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Optimizing single-photon generation and storage with machine learning
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Single photons are at the heart of quantum information processing. The tasks of generating and storing
single photons with arbitrary wave-packet shapes are crucial for building quantum networks, but they remain
challenging. Here, we present a general machine learning (ML) algorithm with a self-adaptive process to
optimize the control of a cavity-atom system for these tasks. This ML algorithm shows high efficiency and
fidelity for both generation and storage of single photons. This ML-enhanced single-photon interface may pave
the way for building flexible and reliable quantum networks because this ML algorithm can automatically adjust
the quantum system according to single-photon wave functions in an “intelligent” way.
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I. INTRODUCTION

Quantum networks consisting of quantum computation and
memory nodes are of great significance for distributed quan-
tum computation and quantum communication [1–9], but they
rely crucially on the high-quality generation and memory of
single photons. Quantum networks can be realized with cavity
quantum electrodynamic (CQED) systems [10–12]. In this
CQED scenario, the key functional elements involve photon
generation and storage, i.e., mapping the quantum excitation
from an atom to a photon in the first CQED system, and then
to another atom in the second one.

Generation of single photons has been reported in vari-
ous quantum systems, such as single trapped atoms [13–15],
ions [16,17], single molecules [18,19], quantum dots [20–23],
and color centers in diamond [24,25]. When a CQED
system is driven by a laser pulse, a single photon with
a specific pulse shape can be deterministically gener-
ated [26–30]. To accomplish quantum information processing
with many photons, on-demand generation of a single pho-
ton with an arbitrarily controllable wave packet is highly
desired [31].

An outstanding challenge also exists in single-photon
storage. Quantum memory has been realized with vari-
ous methods, such as electromagnetically induced trans-
parency [32–36], a Raman process [37,38], magneto-optical
traps [39], or a chiral waveguide QED system [40]. Given
the temporal shape of the single-photon input into a CQED
system, previous theoretical models for quantum memory al-
low one to calculate the control laser pulse shape for storing
the single photon. However, the existing models mostly fo-
cus on specific CQED systems, and they require prerequisite
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conditions to derive analytical forms of control laser pulses
[27,41–43], therefore they lack generality. It is interesting to
develop a general method for storing a single photon with an
unknown arbitrary wave packet.

There are intense experimental and theoretical studies on
optimizing single-photon generation and storage of CQED
systems. Nevertheless, previous analytical and experimen-
tal methods can find an optimal control laser pulse only
for a specific system configuration in a special parameter
regime [27,41–44]. Machine learning (ML), due to its “intel-
ligent” nature, can provide a more general and flexible way to
accomplish this challenging task. ML has become a powerful
tool for quantum information science and technology [45],
including designing, optimizing, and controlling quantum sys-
tems [46], recognizing an optical mode [47], characterizing
quantum states [48], and reconstructing a quantum chan-
nel [49].

In this paper, we propose a general ML algorithm for on-
demand generation and efficient memory of a single photon
with an arbitrary wave packet in different CQED systems.
With this ML algorithm, the CQED systems can generate a
single photon with a demanded pulse shape, and they can also
store a single photon with an unknown wave function to a
single atom with varied energy-level structures.

This paper is organized as follows: In Sec. II, we first intro-
duce the scheme of single-photon generation and storage in a
typical �-type CQED system with one excited state. Then, we
take into account the full energy-level structure of the atom
to extend our CQED system to include multiexcited states.
Using these systems, we propose in Sec. III a ML algorithm
to obtain the control laser pulse that can realize on-demand
generation and efficient memory for a single photon with an
arbitrary wave packet. In the end, we apply in Sec. IV our
ML algorithm to previous CQED systems, and we show that
both systems can generate and store a single photon with an
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FIG. 1. Schematic of single-photon generation and storage for
a CQED-based quantum network. (a) The CQED-based quantum
network, showing the quantum information transfers from an atom
in one CQED node to an atom in another CQED node via single
photons. (b) Single-photon generation scheme with a �-type three-
level atom coupling to the cavity mode and driven by a control laser
pulse �. The atom has two ground states |u〉 and |g〉 and an optical
excited state |e〉. The states |0〉 and |1〉, respectively, represent the
zero- and one-photon states of the cavity mode. φout is the outgoing
wave function of the single photon emitted to the quantum channel.
(c) Schematic for single-photon storage with a three-level atom in a
cavity and driven by a control laser pulse. φin is the incoming wave
function of the input single photon to be stored. The control laser
pulses and the cavity mode are detuning from the atomic transitions
by �T and �s, respectively.

arbitrary wave packet. Section V contains a discussion of our
work and our conclusions.

II. SYSTEM AND MODEL

Among CQED systems, atoms with three-level structures
are widely used to achieve single-photon emission and ab-
sorption by coupling to optical cavities. Many efforts have
been made to theoretically obtain an optimal control field for
on-demand single-photon generation and storage in a typical
�-type CQED system [41,43,44]. However, schemes using
CQED systems in which atoms have more complex energy-
level structures have rarely been studied [41]. Below, we first
introduce a single-photon generation and storage scheme in a
�-type CQED system with an atom having only one excited
state. Then, we consider a more complex case in which the
atom has three excited states (3ES) in the CQED system. Us-
ing this 3ES-CQED system, we elaborate on its single-photon
generation and storage process.

A. �-type CQED system with one excited state

The schematic of single-photon generation and storage
setup in the CQED systems using a �-type atom with only one
excited state (1ES) is depicted in Fig. 1(a). It schematically
shows quantum information transfers from one CQED node to
another via single photons. The quantum information stored
in the atom in the first CQED node is first mapped into a
single photon through the photon generation step, and then

transferred into the second atom when the single photon is
stored in the second CQED node.

The CQED nodes for single-photon generation and storage
have the same configuration, namely a �-type atom with
one excited state coupling to a cavity, but they can have
different parameter values, as shown in Figs. 1(b) and 1(c),
respectively. In each CQED node, the cavity mode couples
to a �-type atom with the ground states |u〉 and |g〉, and the
excited state |e〉. The states |0〉 and |1〉 denote the zero- and
one-photon cavity field, respectively. The cavity mode couples
at a strength g to the transition between |e〉 and |g〉 with a
detuning �s. A classic laser field � (named as the control
laser pulse) drives the transition between |e〉 and |u〉 and is
detuned by �T. In the associated configuration of the atom and
the cavity mode, a Raman transition forms between |u, 0〉 and
|g, 1〉. Although the generation and storage of single photons
share the same configuration, their operations are different.

For single-photon generation shown in Fig. 1(b), the
CQED system is initially prepared in the dressed state |u, 0〉.
Driven by �(t ), the quantum excitation is first transferred to
the cavity mode |g, 1〉 via the Raman transition. Then, the
photon is emitted into the output channel through one of two
mirrors forming the cavity, generating a single-photon wave
packet in the output channel denoted as φout and leaving the
system in the state |g, 0〉. Applying the two-photon resonance
condition, i.e., �s = �T = �, and taking the set of states
{|u, 0〉, |e, 0〉, |g, 1〉} as the basis, the interaction Hamiltonian
in the interaction pictures can be written as

H = − h̄
2

⎛
⎝

0 � 0
�∗ �s + �T 2g
0 2g∗ 0

⎞
⎠. (1)

The single-photon generation process can be determined
by solving the master equation

ρ̇ = − i
h̄ [H, ρ] − �ρ, (2)

where ρ is the density matrix, and � is a linear superop-
erator describing all relaxation. The elements of �ρ can be
expressed in terms of the relaxation rate γi of each state. Here,
the relaxation processes of states |e, 0〉 and |g, 1〉 are denoted
as γ2 = γ and γ3 = 2κ , respectively. γ1 is zero because there
is no relaxation from |u, 0〉, which is the atomic ground and
cavity vacuum state. Einstein coefficients Aki represent spon-
taneous transitions between the basis states [26],

[�ρ]i j = 1
2 (γi + γ j )ρi j − δi j

∑
k ρkkAki, (3)

with i, j = 1, 2, 3. For convenience, we use subscripts
{1, 2, 3} to relate parameters and variables to the basis
{|u, 0〉, |e, 0〉, |g, 1〉} in the following investigation. The first
term on the right-hand side of Eq. (3) only includes the damp-
ing or losses of ρi, j . The second term describes the incoherent
population shift into basis states. The two ground states |u, 0〉
and |g, 0〉 are populated at a nearly equal rate by the spon-
taneous emission from |e, 0〉. In this case, the only nonzero
Einstein coefficient is A21 = 1

2γ . The decay in another chan-
nel |e, 0〉 → |g, 0〉 is already included in γ . Note that no decay
happens in the process |e, 0〉 → |g, 1〉 because this process is
a coherent transition caused by the coupling between the atom
and the cavity, where excitation remains unchanged. The wave
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packet of the generated single photon φout(t ) is proportional
to the population ρ33, determined as φout(t ) = 2κρ33(t ). This
wave function φout(t ) can be calculated with Eq. (2) and is
controlled by the control laser pulse �(t ).

As shown in Fig. 1(c), we consider the reverse pro-
cess of the single-photon generation for storage. Under the
two-photon resonance condition that �T = �S = 0, we can
characterize the storage process of the input single photon φin

by solving the probability amplitude equation [27]

⎛
⎜⎝

ċ1

ċ2

ċ3

φout

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 −i �∗
2 0 0

−i �
2 −γ −ig 0

0 −ig∗ −κ
√

2κ

0 0
√

2κ −r

⎞
⎟⎟⎠

⎛
⎜⎝

c1

c2

c3

φin

⎞
⎟⎠, (4)

where ci is the probability amplitude of each state. φout is the
leakage of the single photon to be stored. Ideally, φout = 0 and
|c1|2 = 1. The key point is to find a proper control laser pulse
�(t ) to ensure that |c1|2 reaches as close to unity as possible.

If the control laser pulse �(t ) and all control parameters in
the generation process are known, the emitted single photon
has a well-defined wave function. Therefore, a simple way to
optimize the single-photon storage is to apply a time-reversed
control laser pulse �(−t ) in the storage system identical to the
generation one [42]. Previous studies have also obtained ana-
lytical solutions of an optimal control laser pulse for storage in
the 1ES-CQED system [43,44]. However, the validity of the
analytical solution is limited by theoretical assumptions and
a specific system structure, thus there is a lack of generality.
Therefore, it is highly desirable to build quantum networks
in order to develop a general method to store a single photon
with an arbitrary wave function in different CQED systems.

B. �-type CQED system with three excited states

In the aforementioned 1ES-CQED system, the �-type
atom only includes one excited state. It is the simplest energy
level structure of a �-type atom. Therefore, to show the gen-
erality and flexibility of our ML-based scheme, we extend our
investigation to the 3ES-CQED system, which is a complex
atomic configuration with three excited states.

As depicted in Fig. 2, a single �-type atom with three
excited states couples to an optical cavity. The control laser
pulse �(t ) impinges from the side of the cavity, coupling the
ground state of the atom with its excited states. Combining
the cavity-atom coupling, the system is able to serve as a
single-photon emitter and a receiver. The cavity is formed
out of two asymmetric mirrors: one is assumed to be highly
reflective, while the other has a relatively low reflectivity. We
denote the decay rates via two mirrors of the cavity as κc and
κl , respectively.

The details of the single-photon generation and storage
process in this CQED system are shown in Fig. 2(b). The
cavity field couples the ground state |g〉 to the excited states
|e1〉 and |e2〉 with coupling strength gi with i = {1, 2}, where
the subscripts indicate different excited states. The control
laser pulse addresses the transition process |u〉 → |ei〉 with �i

(i ∈ {1, 2, 3}), respectively. Following the model in Ref. [41],
we define the associated cavity coupling strength, gi, and

FIG. 2. Single-photon generation and storage model of the
CQED system where the atom has three excited states. (a) A single
atom trapped in an optical cavity. The control laser pulse �(t ) cou-
ples the ground state of the atom to its excited states. The constant g
represents the coupling strength between the atom and the cavity, and
the atomic polarization decay (gray dashed arrow) rate is denoted as
γ . (b) We use a single atom with three excited states. The atom has
two ground states, |u〉 and |g〉, and three optical excited states |ei〉
(i ∈ {1, 2, 3}). The zero- and one-photon states of the cavity mode
are denoted as |0〉 and |1〉. φout and φin represent the temporal wave
function of the emitted and injected single photon, respectively. The
control laser pulses and the cavity mode are detuned from the atomic
transitions by �i for each excited state.

control laser pulse, �i, as

gi = cgig, �i = cui�, (5)

where cgi (cui) are the Clebsch-Gordan coefficients for the
transition between the ground state |g〉 (|u〉) and the excited
states |ei〉. For convenience, we take the Clebsch-Gordan coef-
ficients as unity in this work. To selectively driving the excited
states in our configuration, we need control laser beams with
frequency splittings from several hundred megahertz to a few
gigahertz. Such narrow separated laser beams can be gener-
ated with an acoustic-optics modulator (AOM) [50–53].

As shown in Fig. 2(b), the detunings of each excited state
�i with i = {1, 2, 3} are the same for both the cavity field and
the control light field, thus the � scheme is in two-photon
resonance. With the combination of two fields, the atomic
population is driven from the state |u, 0〉 to |g, 0〉 in single-
photon generation and vice versa for storage. In addition,
we refer to the temporal wave function of the output single
photon as φout(t ) in the generation process (or leakage in the
storage scheme), whereas φin(t ) denotes the wave function of
the input single photon in the single-photon storage process,
which continues to be zero in the generation process. Thus,
we can describe both single-photon generation and the stor-
age process in this CQED system by solving the following
probability amplitude equations [41]:

ċu = i 1
2�∗

1ce1 + i 1
2�∗

2ce2 + i 1
2�∗

3ce3 ,

˙ce1 = i 1
2�1cu − (γ + i�1)ce1 + ig1cg,

˙ce2 = i 1
2�2cu − (γ + i�2)ce2 + ig2cg,

˙ce3 = i 1
2�3cu − (γ + i�3)ce3 ,

ċg = ig1ce1 + ig2ce2 − κcg +
√

2ηescκφin,

φout =
√

2ηescκcg − φin, (6)
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where ci is the probability amplitude of each state, γ is the
atomic polarization decay rate, and κ = κc + κl is the cavity
field decay rate. ηesc = κc/κ is the escape efficiency, which
represents the ratio of the probability of cavity field escape
through the output field to the total escape probability (includ-
ing the output field and the losses channel).

Compared with the CQED system described in Sec. II A,
the CQED system in this subsection has a more complicated
energy-level structure. Therefore, it is more difficult to analyt-
ically obtain the optimal control laser pulse for single-photon
generation with a demanded wave function without assump-
tion. For a single-photon storage scheme, it is even more
challenging to obtain an analytical function of a control laser
pulse considering the phase of the input single photon. Since
the energy-level structure of the atom may differ from the
ideal situation in experiment, it is key for building a robust
CQED-based quantum network to develop a method that can
realize on-demand single-photon generation and efficient stor-
age and does not depend on specific atomic structures. In this
work, we present a ML algorithm to achieve this.

III. ALGORITHM

Many efforts have been made to control single-photon
emission and to find a proper control laser pulse for optimiz-
ing single-photon storage [41,42,54]. These methods typically
can either solve the photonic wave function or store a single
photon in an atomic state when the control laser pulse in
generation [11] or the wave function [41] is already known
in a simple 1ES-CQED system. Here, we present a ML algo-
rithm independent of specific system configurations to obtain
the control laser pulse � for generating and storing a single
photon with an arbitrary wave packet.

A. Reinforcement learning theory

Our ML algorithm is developed from the basic idea of
the reinforcement learning (RL) theory [55]. RL is a ML
approach for solving the reward-based problem. Generally, a
RL system consists of three parts: a policy, a reward signal,
and a value function. The policy defines the learning agent’s
actions over time. Therefore, a policy � can be expressed
as an action sequence � ≡ {�t1 ,�t2 , . . . } over discrete time
{ti}. The reward signal, denoted as Rti , is the benefit from
an action at a given time ti. Thus, the reward signal can
be considered as a function of the action: Rti = freward(�ti ).
While the reward signal indicates the benefit in a temporary
sense, the value function V makes an overall evaluation of
the actions from the beginning time t1 to the present time ti:
V = fvalue({�t1 ,�t2 , . . . ,�ti}).

The ultimate goal of RL is to find the optimal policy to
maximize the value function. A general method to achieve
the goal is the policy iteration algorithm, which proceeds as
shown in the following pseudocode. Here we assume that the
optimization of each reward signal function is equal to the
optimization of the overall value function. By choosing an
appropriate reward signal function and value function, one can
always adopt this assumption.

Algorithm 1 Finding the optimal policy � to maximize the
value function V . freward(�ti ) denotes the reward signal function of
one step policy �ti at a given time ti. frenew(�ti ) denotes the renew
function of each step policy, and it can vary according to particular
problems.

Input: N : number of time steps; K : maximum number of iterations;
Output: the optimal policy �.
1: initialize the policy �

2: for i in {1, 2, . . . , N} do
3: for j in {1, 2, . . . , K} do
4: if �ti = arg max

�ti

freward(�ti )

5: break
6: else
7: �ti ← frenew(�ti )
8: end if
9: end for
10: end for

B. ML algorithm for a CQED system

Without loss of generality, we use the 1ES-CQED system
shown in Sec. II A to explain the idea of our ML algorithm
in detail. In this case, the policy indicates the control laser
pulse’s value at a given time. The reward signal corresponds
to the error between the output single-photon wave function
and the target of our quantum system in each time segment in
our ML algorithm. In our system and ML algorithm, the value
function is the fidelity between the generated single-photon
wave function and the target for the single-photon generation,
and the efficiency of the storage. Throughout the investiga-
tion below, we replace the phrases “policy,” “reward signal,”
and “value function” with “control laser pulse,” “error,” and
“fidelity” or “efficiency” for a more physical purpose.

As preparation for implementing the algorithm, the train-
ing datasets {I j} and {Oj} are generated from the control laser
pulse �(t ) and the target single-photon wave function φ

(T )
out (t ),

as schematically depicted in Fig. 3(a). To do so, we divide
�(t ) and φ

(T )
out (t ) into N time segments, each with a time

FIG. 3. Discretization of the ML algorithm for single-photon
generation. (a) Control laser and target single-photon pulses are
discretized as the input and target datasets for training, respectively.
(b) Schematic showing the key routine for training under an extended
Markov assumption. The inputs {Ij} [�(t ) in the physical model] to
be trained generate the outputs {Oj} [φout(t )] by solving Eq. (2).
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FIG. 4. Detailed ML algorithm of Fig. 2(b). The input dataset
(discrete control laser pulse) iteratively adjusts itself until the error
(feedback in training) between the estimated output and the target
value becomes small enough.

interval of �t . We use the average values,
∫ t j

t j−1
�(t )/�t dt and∫ t j

t j−1
φout(t )/�t dt with t j = ( j − 1/2)�t ( j ∈ {1, 2, . . . , N}),

of the pulses �(t ) and φout(t ) in the jth time segment as a
good approximation to replace the discrete values I j and Oj .

Then, to maximize the fidelity, adjustment is iteratively
implemented on the control laser pulse � until the error is
small enough, which means that the difference between the
output single-photon wave function and the target is negligi-
ble. The most crucial point in this process is the training rules
in each iteration, which are designed based on an intuitive but
effective hypothesis: the value of φout at time t is related to the
integral of �(t ) from time t0 to t , mathematically being

φout(t ) ∝ ∫ t
t0

k(t )�(t ′)dt ′, (7)

where the coefficient k(t ) � 0 is time-dependent and needs to
be adjusted during training.

To perform the ML algorithm, the control laser pulse and
target single-photon wave function are transferred into the
discrete datasets {Ii} and {O(T )

i }, as shown in Fig. 3(b). The
blue dashed arrows represent the positive correlation, i.e.,
k(t ) � 0, between the control laser pulse as the input and
the single-photon pulse as the output. To improve the training
efficiency of the ML algorithm, we take an extended Markov
assumption [56] so that each output ML node’s value is only
related to a few previously input ML nodes. By applying this
assumption and discretizing the outgoing single-photon and
control laser pulses, the relation Eq. (7) becomes φout(t ) ≈
k(t )

∑N
j=N−m �(t j )�t , where m is the number of previous

ML nodes to be considered. Note that the choice of m is
independent of the CQED system parameters, and it has an
influence on the amount of calculation in each training step.
This assumption can greatly speed up our algorithm while
maintaining sufficient accuracy.

The full training process of the ML algorithm is schemati-
cally depicted in Fig. 4. First, we arbitrarily choose a control
laser pulse as the initial input dataset {Ii}, and we generate
the dataset {O(T )

i } for the target single-photon wave func-
tion. Here, we set the initial input zero in the first training
step. Then, we use the interpolation method to convert the
discrete input dataset into a continuous function �(t ). After

that, we substitute �(t ) into Eq. (2) and numerically calcu-
late the single-photon wave function φout(t ). Then, φout(t ) is
discretized as the output dataset {Oi}. In the fourth step, we
calculate the error set from the target value {O(T )

i } and the
output {Oi} in the ith time step, denoted as ei. For the ith time
step in the jth iteration in training, the ML rule can be written
as [57]

I j+1
i ← I j

i + ηe j
i , (8)

where η ∈ (0, 1] is the learning rate. For each training step,
the training process continues until the error is negligible
or the number of iterations exceeds a preset value in order
to avoid an endless loop. This process is performed step by
step. We apply the extended Markov assumption to the input-
to-output process and error propagation in Fig. 3(b). When
training the input I j , we keep updating the values of Is with
( j − m) � s � j. In doing so, the error between the output
and the target datasets propagates to the previous m input ML
nodes, as shown by red arrows in Fig. 3(b). Finally, when
the training of all steps is completed, the wanted control laser
pulse is obtained. Then, using this trained laser pulse to drive
the cavity-atom system, we can create the target single-photon
wave function with a nearly unitary fidelity. To clearly explain
our ML algorithm, we provide the pseudocode of the complete
training process in the following.

Algorithm 2 Training the control laser pulse for single-
photon generation in the 1ES-CQED system. The operation function
fdiscrete(T, F (t ), N ) discretizes a time-dependent function F (t ) within
the time range T into a discrete dataset {F ′} containing N data points.
The function finterp({F ′}, {T ′}) performs the interpolation method to
transform the discrete dataset {F ′} into a continuous time-dependent
function F (t ) according to the discrete time set {T ′} order. The
function fphys(T, �(t ), γ , κ, g) gives the numerical solution for the
system output when {T, �(t ), γ , κ, g} are given.

Input: φ
(T )
out (t ): target single-photon wave function; N : number of

time segments; K : number of maximum iterations; T : time
range; emin: acceptable minimum error; {γ , κ, g}: 1ES-CQED.
system parameters; η: learning rate.

Output: fully trained control laser pulse �(t ).
initialize �(t ) = 0, t ∈ [0, T ].

2: {T ′
i } ← fdiscrete(T, T, N ), i = {1, 2, . . . , N}.

{Ii} ← fdiscrete(T, �(t ), N ), i = {1, 2, . . . , N}.
4: {O(T )

i } ← fdiscrete(T, φ
(T )
out (t ), N ), i = {1, 2, . . . , N}.

for i in {1, 2, ...,N} do
6: for j in {1, 2, . . . ,K} do

�(t ) ← finterp({Ii}, {T ′
i })

8: φout (t ) ← fphys(T, �(t ), γ , κ, g)
{Oi} ← fdiscrete(T, φout(t ), N )

10: e j
i = O(T )

i − Oi

Ii ← Ii + ηe j
i

12: if e j
i � emin

break
14: end for

end for

The single-photon storage is different from the photon gen-
eration. The target output (the leakage φout) is zero if the input
single photon is fully transferred to an atomic excitation as
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expected. Given an input single-photon wave function φin and
the control laser pulse �, we can calculate the output φout with
Eq. (4). For storage purposes, we consider the control laser
pulse as the training object, and we set the target output φout to
zero during the training process, as shown in Fig. 4. Besides, if
the phase term of the input single photon is considered, �(t )
needs to be treated as a complex function. In this case, we
apply our ML algorithm to both the real and imaginary parts of
�(t ) simultaneously. The rest of the ML algorithm is the same
as the generation scheme. Note that the single-photon wave
function is given only for demonstrating our ML algorithm; it
is not needed in practical operation.

IV. RESULT

Contrary to the analytical method, our ML algorithm is
suitable for both single-photon generation and the storage
process, and it is independent of the specific configuration of
the CQED system. Below, we show that our ML algorithm
can find the optimal control laser pulses for single-photon
generation and storage in both 1ES-CQED and 3ES-CQED
systems. The hyperparameters we used in the ML algorithm
to obtain the results are presented in Appendix A, together
with the resource and the time consumption information of
our ML algorithm.

A. 1ES-CQED system

We first evaluate the performance of the ML algorithm for
single-photon generation in the CQED system demonstrated
in Sec. II A. For an arbitrary wave function of a single photon,
we can find a control laser pulse with this algorithm. To
show the performance of the ML algorithm, we take four dif-
ferent single-photon wave functions: sinusoidal-, Gaussian-,
square-, and triangular-shaped. As for system parameters, we
refer to the commonly used parameter ranges in the existing
works [26,41]. Therefore, we choose the same system with pa-
rameters for all four cases: {κ = 2π×0.75 MHz, γ = 2π×3
MHz, g = 2π×9 MHz, � = 2π× − 20 MHz}.

The trained control laser pulse, the generated single-photon
wave function, and the corresponding fidelity are shown in
Fig. 5. It can be seen from Fig. 5(a) that the generated single-
photon pulse becomes closer and closer to the target pulse for
four different pulses as the training is going on (from top to
bottom). In principle, our training method works well no mat-
ter what shape the target single-photon pulse has. The fidelity,
defined as [58], of the output single-photon wave function
after N-step training is shown in Fig. 5(b). The “training step
n” represents the accumulating time step to which the training
progresses. Each subfigure in Fig. 5(a) corresponds to a fi-
delity value at a specific training step in Fig. 5(b). The fidelity
increases as the training process goes on. It finally approaches
unity for four different target single-photon wave functions
when the full control laser pulse is trained out: 99.64% for the
sinusoidal shape, 96.09% for the Gaussian shape, 98.44% for
the square shape, and 99.87% for the triangular shape. The
fidelity can be further improved by increasing the number
of training segments and choosing an appropriate learning
rate η.

FIG. 5. Single-photon generation using a 1ES-CQED system
with parameters κ = 2π×0.75 MHz, γ = 2π×3 MHz, g = 2π×9
MHz, and � = 2π× − 20 MHz. (a) The target (dashed red curves)
and output (black curves) single-photon wave functions during train-
ing. Plots in the top row show the wave functions in the beginning,
the middle row for the intermediate results after parts of the control
laser pulse are trained, and the bottom row for the final generated
single-photon pulses after the training is completed. (b) Fidelity as
the training steps increase. Gray dashed arrows link the fidelity at
a specific training step to the output single-photon wave functions
during the training process. (c) Fully trained control laser pulses.

After the training process is completed, we obtain the
full control laser pulse for generating the corresponding tar-
get single-photon pulses with demanded shapes shown in
Fig. 5(c). Note that the control laser pulses �(t ) for the
square- and triangular-shaped single-photon pulses are deriva-
tive discontinuous, because the target single-photon wave
functions are derivative-discontinuous. Obviously, �(t ) has
no analytic form in the four cases, and it is difficult to find us-
ing the methods in [42]. However, our ML algorithm can find
the proper �(t ) for generating the target single-photon pulses
with high fidelity, regardless of its derivation continuity. The
fast temporal modulation of the obtained control laser pulse
relies on the control technique shaping laser pulses in less than
0.1 μs. This technique is experimentally available [59–61].
In addition, we can adjust the changing rate of the obtained
control laser pulse with the time segment value of the discrete
input dataset depicted in Fig. 4.

Below we justify the robustness and generality of our ML
algorithm with a precision-limited CQED system of which the
values of the parameters vary within a small range or they
are imprecisely premeasured. First, we assume a “perfect-
training” 1ES-CQED system and apply our ML algorithm in
it to obtain the fully trained control laser pulse for a target
wave function. By “perfect-training,” we mean that the system
parameters are precisely known and thus our ML algorithm
can perfectly optimize the control fields. Then, we consider
the variation of parameters in the system. We apply the
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FIG. 6. Fidelity as the CQED system parameters change in
different variation ranges. Each panel corresponds to a specific pa-
rameter as depicted in the upper left corner of each diagram. The
horizontal axis represents the variation range of the corresponding
parameter varying from the value used for training. The box plot in
each panel describes the fidelity distribution of each variation rate.

obtained control laser pulse to this deviate system and calcu-
late the fidelity between the output of the imperfect system
and the target wave function trained in the perfect-training
system.

Now, we take the 1ES-CQED system shown in Sec. II A
with parameters {κ = 2π×0.75 MHz, γ = 2π×3 MHz, g =
2π×9 MHz, � = 2π× − 20 MHz} for our justification. The
corresponding target wave function is Gaussian-shaped. The
obtained fidelity for the deviate system with different vari-
ation in parameters is shown in Fig. 6. The horizontal axis
indicates the variation range of the system parameters (e.g.,
“15%” represents the variation range of ±15% with respect
to the parameter value in the perfect-training system). The
fidelity is calculated with parameters uniformly distributed
in the corresponding variation range. As we can see from
Fig. 6, the fidelity maintains above 93% even when the
parameter varies up to 15%. The results clearly prove the
strong robustness of our ML algorithm against parameter
variation.

We can also apply our ML algorithm to find specific con-
trol laser pulses to store single photons with arbitrary wave
functions in the same CQED system. We take three differ-
ent single-photon wave functions: sine-square-, square-, and
triangular-shaped. For all three cases, the parameters of the
system are identical: {κ = 2π×3 MHz, γ = 2π×3 MHz, g =
2π×15 MHz}. We take parameter values different from the
generation value to show the robustness of our ML method.

The photon leakage during training, the storage efficiency,
and the trained control laser pulse are shown in Fig. 7.
Clearly, the leakage gradually approaches zero as the train-
ing process is going on for all three different input pulses.
The efficiency is slightly smaller than the ideal one due to
the atomic decay [41]. Note that the control pulse values at

FIG. 7. Single-photon storage using a 1ES-CQED system with
parameters {κ = 2π×3 MHz, γ = 2π×3 MHz, g = 2π×15 MHz}.
(a) The input single-photon wave function (dashed red curves) and
the leakage (black curves) during the training process. Each column
of panels is arranged in the order of training times from top to bottom.
(b) Storage efficiency as the training steps increase. (c) Trained
control laser pulses.

neighboring training ML nodes may differ greatly, leading
to fast but small oscillation in the leakage; see the middle
row of Fig. 5(a). After training is completed, the oscillation
vanishes.

In an ideal situation, the input single photon can be
perfectly stored in the ground state |u, 0〉. We refer to the pop-
ulation in the state |u, 0〉 as the storage efficiency. The ideal
single-photon storage efficiency is given by ηC = 2C/(2C +
1), where C is the cooperativity defined as C = g2/2κγ [41].
It is 96.15%. It can be seen from Fig. 7(b) that the storage
efficiency gradually approaches the ideal efficiency for all
three cases: 95.91% for the sine-square shape, 93.29% for the
square shape, and 95.87% for the triangular shape. The trained
control laser pulses are shown in Fig. 7(c).

B. 3ES-CQED system

To further prove the generality and robustness of our ML
algorithm, we apply it to obtain the optimal control laser pulse
for single-photon generation and storage in a more compli-
cated CQED system shown in Sec. II B.

For single-photon generation, we take a Gaussian-shaped
wave function as the target. To compare the performance of
our algorithm applied to the 1ES- and 3ES-CQED systems,
we set the 3ES-CQED system with the same system parame-
ters as in the 1ES-CQED one: {κc = 2π×0.75 MHz, κl = 0,
γ = 2π×3 MHz, g = 2π×9 MHz, �1 = 72.2 MHz, �2 =
229.1 MHz, �3 = 495.8 MHz}. Here, we take κl = 0 so that
the escape efficiency ηesc of the cavity is unity. In addition,
we choose the detunings �i as in the previous experiment
work [41] to validate the performance of our algorithm in a
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FIG. 8. Single-photon generation using a 3ES-CQED system
with parameters κc = 2π×0.75 MHz, κl = 0, γ = 2π×3 MHz, g =
2π×9 MHz, �1 = 72.2 MHz, �2 = 229.1 MHz, and �3 = 495.8
MHz. (a) The target (dashed red curves) and output (black curves)
single-photon wave functions during training. (b) Fidelity increases
as the training steps increase. The output wave functions (black
curves) in (a) correspond to the training steps labeled as (i), (ii), and
(iii) in (b). (c) Completely trained control laser pulse.

real system. The emitted photon output, the associated fidelity,
and the trained control laser pulse are shown in Fig. 8. Ob-
viously, the generated single-photon pulse gradually reaches
the target pulse throughout the training process, depicted in
Fig. 8(a). Combining the result in the first CQED system,
this result shows the general validity of our algorithm for
a single-photon generation scheme in the CQED systems
with different energy-level structures. The previously de-
fined fidelity increases as the training steps grow, depicted in
Fig. 8(b). For the Gaussian-type target single-photon output,
the precise value of the fidelity finally reaches 99.45%. For
the single-photon generation scheme, we are interested in the
output single-photon probability density function [|φout(t )|2].
For this purpose, the control laser pulse can be a real function
during the training process. The fully trained control laser
pulse is shown in Fig. 8(c). The result shows that our algo-
rithm can find the optimal control laser pulse for achieving
high-fidelity single-photon generation from the 3ES-CQED
system as well as the 1ES-CQED system (see Fig. 5), which
convincingly proves the advantage of the ML algorithm in
flexibility.

We also use our algorithm to find the optimal control laser
pulse for the single-photon storage in the 3ES-CQED system
described in Sec. II B. We take experimentally available val-
ues for the parameters of the system as {κc = 2π×3 MHz,
κl = 0, γ = 2π×3.00 MHz, g = 2π×15 MHz, �1 = 72.2
MHz, �2 = 229.1 MHz, �3 = 495.8 MHz}. The theoreti-
cal storage efficiency is estimated as ηesm = ηesc2C/(2C + 1)
[41] in the parameter range of interest. The system using the
values of the parameters g, κ , and γ in [41] can only obtain
a low storage efficiency due to physics itself. Here we take
g, κ , and γ with the same values as the 1ES-CQED system
for single-photon storage to test the performance of our ML
algorithm. Note that ηesc = 1 in our 3ES-CQED system with
κl = 0.

FIG. 9. Single-photon absorption using a 3ES-CQED system
with parameters κc = 2π×3 MHz, κl = 0, γ = 2π×3.00 MHz, g =
2π×15 MHz, �1 = 72.2 MHz, �2 = 229.1 MHz, and �3 = 495.8
MHz, and the phase ϕ of the input photon is π/4. (a) The real part
and the imaginary part of the input single-photon wave function.
(b) The input single-photon wave function (dashed red curves) and
the leakage (black curves) during the training process. The panels are
arranged in the order of training steps from left to right. (c) Storage
efficiency increases as the training steps increase. As in Fig. 8, part
(b) shows the output wave functions (black curves) at the training
steps labeled as (i), (ii), and (iii) in (c). (d) The real part and the
imaginary part of the fully trained control laser pulse.

We further prove the validity and robustness of our ML
algorithm for storing a single photon with a complex wave
function. Without loss of generality, we consider a Gaussian-
type complex input single-photon wave function with a phase
ϕ. In this case, the input single-photon pulse φin includes the
real part and the imaginary part. We show an example for
ϕ = π/4 in Fig. 9(a). It can be seen from Fig. 9(b) that the
corresponding photon leakage |φout|2 approaches zero as the
training progresses. The storage efficiency increases during
the training and finally reaches 91.78% when the training is
finished. The final storage efficiency is slightly less than the
theoretical estimated value ηesm = 96.15% [see Fig. 9(c)] due
to the detuning of three excited states [41]. Since φin is a
complex function, the control laser pulse is also treated as a
complex function during the training process. The real part
and the imaginary part of the fully trained control laser pulse
are shown in Fig. 9(d).

We have also tested our algorithm on single-photon storage
where the input wave function phase ϕ varies between −π/2
and π/2, and the corresponding optimal storage efficiency is
high, about 92% ± 1%. We also validate our ML algorithm
in the simpler 1ES-CQED system and find that the storage
efficiency is about 95% ± 0.5% for ϕ ∈ (−π/2, π/2), very
close to the theoretical estimation of 96.15%. Although the
introduction of the phase term significantly increases the com-
plexity of the optimization problem, our ML algorithm is still
efficient for finding the optimal control laser pulse for single-
photon storage in the 3ES-CQED system as in the 1ES-CQED
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system. The results above show that our ML algorithm is
effective in a more complex system. This proves its generality
and flexibility.

V. DISCUSSION AND CONCLUSION

We have proposed a ML algorithm for on-demand gener-
ation and storage of a single photon with an arbitrary wave
function by training the control laser pulse applied to a CQED
system. By applying an extended Markov assumption and
error propagation in training, we achieve nearly unitary gen-
eration fidelity and storage efficiency close to the theoretical
estimated value even though the single photon has an arbi-
trary pulse shape and the configuration of the CQED system
changes. Our ML algorithm paves the way for building robust
quantum networks with a reliable single-photon source and
efficient quantum memory.

Identifying a single-photon pulse shape is very useful but
is a challenging task. Our ML algorithm may be potentially
adapted to identify a single-photon pulse shape via our stor-
age protocol. We can predefine a set of single-photon pulse
shapes including the commonly used triangle, square, Gaus-
sian shapes, and many others. Then, our ML algorithm trains
a set of control laser pulses for storing these single photons
with vanishing leakage or system outputs. It is reasonable
to assume that a well-trained control laser pulse can only
effectively store a single photon with a certain pulse shape.
In this, by finding the shape of the control laser pulse during
the storage, we can determine the single-photon pulse shape.
For an incoming single-photon pulse, we train its control
laser pulse by monitoring the leakage. Then, we identify the
single-photon pulse shape from the predefined set with a large
success probability according to the control laser pulse shape.
This idea may provide a way to use our ML algorithm to
identify a single-photon shape, which is unknown but can only
take one of the predefined shapes.
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APPENDIX: ALGORITHM SETUP

The hyperparameter choice of the ML algorithm can be
adjusted as needed. Here we present the values of the hyper-
parameters we use in this paper as a reference. The changeable
hyperparameters in our ML algorithm include the learning
rate η, the number of training steps N , the maximum number
of iterations K , and the acceptable minimum error emin. We set
the learning rate η as 0.5 for single-photon generation and a
storage scheme in both the 1ES- and the 3ES-CQED system.
The numbers of training steps are different for various target
wave functions, as shown in Figs. 5(b), 7(b), 8(c), and 9(c).
The maximum number of iterations K is kept to 80 in this
paper. We also set the acceptable minimum error emin as the
0.1% of the target value during the training.

The ML algorithm is performed on an Intel Xeon Platinum
8180 CPU with MATLAB 2020. It takes from one-half to one
hour to complete the training process with our settings for a
specific target wave function in the 1ES-CQED system for
both the single-photon generation and the storage scheme. The
time consumption varies due to the different choice of the
number of training steps N . Note that the complexity of the
3ES-CQED system is higher than that of the 1ES-CQED sys-
tem. Therefore, it takes 50% longer to finish the full training
process for the same target wave function in the 3ES-CQED
system as in the 1ES-CQED system.
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