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The entanglement produced by a bilinear Hamiltonian in continuous variables has been thoroughly
studied and widely used. In contrast, the physics of entanglement resulting from nonlinear interaction
described by partially degenerate high-order Hamiltonians remains unclear. Here, we derive a hierarchy of
sufficient and necessary conditions for the positive-partial-transposition separability of bipartite nonlinear
quantum states. The proposed criteria detect the nonpositive-partial-transposition inseparability of higher-
order moments of states, which provides a systematic framework for the characterization of this kind of
entanglement. Through numerical simulation of cubic and quartic Hamiltonians, we demonstrate the
existence and competition of a hierarchy of entanglement witnesses, revealing the mechanism underlying
such entanglement. Our results may provide a new direction in continuous variable quantum information
processing.
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A system of two spatially separated quantum particles
with maximally correlated momenta and maximally anti-
correlated positions is the basis of the thought experiment
on the nonlocality of quantum mechanics proposed by
Einstein, Podolsky and Rosen in 1935 [1]. This innocent
idea gave rise to the concept of quantum entanglement
which underpins all current development of quantum
technologies [2]. Entanglement stands today as a physical
resource and its characterization is a primary task as its
unveiled properties have great importance for fundamental
studies [3,4] and deep impact on quantum information
protocols [5]. This characterization is based on well-
established criteria which provide various conditions and
require different experimental techniques to evaluate the
entanglement [6,7]. Determining the existence of entangle-
ment in the laboratory is nevertheless far from being
simple, especially for continuous variable systems which
involve physical quantities with a continuous spectrum of
values, like the position and momentum of particles or the
quadratures of the electromagnetic field.
Entanglement is nowadays created regularly in labora-

tories in different physical systems. Entangled electromag-
netic fields are, for instance, produced in parametric
amplifiers and oscillators whose dynamics is described
by a bilinear Hamiltonian ĤL ∝ â†b̂† þ H:c: [8,9]. The
generated states exhibit Gaussian statistics and their entan-
glement properties are completely characterized by the
covariance matrix [10]. Linear correlations as those of ĤL
produce linear entanglement. Using the Peres-Horodecki
criterion—or positive partial transposition (PPT) criterion
—[11,12], Simon derived separability inequalities for

Gaussian states whose violation provides a sufficient and
necessary condition for entanglement [13]. Other equiv-
alent but different forms of entanglement criteria involving
2nd-order moments were deduced in Refs. [14,15]. As an
extension of these works, a series of entanglement criteria
for multimode Gaussian states were proposed [16–21].
Gaussian states are out of the ordinary because of their
simple generation and manipulation, and their versatility in
quantum information protocols [10,22].
Entanglement can also be created in physical processes

described by high-order Hamiltonians such ĤN ∝ â†b̂†2þ
H:c:, for example [23], and where one of the operators
associated with the entangled modes appear at least at the
second power. The classical dynamics of such systems is
nonlinear and the quantum statistics of the generated modes
is non-Gaussian. Remarkably, it has been demonstrated that
non-Gaussian entangled states can further enhance the
performance of quantum information protocols, such as
improving the fidelity of teleportation [24,25] and quantum
cloning [26], and are also an indispensable component to
realize universal quantum computing [27–30]. Because of
the nonlinear dynamics nature of the interactions described
by high-order Hamiltonians, we refer throughout this Letter
to such non-Gaussian entanglement as nonlinear entangle-
ment [31] in order to distinguish it from the non-Gaussian
entanglement generated by interactions with bilinear
Hamitonians and non-Gaussian operations [32], not the
purpose of this Letter. The usual criteria relying on the
computation of the covariance matrix fails to detect such
nonlinear entanglement. Towards the generalized entangle-
ment verification, an infinite hierarchy of conditions based
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on PPTwere proposed in Refs. [33,34]. Although powerful,
there is a difficulty in practical application, i.e., how to select
an adequate condition to detect entanglement. Other non-
Gaussian entanglement criteria are based on uncertainty
relations of constructed special operators [35–37], the
entropic uncertainty relation [38,39], and the fidelity of
teleportation in quantum channels [40]. However some
of the proposed non-Gaussian inseparability criteria
[38–41] are not capable of detecting such nonlinear entan-
glement, while others are only sufficient conditions
[36,37,42]. So far no systematic framework has been
provided to study nonlinear entanglement, which leads to
its unclear physical connotation.
In this Letter, we propose a hierarchy of sufficient and

necessary conditions for the PPT separability of bipartite
nonlinear continuous variable quantum states spontane-
ously generated by the high-order Hamiltonians. The
criteria are applicable for all systems, however, in this
Letter we focus our analysis on optical systems and the
entangled states are optical modes generated in nonlinear
materials. The hierarchy originates from the non-Gaussian
statistics of nonlinear entangled states, suggesting that the
entanglement is jointly characterized by a set of higher-
order covariance matrices. Our conditions for nonlinear
entanglement are based on the PPT of these higher-order
covariance matrices. The proposed criteria allows us to
detect the non-PPT inseparability of high-order moments of
quantum states produced by a partially degenerate N-mode
spontaneous parametric downconversion (SPDC), which
provides a systematic framework for the study of nonlinear
entanglement. By numerically calculating the final states
undergoing the nonlinear interaction in the case of three-
and four-mode SPDC, we observe the coexistence and
competition among different orders of entanglement wit-
nesses, which further reveals the features of nonlinear
entanglement.
Let us start our analysis by considering a bipartite

nonlinear system described by the interaction Hamiltonian

Ĥkl
I ¼ iℏκâ†kb̂†lp̂þ H:c:; ð1Þ

with k, l ≥ 1 and kþ l ≥ 3. The annihilation operators â, b̂,
and p̂ describe, respectively, the two down-converted modes
A, B and the pump mode P. Let Alice and Bob be,
respectively, in possession of modes A and B. We define
the following nonlinear quadrature operators Q̂nk

A ¼
½ðâkÞn þ ðâ†kÞn�=2 and P̂nk

A ¼ i½ðâ†kÞn − ðâkÞn�=2 [Q̂nl
B ¼

½ðb̂lÞn þ ðb̂†lÞn�=2 and P̂nl
B ¼ i½ðb̂†lÞn − ðb̂lÞn�=2] forAlice’s

(Bob’s) subsystem, where n is a positive integer standing for
the hierarchy index. For simplicity, we take now n ¼ 1, but
the following derivations are general for any n. We gather
the nonlinear quadrature operators in the vector R̂kl ¼
ðQ̂k

A; P̂
k
A; Q̂

l
B; P̂

l
BÞT and write the generalized commutation

relations as

½R̂kl
i ; R̂

kl
j � ¼ iΩkl

ij ; ð2Þ

where Ωkl ¼ diagðJk; JlÞ and i; j ¼ 1;…; 4. Jm ¼
adiagðf̂m;−f̂mÞ is a generalized symplectic matrix that
depends on the number of quanta operators N̂A=B of the

involved modes, through the operators f̂m given in the
Supplemental Material [43].
Let us briefly discuss the physical properties in the case

of optical states generated by the Hamiltonians (1) with
different initial states. We consider the partially degenerate
three-mode SPDC described by H12

I . This Hamiltonian is
nonlinear as the operator b̂ is squared. However, if mode â
is seeded by a bright coherent state jγi, the Hamiltonian
under the parametric approximation can be rewritten as
H12

I ≃ iℏγ�καp b̂
†2 þ H:c:, where we have replaced â by the

classical complex amplitude γ, and where καp is the product
of the pump amplitude αp and κ. It describes single-mode
SPDC, where a pump photon is converted into two
degenerate photons. Conversely, if mode b̂ is seeded
by a bright coherent state jβi, then H12

I reduces to the
well-known bilinear Hamiltonian H12

I ≃ iℏβ�2καp â
† þ

2iℏβ�καp â
†b̂† þ H:c: In both seeding situations, we end

up with bilinear Hamiltonians. This indicates that seeding
alters the statistical properties of the modes—Gaussifies
them—and entanglement can be thus detected by Gaussian
criteria [44]. However, these criteria fail in the spontaneous
regime [31], which is the focus of this work.
We start our analysis, in analogy with the Gaussian states

case, by constructing the high-order covariance matrices Vkl

of quantum states whose dynamics is described by Ĥkl
I .

The elements of Vkl are defined as Vkl
ij ¼ hΔR̂kl

i ΔR̂kl
j þ

ΔR̂kl
j ΔR̂kl

i i=2, where ΔR̂kl ¼ R̂kl − hR̂kli and hR̂kli ¼
tr½R̂klρ̂�, with ρ̂ being the density operator of the system.
Hence from Eq. (2) we have Vkl

ij þ ihΩkl
iji=2 ¼ hR̂kl

i R̂
kl
j i−

hR̂kl
i ihR̂kl

j i. Vkl has an important operational meaning: the
entanglement of states produced from bipartite Hamiltonians
Ĥkl

I may be characterized jointly by a set ofVkl because of its
non-Gaussian nature.
For states initially in vacuum or thermal states hR̂kl

j i ¼ 0
[43]. These generated states fulfill the following compact
statement of the uncertainty principle

Vkl þ i
2
hΩkli ≥ 0: ð3Þ

Every physical state where hR̂kl
j i ¼ 0 must satisfy this

relation. The positivity of the density matrix ρ ensures the
validity of inequality (3).
We now apply the PPT criterion to higher-order covari-

ance matrices [11,12]. The necessary condition for sepa-
rability is that the partially transposed density matrix ρPT is
semi-positive definite. In continuous-variable language this
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criterion establishes that a local mirror reflection in the
phase space is a symmetry of separable states, such that a
separable state after a local mirror reflection should fulfill
an uncertainty relation like Eq. (3) [13]. A mirror reflection
on Bob’s subsystem exchanges the operators b̂ and b̂† such
that Q̂l

B → Q̂l
B and P̂l

B → −P̂l
B. In terms of the higher-order

covariance matrix this results in Ṽkl ¼ ΛBVklΛB, where
ΛB ¼ diagð1; 1; 1;−1Þ. Thus Ṽkl must satisfy the following
uncertainty relation

Ṽkl þ i
2
hΩkli ≥ 0: ð4Þ

All separable states must obey this restriction, and its
universality is stronger than inequality (3). Below, we
derive a more useful form based on invariants of higher-
order covariance matrices.
By definition Vkl is a symmetric matrix, and hence can

be written in block form

Vkl ¼
�

A C

CT B

�
; ð5Þ

where A and B are the higher-order covariance matrices of
the two subsystems corresponding, respectively, to Alice
and Bob, while C describes the correlation between them.
Inequality (3) implies that A ≥ ðfk=2Þ2 and B ≥ ðfl=2Þ2,
where fm ¼ tr½f̂mρ̂�. Williamson’s theorem and a suitable
singular value decomposition [14,45] allows us to write Vkl

in standard form [43]

V0 ¼

0
BBB@

a 0 c1 0

0 a 0 c2
c1 0 b 0

0 c2 0 b

1
CCCA: ð6Þ

The four local symplectic invariants related to V0 are
I1 ¼ detA, I2 ¼ detB, I3 ¼ detC and I4 ¼ detðV0Þ. The
standard form V0 enables to recast Eq. (3) in a unambigu-
ous form of local symplectic invariance

detðAÞ detðBÞ þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJkÞ detðJlÞ

p
− detðCÞ�2

− tr½ACBCT � ≥ − detðBÞ detðJkÞ − detðAÞ detðJlÞ: ð7Þ

We apply now a local mirror reflection transformation to
the standard form given by Eq. (6). The invariants I1, I2 and
I4 remain unchanged, while I3 ¼ detðCÞ flips signature.
The uncertainty relation (4) takes a form similar to Eq. (7),
but with a minus sign in front of I3. Therefore, any
separable state with higher-order covariance matrix Vkl

must obey not only the inequality (3), but also the more
rigorous uncertainty relation (4), which can be expressed as

detðAÞ detðBÞ þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJkÞ detðJlÞ

p
− j detðCÞj�2

− tr½ACBCT � ≥ − detðBÞ detðJkÞ − detðAÞ detðJlÞ: ð8Þ

Inequality (8), as an invariant under local symplectic
transformations, does not depend on the standard form
(6) and is the final form of the necessary condition for the
separable states represented by Vkl. It is also worth noting
that for states with detðCÞ ≥ 0, this relation is subsumed by
the inequality (7). In fact, inequality (8) is also a sufficient
condition for the PPT separability of Vkl. In order to show it
we formulate the following two lemmas involving the
inequalities (7) and (8):
Lemma 1.—The state represented by Vkl is separable if

detðVkl − F=2Þ ≥ 0, where F ¼ diagðfk; fk; fl; flÞ.
Lemma 2.—The state described by V0 with detC ≥ 0 is

separable.
These lemmas are demonstrated in the Supplemental

Material [43]. Lemma 1 establishes the sufficient condition
for the PPT separability of states represented by higher-
order covariance matrices Vkl, while Lemma 2 establishes
the correspondence between this sufficient condition and
the quantity detðCÞ, i.e., quantum states with detðCÞ ≥ 0
fulfill the condition of Lemma 1. These two lemmas enable
us to formulate the following theorem:
Theorem.—Inequality (8) is a sufficient and necessary

condition for the PPT separability of Vkl.
Proof.—We consider the two representative examples in

turn, detC ≥ 0 and detC < 0. If detC ≥ 0, inequality (8) is
absolutely satisfied because it is already covered by Eq. (7).
According to our Lemmas 1 and 2, Vkl is separable. There
are two possible scenarios here for the detC < 0. Once
inequality (8) is violated, Vkl is definitely entangled
because relation (8) is a necessary condition for separabil-
ity. If inequality (8) is respected and detC < 0, the locally
mirror reflected higher-order covariance matrix Ṽkl will
present detC > 0 due to the signature flip being thus a
separable state according to lemma 2. Since the partial
transposed separable state is still separable, this implies the
separability of the original state. This completes the proof
of the theorem.
This hierarchy of conditions is based on the PPT

criterion which does not detect bound entanglement, i.e.,
nondistillable entanglement. Although this effect is rare for
continuous variables, as shown in Ref. [46], it can indeed
be observed not only for Gaussian states [47], but even for
non-Gaussian states [16]. Note that detecting bound entan-
glement by a finite number of moments is a hard task even
for finite-dimensional systems [48].
Now, regarding nonlinear entanglement, we have the

following result: It is sufficient and necessary to confirm
the non-PPT entanglement of a nonlinear bipartite state ρ̂
jointly characterized by a series of higher-order covariance
matrices Vkl if one of them violates inequality (8). This
statement is the main result of the Letter.
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Inequalities (4) and (8) are equivalent statements and
constitute the PPT criterion at the higher-order covariance
matrices level. Thus the violation of S̃kl ≥ 0 with S̃kl ≡
Ṽkl þ iΩkl=2 is also a sufficient and necessary condition of
non-PPT entanglement. It can be rewritten as

ν̃kl− < 0; ð9Þ

with ν̃kl− ≡minðν̃klÞ and where ν̃kl are the symplectic
eigenvalues of S̃kl. Remarkably, a hierarchy of entangle-
ment witnesses ν̃ðnkÞðnlÞ− is derived from inequality (9) for
n ≥ 1. This hierarchy is characterized by the index n, which
defines the order of the nonlinear correlations.
Next, let us verify the validity of the proposed criteria

and compare it with another criterion, in particular, the
Nha-Zubairy inequality [37]. We first consider the partially
degenerate three-mode SPDC that has been recently
observed in a superconducting circuit [23]. Using the
Hamiltonian Ĥ12

I , the master equations are solved numeri-
cally to deduce the final state of system at time t considering
that the initial state is vacuum for the triplets and a coherent
mode αp for the pump [49]. The Nha-Zubairy inseparability

condition can be expressed as NZ ≡ hΔ2L̂1Δ2L̂2i −
hN̂B þ 3=4i2 − hΔL̂1ΔL̂2i2 < 0 for the triple-photon state,
where L̂1 ¼ Q̂1

A − Q̂2
B and L̂2 ¼ P̂1

A þ P̂2
B. The evolution of

NZ versus ξ ¼ κtαp is shown in Fig. 1(a). We see that the
value of NZ is lower than 0 when ξ ≤ 0.3, indicating that
parties A and B are entangled.
The lowest-order separability condition related to Ĥ12

I is
S̃12 ≥ 0 (hierarchy index n ¼ 1). In Fig. 1(a), we show the
evolution of ν̃12− . The nonlinear entanglement condition (9)
is fulfilled along a wide range of ξ. Note that our criteria has
a wider detection range in comparison with the Nha-Zubairy
condition. Interestingly, the entanglement disappears if
ξ ≥ 1. However, from the perspective of the density matrix
ρAB, the entanglement increases with the increase of inter-
action strength [31]. This proves that the V12 only describes
part of the correlated information carried by ρAB. Therefore
we construct the higher-order covariance matrices V24 and
V36, respectively, with the corresponding separability con-
ditions S̃24 ≥ 0 (n ¼ 2) and S̃36 ≥ 0 (n ¼ 3). Figure 1(b)
shows the evolution of ν̃12− , ν̃24− and ν̃36− versus ξ. The
entanglement appears from lower- to higher-order covari-
ance matrices in sequence as the interaction time increases.
More importantly, the hierarchy of entanglement between
modes A and B coexists over a considerable parameter
interval. There could be even higher-order (n > 3) entangle-
ment that we have not considered.When ξ ≥ 1, the 3rd-order
entanglement between modes A and B disappears, and the
entanglement transitions to higher-order correlations char-
acterized by 6th- and 9th-order covariance matrices.
As another example of nonlinear entanglement, we

consider the four-mode SPDC described by Ĥ13
I . For such

a state, we construct the higher-order covariance matrices
V13, V26, and V39. The separability conditions correspond-
ing to inequality (4) are, respectively, S̃13 ≥ 0 (n ¼ 1),
S̃26 ≥ 0 (n ¼ 2), and S̃39 ≥ 0 (n ¼ 3). The evolution of ν̃13− ,

FIG. 1. (a) Comparison of the criteria proposed by Nha and
Zubairy and ours. ν̃12− is the minimum symplectic eigenvalue of
S̃12. (b) Evolution of ν̃12− (3th), ν̃24− (6th), and ν̃36− (9th) versus
interaction strength ξ with αp ¼ ffiffiffiffiffi

25
p

.

FIG. 2. Evolution of ν̃13− (4th), ν̃26− (8th), and ν̃39− (12th) versus ξ
with αp ¼ ffiffiffiffiffi

10
p

.
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ν̃26− , and ν̃39− are plotted in Fig. 2. The entanglement of
parties A and B is mainly carried in the 4th- and 8th-order
covariance matrices for small ξ. With the increase of the ξ,
the entanglement carried by the 4th-order covariance matrix
disappears, whereas the 8th and 12th order dominates. This
is significantly different from the non-Gaussian state
prepared by photon addition or subtraction based on the
two-mode SPDC, in which the entanglement of the 2nd-
order moments—Gaussian—always exists.
There are also other types of competition between the

1st- and 2nd-order coherence of quantum steerable states [50].
We note that the 1st-order coherence does not highlight
quantum properties of the field, thus the competition reported
in Ref. [50] may be widespread in entangled systems. The
separability criteria involving matrices of moments have been
derived in several Refs. [48,51]. Similarly, we utilize the PPT
criterion or other equivalent mappings, but the mechanisms
revealed and the detection method provided are completely
different. The matrix of moments composed of creation and
annihilation operators are measured by homodyne correlation
experiments and some of the criteria proposed in Ref. [48] are
originally derived from the Cauchy-Schwartz inequality, so
even the high-order entanglement criteria cannot reveal the
non-Gaussian nature of states. Reference [51] establishes a
direct connection between the negativity of the two-qubit state
and the higher-order moments. Other criteria based on
probabilities of arbitrary order can be directly applied to
photocounting experiments [52]. These criteriamay open new
avenues for nonlinear entanglement in discretevariable regime
because of their ease of operation. Our criteria are based on
high-order standardized moments measured by heterodyne
detection, such as coskewness and cokurtosis [43].
In summary, we proposed a hierarchy of sufficient and

necessary conditions for bipartite nonpositive-partial-
transposition entanglement applicable to all nonlinear
continuous variable systems described by high-order
Hamiltonians (1). This provides a systematic framework
for the study of this type of nonlinear entanglement.
Subsequently, we observed an interesting phenomenon
in nonlinear entangled states, that is, the coexistence and
competition between different orders of entanglement
witness. This naturally raises an open question: Can these
covariance matrices of different orders be used as inde-
pendent information encoding or high-dimensional quan-
tum channels in the continuous variable regime? We expect
that the proposed inseparability criteria will help exper-
imentalists to certify nonlinear entanglement features in
future experiments.
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