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Abstract: High-dimensional maximally entangled orbital angular momentum (OAM) states are a
promising resource for enhancing information capacity and robustness in quantum communication.
However, it still lacks an effective method to increase the state dimensionality. Here, we
theoretically propose an efficient scheme to generate maximally entangled OAM states of
ultrahigh dimensionality by manipulating the radial components of a Laguerre-Gaussian (LG)
pump beam. By optimizing the complex amplitudes of multiple radial modes of the LG pump
light, one can feasibly achieve 101-dimensional OAM-based maximally entangled states. Our
scheme has potential applications in high capacity quantum communication networks.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-dimensional maximally entangled states (MESs) of two photons have raised widespread
interests because of their promising applications, such as closing the detection loophole in Bell
test experiments, enhancing information capacity, and raising the resistance to noise in quantum
communication [1–3]. In generating MESs, various degrees of freedom such as which-way paths,
discretized time and frequency modes, and transverse-spatial modes can be used [4–9].

The entanglement of Laguerre-Gaussian (LG) modes has been extensively studied because
these modes carry OAM quanta [10]. The discrete nature of OAM in infinite-dimensional Hilbert
space is quite suitable for high-dimensional quantum information. To date, the OAM of light has
become a workhorse for high-dimensional spatial-mode-based MESs, which can be generated
and manipulated conveniently in nonlinear optical processes [7,11–15]. In a nonlinear crystal,
an intense pump light produces two entangled photons (referred to as signal and idler) through
a spontaneous parametric down-conversion (SPDC) process, which obeys the conservation
laws of energy, momentum, and OAM [16]. The main methods to generate high-dimensional
OAM-based MESs are entanglement concentration (i.e., Procrustean filtering) [7,17] and pump
light shaping (which manipulates the spatial modes of the pump light) [18–20]. The entanglement
concentration method requires a broad spiral bandwidth to realize high-dimensional entanglement,
which is difficult to be satisfied by using a traditional Gaussian pump beam. By shaping the
LG pump light, several groups have successfully broadened the spiral bandwidth and efficiently
produced arbitrary three-dimensional OAM-based MESs. These works mainly manipulate the
azimuthal components (i.e., OAM quantum number l) of the pump light. However, such pump
light carrying multiple OAM components usually produce unwanted photon modes during
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SPDC, which requires extra diagonalization of the OAM detection bases [19,20]. The higher the
dimensionality of the state is, the more cumbersome the manipulation is.

In this paper, we theoretically propose a scheme to generate executable ultrahigh-dimensional
OAM-based MESs efficiently by manipulating the radial components p of LG pump light. The
OAM spectrum of two-photon states is dependent on the spatial shape of the pump light [18–22].
In our scheme, the azimuthal component of the pump light is fixed to be l = 0, which well avoids
the requirement of detection base diagonalization in previous works. Using gradient descent and
simulated annealing algorithms [23], we numerically simulate the optimal complex amplitudes
of the p components of LG pump light to produce high-dimensional OAM-based MESs. By
constructing proper LG pump light with six p components [24], we obtain OAM-based MESs
from three dimensions to twenty dimensions with high accuracies. Furthermore, with an LG
pump light consisting of seventeen p modes, 101-dimensional OAM-based MESs can be achieved,
which has potential applications in high-capacity robust quantum networks. Our scheme can
also be applied in quantum state engineering such as the generation of two-photon states with
symmetric OAM spectra.

2. Principle

In a SPDC, signal and idler photons are strongly OAM-correlated through the conservation law
of OAM [16]. Moreover, the OAM coincidence probability of the entangled two-photon state,
i.e., the spiral spectrum [25], is not uniform because the coincidence probability depends on
the overlap between the spatial modes of the entangled photons and the pump light. Here, we
consider an ideally-phase-matched collinear SPDC process. For completeness of the LG base,
the entangled two-photon state of the spatial modes in a thin crystal is [26]

|ψ⟩ =
∑︂
ls,ps

∑︂
li,pi

Cls,li
ps,pi |ls, ps; li, pi⟩ , (1)

with the coincidence probability amplitude Cls,li
ps,pi being
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where γ denotes the width ratio of the pump (wp) to the entangled photon, and the subscript
s (i) signifies the detected signal (idler) photon. The Kronecker delta function δlp,ls+li ensures
the OAM conservation law. The labels l and p denote the OAM (azimuthal) and radial node
numbers of the LG mode, respectively. For simplicity, we assume that the OAM number of
the LG pump light is zero, i.e., lp = 0, and the spatial modes of the coincidence detection base
maintain ps = pi = 0, γs = γi = γ = 1 and ls, li = −50, − 49, · · · , 50. This setting is valid
unless otherwise noted.

To produce high-dimensional OAM-based MESs, the spatial mode of the pump light is a
coherent superposition state |ψ⟩p consisting of LG modes with the same lp but different pp. |ψ⟩p
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is given as
|ψ⟩p =

∑︂
pp

Cpp |lp = 0, pp⟩, (3)

where Cpp denotes the complex amplitude. We calculate the distribution of the coincidence
probability amplitude Cls,li

ps,pi when the pump light is a single LG mode within pp = 0, 1, · · · , 5 [
Fig. 1(a)]. All the spectra of the coincidence probability amplitudes are symmetric and centered
at ls = 0. When pp ≠ 0, negative values of Cls,li

ps,pi arise from the non-uniform phase of the pump
light.

Fig. 1. (a) Normalized spectra of the coincidence probability amplitudes with lp = 0 and
pp = 0, 1, · · · , 5. (b) Outline of the generation scheme for d-dimensional OAM-based
MES. T̃ denotes the amplitude of target state |ψ⟩T . The superscript and subscript appended
to LG denote quantum numbers lp and pp, respectively. Norm. is the normalization
function. O and Õ denote the coincidence probability amplitudes of output and desired
states, respectively.

From the data in Fig. 1(a), we construct the matrix A consisting of six spectra of the coincidence
probability amplitudes [Fig. 1(b)], in which the columns and rows refer to the LG components
of the pump light (pp = 0, 1, · · · , 5) and the OAM numbers of the detected photon pairs
(ls, li = −50, − 49, · · · , 50), respectively. The complex amplitude vector of the LG pump
light is defined as C = (C1, C2, · · · , C6)

T , and the target state of the d-dimensional OAM
MES is given as |ψ⟩T =

1√
d

∑︁
l
|l, − l⟩. In Fig. 1(b), the amplitude of the target state is set

as the vector T̃ . For odd d, the spatial modes of the d-dimensional target state |ψ⟩T are
l = −(d − 1)/2, −(d − 1)/2+1, · · · , (d − 1)/2. For even d, the spatial modes of the target state
|ψ⟩T are l = −d/2, · · · ,−1, 1, · · · , d/2. From the product of A and C, we obtain the vector O
which denotes the coincidence probability amplitude of the two-photon output state |ψ⟩O. By
post-selecting the modes of |ψ⟩T from |ψ⟩O, we obtain the desired state |ψ̃⟩O. Õ denotes the
amplitude of |ψ̃⟩O, which should be as close to T̃ as possible.

With the gradient descent and simulated annealing algorithms, we find the optimal amplitude
vector C to produce |ψ̃⟩O efficiently and accurately. We first create the evaluation function E, i.e.,

E = E1 + E2, (4)

with
E1 =

∑︂
i
(Õi − T̃i)

2, (5)

E2 =
∑︂

i
(Oi − T̃i)

2. (6)
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Here, all T̃i are positive (i.e., all T̃i are in-phase). The function E1 (E2) is used to evaluate the
similarity between Õ (O) and T̃ . The smaller the value of the function E1 (E2), the more accurate
(efficient) the desired state |ψ̃⟩O is. Then, at each iteration, the amplitude vector changes by a
small amount of

∆Ci =

η

[︃∑︁
j
(T̃j − Õj)Aji + T

∑︁
j
(T̃j − Oj)Aji

]︃
1 + T

, (7)

where η denotes the descending rate of the error and T the computational temperature. The cost
function C̄ obeys C̄ ∝

E1+TE2
1+T . For three-dimensional to twenty-dimensional entanglements, the

initial and final temperatures and the descending rate of change in temperature are chosen as 1050,
10−50, and 0.997, respectively. The final temperature here is obtained from the loop termination
condition. When the temperature T is high (or low), the direction of change in ∆Ci and the cost
function are used to produce an efficient (or accurate) output. For an arbitrary initial amplitude
vector, an optimal solution can be obtained.

3. Experimental scheme and simulation

We propose an experimental scheme for the generation of high-dimensional OAM-based MESs
(Fig. 2). A phase-only spatial light modulator1 (SLM1) realizes a complex-field modulation of
the pump light, which is then injected into a BBO crystal [24]. One can generate the complex
field with high fidelity by use of phase-amplitude encoding [27–31]. In this nonlinear crystal, a
415-nm pump light produces two entangled photons with the same polarizations, corresponding
to a type-I SPDC process. We use lenses and single-mode fibers (SMFs) to control γs and γi.
Moreover, SLM 2 and SLM 3 are used to project the photons into the detection base and convert
the specific spatial component of the photons into a Gaussian mode. To further improve the
detection accuracy, one should consider the filtering effect from SMF and correct the holograms
by a Gaussian mode function [32–35]. Then, SMFs collect the photons in Gaussian modes,
avalanche photodiodes detect the delivered photons and a coincidence count takes place. For
d-dimensional OAM-based MESs, where d = 3, 4, · · · , 20, we calculate the complex amplitudes
of the six LG modes of the pump light (Table 1). The corresponding OAM-based MESs are
given in Fig. 3(a) marked with red bars. In Table 1, negative signs indicate a π phase delay.

Fig. 2. Experimental scheme for the generation of high-dimensional OAM-based MESs.
SLM, spatial light modulator; SMF, single-mode fiber; BS, beam splitter; D, detector with
avalanche photodiodes.

For these OAM-based MESs, the mean square errors of the coincidence probability amplitudes
between Õ and T̃ , i.e., E1

d are less than 10−6 [Fig. 3(b)]. The curves of the mean square error
and fidelity confirm the high accuracy between Õ and T̃ . In the detection base, we calculate the
angular Schmidt numbers of the output states |ψ⟩O [Fig. 3(c)]. With the growing dimensionality
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Fig. 3. (a) Normalized spiral spectra of the output states |ψ⟩O. The OAM-based MESs range
from three-dimensional to twenty-dimensional spaces. Here, normalization is performed
on each detection base. Red bars denote the desired modes. For even d, the spatial modes
of the target state |ψ⟩T do not contain the mode of |0⟩s |0⟩i, i.e., the mode of |0⟩s |0⟩i is
not optimized by the algorithm. So there exists a dip or a peak for the state of |0⟩s |0⟩i in
even dimension. The profiles of the optimal pump beam for 10D, 15D, 20D MESs are also
presented. (b) The dependence of the mean square error and fidelity between Õ and T̃ on
the dimensionality d. (c) The dependence of the angular Schmidt number of |ψ⟩O and the
coincidence rate ratio on the dimensionality d in the detection base with ps = pi = 0. Here,
the coincidence rate ratio is the coincidence rate of our method to that of entanglement
concentration.
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Table 1. The calculated complex amplitudes of the p components of pump light (with lp = 0) for the
generations of various high-dimensional OAM MESs.

Dimensionality
pp = 0 pp = 1 pp = 2 pp = 3 pp = 4 pp = 5

Complex amplitude

3D 0.4627 0.1064 −0.2389 −0.5198 −0.5871 −0.3203

4D 0.1035 −0.5353 −0.6991 −0.4237 0.0337 0.1826

5D 0.5351 −0.2185 −0.3522 0.0479 0.5554 0.4807

6D 0.6843 −0.2479 0.1048 0.5822 0.2271 −0.2624

7D 0.6061 −0.4897 0.0666 0.4109 −0.0683 −0.4636

8D 0.3063 −0.6373 −0.0034 0.0685 −0.4614 −0.5314

9D 0.5915 −0.5695 0.4458 −0.118 −0.2447 0.2307

10D 0.5779 −0.5776 0.4844 −0.2532 −0.0935 0.1578

11D 0.5749 −0.5598 0.4657 −0.1809 −0.2011 0.2572

12D 0.5776 −0.4972 0.533 −0.3108 0.1065 0.1647

13D 0.5551 −0.5488 0.505 −0.348 0.0718 0.0969

14D 0.5261 −0.4843 0.5082 −0.3979 0.2673 −0.0234

15D 0.4884 −0.4873 0.4776 −0.432 0.3075 −0.1214

16D 0.4661 −0.4841 0.4595 −0.4467 0.3294 −0.1713

17D 0.4795 −0.4788 0.4719 −0.4361 0.3275 −0.1441

18D 0.4473 −0.4855 0.4429 −0.458 0.3377 −0.2103

19D 0.4716 −0.4712 0.4661 −0.4381 0.3439 −0.1676

20D 0.4295 −0.4893 0.4263 −0.4683 0.3394 −0.2447

of MESs, the spiral bandwidth becomes broader, and the angular Schmidt numbers are always
larger than the corresponding d. To compare our method with entanglement concentration, we
plot the curve of the coincidence rate ratio of our method to that of entanglement concentration
[Fig. 3(c)]. Here, the coincidence rate of entanglement concentration is calculated with pump
light settings lp = pp = 0 and γ = 1. Note that the entanglement concentration method is efficient
when d<6. For higher dimensions, the high-order modes of the pump light having wide spiral
bandwidths are fully utilized and the coincidence rate improvement in our method becomes
notable. To further increase the coincidence rate and accuracy of the generated state, one can
increase the p mode number of the LG pump light, optimize parameters γs and γi, or increase the
iteration number of the algorithm.

It is known that the parameter γ should be set as large as possible to produce high-dimensional
OAM-based MESs by entanglement concentration. However, γ ≫ 1 cannot be achieved in an
experiment because one cannot unlimitedly increase the size of the pump beam (or unlimitedly
decrease the sizes of the signal and idler beams). Moreover, for small ws and wi, the pixelation
effects of the SLMs cannot be neglected in the detection of the two-photon states. Under a typical
experimental scenario with γ ∼ 1 [22], entanglement concentration is inefficient to produce
high-dimensional OAM-based MESs because of its narrow spiral bandwidth. In contrast, by
shaping the radial components p of the pump light, we can considerably enhance the coincidence
rate with γ = 1. Figure 4(a) compares the coincidence rates of above two methods under different
value of γ for 10D, 15D, and 20D OAM-based MESs. The fidelities of our method are given in
Fig. 4(b). Here, the coincidence rate of the entanglement concentration method is calculated
with a pump light of lp = pp = 0. Clearly, for small γ and large d, the proposed pump shaping
method is remarkably efficient.
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Fig. 4. (a) The dependence of the coincidence rate ratio of our method to entanglement
concentration on γ. (b) The fidelities of 10D (purple), 15D (green), and 20D (red) OAM-based
MESs in our method under different γ.

When the pump light consists of seventeen p components of LG pump light, we can produce in
theory a 101D OAM-based MES with a fidelity of 0.999996 [ Fig. 5(a)]. This result suggests that
ultrahigh-dimensional OAM-based MESs can be produced by increasing the p components of the
LG pump light. Interestingly, by utilizing the symmetry of the matrix A, we can produce specific
entangled states featuring symmetric weight distributions. Figure 5(b) shows three states with
their weight distributions having square, peaked, and funnel-shaped profiles, which demonstrate
the versatility of our scheme for quantum state engineering.

Fig. 5. (a) Normalized spiral spectrum of 101D OAM-based MES in the detection base.
(b) Normalized entangled states with symmetric weight distributions. Black and blue bars
denote the modes of the target and desired states, respectively.

Our method can also be applied to generate high-brightness high-dimensional MESs with
OAM state being defined by |ψ⟩ =

∑︁
ls,li

Cls,li |ls⟩|li⟩. Here, Cls,li =
∑︁

ps,pi
Cls ,li

ps,pi . In the numerical

calculations, we use LG components of the pump light having mode indices of pp = 0, 1, · · · , 5
and lp = 0. The spatial modes of the coincidence detection base are γs = γi = γ = 1,
ls, li = −50, − 49, · · · , 50 and ps, pi = 0, 1, · · · , 10. Figure 6(a) shows the normalized
spectra of the coincidence probability amplitudes with pp = 0, 1, · · · , 5. Figure 6(b) shows
the corresponding d-dimensional OAM MESs. Here, d = 3, 4, · · · , 20. Figure 6(c) shows
the calculated fidelity and coincidence rate. Clearly, the coincidence rate in this case can be
significantly improved after optimizing the pump light through our method.
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Fig. 6. (a) Normalized spectra of the coincidence probability amplitudes of |ψ⟩ =∑︁
ls,li

Cls,li |ls⟩|li⟩ with lp = 0 and pp = 0, 1, · · · , 5. (b) Normalized spiral spectra of the

output states |ψ⟩O. Here, d = 3, 4, · · · , 20. Note that the normalization is performed on each
detection base. Red bars denote the desired modes. (c) The fidelity between Õ and T̃ and
the ratio of the coincidence rate of our method to that of entanglement concentration. Here,
lp = pp = 0 and γ = 1, and the detection base of entanglement concentration maintains
ps = pi = 0.

4. Conclusion

To date, the highest quantum number of an OAM entangled state is 10010 [36], which indicates
its great potential for increasing the capacity of quantum information processing. Using OAM
correlation, researchers have realized quantum spiral imaging and pattern recognition [37–39],
precision measurements [40,41], and combining and converting different physical degrees of
freedom [42,43]. High-dimensional OAM-based MESs could further improve the performance
of quantum states in these applications. With properly shaping the LG radial components of
pump light, we propose a theoretical scheme to generate efficiently high-dimensional OAM-based
MESs for quantum communication networks. Our method is also capable to realize quantum
state engineering such as generation of OAM-entangled states with specific symmetric weights.
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