ 21. A special mechanism of
the coupled cavities is to shift the sudden transition to near
point X in Fig. 2(c1), where gmE/κ2 ≈ 1, thus significantly
altering the critical dynamics by very weak coupling between
two microresonators. Another similar phenomenon is when
a single-cavity optomechanical system is under an extremely
strong driving field of resonance (ωl = ωc) or two fields
with the matched frequencies (ωl,1 = ωc − ωm and ωl,2 = ωc)
[66]. A tiny pumping power change in this case can cause
the transition between two frozen mechanical orbits, but the
transition, which becomes sensitive to the initial state of the
system, belongs to a different category since there is no
slowing-down behavior around the transition points.

There is an interesting observation on the dynamical evo-
lutions without optical gain (g0 = 0)—for the systems only
differed by gm, their dynamical evolution courses are similar
under the condition gmE = constant [67]. This rule of evo-
lution applies to our concerned transition in that the transition
point is determined by the product gmEc. If μR1 is replaced by
another microresonator with a different gm, the transition can
still be realized by modifying the critical drive amplitude Ec

FIG. 4. (a) The transition locations in terms of gm and Ec. The
equations of the three curves (from the left to the right): gmEc =
1.5κ2, 2.0κ2, and 2.5κ2. The straight lines in the inset: gmEc/κ

2 =
12.1Jc/κ + 0.094 (pink), gmEc/κ

2 = 6.415Jc/κ + 0.4156 (green),
and gmEc/κ

2 = 26.49Jc/κ + 1.773 (black). At low J/κ , there are
small deviations of such straight lines from the values of the product
gmEc/κ

2. These relations are obtained with g0 = 0. (b1),(b2) An
example of discriminating two close values of the constant gm. In
a single cavity almost no difference exists in the field intensity Ic,
but their field patterns will separate simply by coupling to another
microresonator as in (b2). To show the clearer oscillation patterns,
we here include the optical gain among the used system parameters
from Fig. 1.

so that gmEc keeps invariant. The locations for the transition
are thus summarized in Fig. 4(a) as the equation

gmEc/κ
2 = A(ωm)Jc/κ + B(ωm) (8)

obtained from Em(0) = 0, where A(ωm) and B(ωm) are the
coefficients. Within a certain range of the gain rate g0 and sat-
uration rate IS , the above relation holds approximately valid in
the presence of the optical gain, so that the transition boundary
in Fig. 2(c1) well fits into a straight line.

The optical gain in μR2 influences the system dynamics
in some other aspects. Generally the saturated optical gain
induces the field and mechanical oscillation before reaching
the driving power for the concerned sudden transition. As a
type of extra nonlinearity, the gain saturation interplays with
the other factors and gives rise to more transition such as the
one across point F in Fig. 2(c1), which is nontrivial. Moreover,
the gain saturation speeds up the stability of the dynamical
evolutions around the sudden transition point, modifying the
slowing-down behaviors in the critical regime.

A useful application of the sudden transition is to measure
the optomechanical constant gm = xZPF ωc/R, with R being
the cavity size. This parameter, which is proportional to a tiny
zero-point fluctuation amplitude xZPF = √

h̄/(mωm), used to
be measured by detecting a noise spectrum [74]. The linear
relation between gmEc and Jc in Eq. (8) allows a more simpli-
fied measurement of gm by finding the critical amplitude Ec,
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which is possible by a fine-tuning of the pump laser power.
Figures 4(b1) and 4(b2) provide an example that gm can be
ascertained to a precision of 10−8κ . A tiny difference between
two close values of gm is magnified in the corresponding
quantities of gmE , which can locate on the different sides of
a sudden transition, given a fixed coupling J to the second
microresonator.

So far we have presented the main features of a dynamical
transition in the setup illustrated in Fig. 1(a). To this coupler,
a catastrophic drop of the cavity field intensities will suddenly
manifest, if the distance between the two microresonators is
reduced to a critical value. On the other hand, the field inten-
sities will suddenly go up, together with the emergence of the
high harmonic field components, when the pump laser power
is increased to a certain value from zero. These observable
phenomena correspond to a jump between two stable oscil-

lations of the mechanical mode, which undergoes a sudden
change of its amplitude. Two slightly coupled microresonators
make such transition take place under the lowered pump
power. Interestingly the transition under the given system
parameters can be affected by the initial condition. The se-
tups previously made for a type of phonon laser can be
developed into a platform to study the rich critical behav-
iors of such constantly oscillating system and their potential
applications.
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