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Self-consistent transverse modes in a geometric-phase-plate-assisted optical resonator
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We propose a geometric phase plate (GPP) assisted optical resonator to tailor and discriminate intracavity
transverse modes. Theoretical analysis demonstrates that the resonator has well-defined self-consistent resonator
modes when the GPP is placed at the self-imaging position of the resonator mirror. By engineering phases carried
by the GPP, we show configuration functions including breaking the symmetry of transverse-mode structures
in forward and backward propagations, generating purely high-order transverse modes, and discriminating
degenerate Laguerre-Gaussian modes. Furthermore, we conduct numerical simulation based on the iterative
Fox-Li method. Our design provides a tool for efficiently shaping laser modes at a source, which has potential
application in such technologies as optical imaging, optical tweezers, optical communication, and quantum
information processing.
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I. INTRODUCTION

An optical resonator constructed through parallel arrange-
ment of mirrors plays an important role in a laser system
because it allows optical fields to propagate in a closed path
and form a well-defined transverse-mode structure for lasing
[1]. The simplest case is a two-mirror resonator (also called a
Fabry-Perot interferometer), whose transverse-mode structure
can be described by three well-known families of transverse
eigenmodes: Hermite-Gaussian (HG) modes in Cartesian
coordinates, Laguerre-Gaussian (LG) modes in circular cylin-
drical coordinates, and Ince-Gaussian (IG) modes in elliptic
cylindrical coordinates [2–6]. Transverse eigenmodes and
their superpositions form many structured laser beams, facil-
itating such applications as optical imaging, optical tweezers,
optical communication, and quantum information processing
[7–13].

In general, transverse eigenmodes can be discriminated by
engineering gain and loss in a stable optical resonator [14–19],
which is mainly used to output a fundamental transverse
eigenmode, i.e., a Gaussian mode. The Gaussian mode can
be further shaped into high-order eigenmodes for planned
applications via external optical components, including spa-
tial light modulators, dynamic phase plates, or geometric
phase plates (GPPs) [20–25]. Thanks to advanced nanofabri-
cation techniques, the losses of such optical components have
been greatly decreased, so that they can efficiently tailor the
transverse-mode structure at the source [26–28]. Previous in-
tracavity elements included graded phase mirrors, diffractive
elements, and binary phase plates [29–31]. In recent years,
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GPPs fabricated with liquid-crystal polymers or metasurfaces
have developed into more suitable intracavity components ow-
ing to their precise and reversible phase modulation [32–34].
GPPs carrying spiral phases have been widely incorporated
into optical resonators to generate high-performance orbital
angular momentum modes [35–40]. However, phase modula-
tion alone is not enough to convert a transverse eigenmode
into another. This means the modified transverse mode may
turn into multiple modes, resulting in a varying field distribu-
tion during propagation [41,42]. Therefore, the solution of the
transverse eigenmode will not work for an optical resonator
with GPPs inside. Previous works have only given intu-
itive explanations of why such laser resonators can oscillate
[36,37]. There is still a lack of theoretical analysis demonstrat-
ing the self-consistency of the newly constructed transverse
mode. The corresponding eigenfrequency is not discussed
either.

Here, we propose a GPP-assisted optical resonator con-
structed using two spherical mirrors with a GPP inside.
The resonator meets the following two conditions: (1) the
GPP is placed at the curvature center of the front mir-
ror, which is the symmetric imaging location; (2) the phase
shift �θ is constant and given by 2(θ−x,−y − θx,y) = �θ ,
where θx,y is the angle between the fast axis of the GPP
and the x axis of the coordinates (x, y). The first condition
ensures self-consistency of nonideal traditional eigenmodes,
while the second compensates central inversion of the op-
tical field induced by the symmetric imaging process. A
theoretical analysis is given to demonstrate the existence
of well-defined transverse-mode solutions and corresponding
resonant frequencies, which are supported by the itera-
tive Fox-Li method. Through the phase modulation on
the GPP, our design can be used to efficiently construct
asymmetric transverse-mode patterns, generate high-purity
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FIG. 1. Self-consistency of the GPP-assisted optical resonator. (a) Scheme of the GPP-assisted optical resonator. The resonator is divided
into two parts by a GPP, and the dashed line shows the propagation path of the optical field in one round trip. (b) Reversible transformation
of a uniform GPP due to the counterbalanced geometric phase, where the geometric phase is loaded forward into the light field and canceled
out backward after reflection. (c) Lens-guided GPP-assisted structure equivalent to the resonator of (a). The front mirror and output mirror are
equivalent to two lenses with focusing distances of f1 = R1/2 and f2 = R2/2, respectively.

petal-like high-order modes, and discriminate degenerate
LG modes.

II. THEORY

Figure 1(a) shows the schematic of the GPP-assisted
optical resonator and a one-round-trip transition of the prop-
agating optical field. The front mirror and output mirror have
curvature radii of R1 and R2, respectively. The GPP is incor-
porated into the resonator and set at the curvature center of
the front mirror, dividing the resonator into two parts, labeled
part I (from the front mirror to the GPP) and part II (from the
GPP to the output mirror) for convenience. The one-round-trip
transition is as follows: An initial optical field E1 propagates
through the GPP and converts into E2, which further evolves
in part I to become E2

′; the optical field E2
′ transmits through

the GPP again to become E1
′ and evolves in part II to finish

the one round trip. If E
′′
1 = E1, the optical field returns to the

original distribution, forming a new self-reproducing eigen-
mode. The GPP is the key element assisting the process with
its reversible conversion explained by Fig. 1(b). The fast axis
of a uniform GPP orients at an angle of θ relative to the x
axis. A right (or left)-circularly polarized field passes forward
through the GPP to change into a left (or right)-circularly
polarized state and carries a geometric phase 2θ (or −2θ ).
Although the mirror reflection reverses the handedness of
the polarization, the geometric phase is canceled out instead
of being added because the inverse propagation results in a
new orientation angle of π − θ for the fast axis, as shown in
Fig. 1(b). If the diffraction between the GPP and the mirror is
neglected, one can extend this principle to a nonuniform GPP
with the fast-axis orientation depending on the coordinates of
(x, y), i.e., θ = θx,y. Therefore, the propagation in Fig. 1(a)
can be regarded as equivalent to that occurring in a periodic

GPP-assisted lens-guided structure, as shown in Fig. 1(c). The
mirror inversions of the polarization state and the coordinate
system are ignored simultaneously.

Part II assumes an eigenmode belonging to the HG, LG,
or IG families with uniform but arbitrary polarization. This
assumption not only aims for an eigenmode output for planned
application, but also relaxes the self-consistency condition in
part II. Under this assumption, we choose E1 as the initial field
to calculate one-round-trip propagation, expressed as

E1(x1, y1) = u1(x1, y1)(α|R〉 + β|L〉)

= A(x1, y1,w1) exp

[
iπ (x1

2 + y1
2)

λη1

]

× exp (iψGouy)(α|R〉 + β|L〉), (1)

where α|R〉 + β|L〉 is an arbitrary polarization state in which
|R〉 (or |L〉) is a right-circularly (or left-circularly) polarized
state, and α (or β) denotes the corresponding complex coeffi-
cient; u1 refers to the scalar field of the assumed eigenmode,
including the wavefront with a curvature radius of η1, a Gouy
phase shift of ψGouy, and a residual complex amplitude of
A(x1, y1,w1) correlated to a spot size of w1. Therefore, the
q parameter of E1 is

1

q1
= 1

η1
− j

λ

πw1
2
. (2)

We first analyze the evolution in part I. The optical field
passing through the GPP can be directly written as

E2(x1, y1) = u1(x1, y1)[α exp (−i2θx1,y1 )|L〉 + β

× exp (i2θx1,y1 )|R〉]. (3)
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The ABCD matrix of propagation in part I is[
A1 B1

C1 D1

]
=

[ −1 0
− 2

R1
−1

]
, (4)

considering that the GPP is placed at the curvature center of
the front mirror, i.e., L1 = R1. Because the additional phase

in Eq. (3) may result in a nonstandard eigenmode, the ABCD
law of a Gaussian beam cannot describe the propagation. An
integral approach is used to calculate the optical field E2

′,
given by

E ′
2(x2, y2) =

∫∫
h(x2, y2; x1, y1)u1(x1, y1)[α exp (−2iθx1,y1 )|L〉 + β exp (2iθx1,y1 )|R〉]dx1dy1. (5)

According to Eq. (4), the integration kernel under the paraxial approximation can be written as

h(x2, y2; x1, y1) = − exp (−2ikR1) exp

[
i

2π

λR1

(
x2

2 + y2
2
)]

δ(x1 + x2)δ(y1 + y2). (6)

Substituting Eq. (6) into Eq. (5) then gives the optical field:

E ′
2(x2, y2) = − exp (−2ikR1) exp

[
i

2π

λR1

(
x2

2 + y2
2)]u1(−x2,−y2)

× [α exp (−2iθ−x2,−y2 )|L〉 + β exp (2iθ−x2,−y2 )|R〉]. (7)

When the optical field E ′
2 passes through the GPP again, it becomes

E ′
1(x2, y2) = A(−x2,−y2,w1) exp (−2ikR1) exp

[
i

(
2

R1
+ 1

η1

)
π (x2

2 + y2
2)

λ

]
exp (iψGouy)

× {α exp [−i�θ]|R〉 + β exp [i�θ]|L〉}, (8)

which is based on the condition 2(θ−x,−y − θx,y) = �θ . Com-
paring Eqs. (1) and (8) reveals that the self-imaging in part I
leads to a propagation phase delay of exp(–2ikR1), an addi-
tional curvature of 2/R1, and central inversion of the complex
amplitude. The optical field E ′

2 turns into a standard eigen-
mode whose corresponding q parameter is

1

q′
1

= 2

R1
+ 1

η1
− j

λ

πw1
2
. (9)

The evolution in part II can be directly calculated from the
ABCD law of the Gaussian beam to obtain the final optical
field E

′′
1 . The corresponding ABCD matrix in part II is[

A2 B2

C2 D2

]
=

[
1 − 2

R2
(L − R1) 2(L − R1)

(
1 − L−R1

R2

)
− 2

R2
1 − 2

R2
(L − R1)

]
.

(10)
Under the self-consistency condition, we obtain the q pa-

rameter of E
′′
1 as

1

q′′
1

= C2 + D2(1/q′
1)

A2 + B2(1/q′
1)

= 1

q1
. (11)

From Eqs. (2) and (9)–(11), we get the solution of E1 in
Eq. (1) with a distinct curvature radius and spot size:⎧⎨

⎩
η1 = −R1

λ

πw2
1

=
√

1
R2

1

L(R2−L)
(R1−L)(R1+R2−L)

. (12)

The optical field E1 determined by Eq. (12) is self-
reproducing after one round trip. The complete transverse-
mode structure in the resonator can be directly calculated
using Fresnel propagation integration and the given geometric
phase. Equation(12) also indicates that the stability condition

of the resonator with the GPP is the same as that without the
GPP.

The phase accumulation in one round trip can be divided
into four parts: the propagation phase shift of –2kR1 in part
I, the phase shift of �θ induced by the GPP, the propagation
phase shift of –2k(L–R1) in part II, and the difference between
Gouy phases on the GPP and the output mirror, labeled as
ψR2 − ψGPP. The Gouy phases can be further determined ac-
cording to the designed eigenmode in part II. Therefore, we
obtain the round-trip phase delay of the resonant modes:

exp {−i[2kL + �θ − 2(ψR2 − ψGPP)]} = 1. (13)

By solving Eq. (13), one can get the eigenfrequency of the
corresponding new eigenmode.

On the basis of the above theory, the combination of
eigenmodes determined by Eq. (12) and the GPP satisfying
the condition of 2(θ−x,−y − θx,y) = �θ form more abundant
self-consistent transverse-mode structures than those in a tra-
ditional two-mirror resonator. In other words, the optical field
passing through the GPP multiple times forces the resonator
to oscillate in a new eigenmode. Once it is constructed, the
cumulative effect of the GPP is canceled out in each round
trip. The new eigenmode presents two faces: a standard eigen-
mode in part II and a self-imaging mode in part I, providing
a tool for efficiently shaping the transverse-mode structure in
the resonator. In the following, we mainly consider three kinds
of phase distributions (spherical phases, binary π phases, and
spiral phases) carried by the GPP, reveal their transverse-mode
structures, and explore their applications. These phase distri-
butions result in the condition �θ = mπ (m is an integer).
According to Eq. (13), if m is an odd integer, the additional
π phase shift changes the resonant frequency. The resonator
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(a)

(b)

(c)

(d)

FIG. 2. Transverse-mode structure shaping with a traditional lens or a GPP lens. Transverse-mode structures in resonators (a) without
additional lenses, (b) with a traditional lens, and (c,d) with a GPP lens. The GPP lenses in (c,d) are different from the traditional lens in (b),
because the light field is focused and defocused in forward (backward) and backward (forward) propagations, respectively. The output intensity
patterns of the corresponding resonators are inserted on the right side. The two-dimensional transverse-mode structures are not in scale.

parameters are set to be R1 = 75 mm, R2 = 125 mm, L =
130 mm, and a = 7 mm (the size of the mirrors) to follow the
theoretical calculation and numerical simulation. The aperture
of the resonator is determined by the size of the mirrors.
The numerical simulation is carried out based on the Fox-Li
iterative procedure, given by

E2(x1, y1) = E1(x1, y1) × exp (iθGPP),

E ′
2(x2, y2) =

∫∫
h(x2, y2; x1, y1)E2(x1, y1)dx1dy1,

E ′
1(x2, y2) = E ′

2(x2, y2) × exp (−iθGPP),

E ′′
1 (x1, y1) =

∫∫
h′(x1, y1; x2, y2)E ′

1(x2, y2)dx2dy2. (14)

The symbols in Eq. (14) are consistent with those in
Fig. 1(c). The integration kernels of h and h′ refer to propa-
gation processes in part I and part II, respectively, while the
θGPP is the loaded geometric phase by the GPP. The double
integrals cover the aperture of the resonator. An arbitrary field
of E1 is given to start the simulation process; then the field of
E1 is replaced by E ′′

1 to begin the next iteration until it remains
unchanged.

III. RESULTS

A. Spherical phases for breaking the symmetric transverse
patterns in forward and backward propagations

For a two-mirror resonator, a Gaussian mode is the funda-
mental eigenmode with the lowest loss [Fig. 2(a)]. If a lens
is inserted into the resonator, the Gaussian mode in Fig. 2(a)
changes its size and curvature to form a new Gaussian mode
in Fig. 2(b), in which the transverse-mode structure still has
symmetric forward and backward propagations. However, in-
corporating a geometric-phase lens into the resonator changes
this feature, because the lens becomes equivalent to a focusing
(or defocusing) lens in forward (or backward) propagation,
and vice versa. As shown in Fig. 2(c), the GPP carries a ge-
ometric phase of 2θx,y = π (x2 + y2)/λ f , where f = 50 mm
is the focusing or defocusing distance of the GPP. According
to Eq. (3), a right-circularly polarized field will be focused
by the GPP with inverted polarization in backward propaga-
tion (from the output mirror to the front mirror), and then
defocused by the GPP with recovered polarization in for-
ward propagation (from the front mirror to the output mirror).
Therefore, the symmetric transverse-mode structure in part I is
broken, while the transverse-mode structure in part II remains
the same as that in Fig. 2(a). If the geometric phase is 2θx,y =
−π (x2 + y2)/λ f or the initial polarization is left-circularly
polarized, the focusing position exists in forward propagation,
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FIG. 3. Generation of HG, IG, and degenerate LG modes. (a) Different GPPs for generating standard HG, IG, and degenerate LG modes.
(b) Transverse-mode structures on the x = 0 and y = 0 planes based on iterative Fox-Li simulation. The two-dimensional transverse-mode
structures are not in scale. (c) Simulated output patterns corresponding to (b). (d) The differences between the simulated output intensities and
the theoretically calculated output intensities based on the self-consistency condition.

as shown in Fig. 2(d). The asymmetric propagation prevents
formation of a standing wave, making it possible to construct
traveling-wave oscillation in a two-mirror resonator to avoid
spatial hole burning in active media [43]. Furthermore, the
dependency on the polarization handedness can be applied
in cavity-enhanced chiral light-matter interaction [44]. The
modulation scheme can be also used for a cylindrical geomet-
ric phase to shape the beam size in one transverse direction
without changing the output features.

B. Binary π phases for generating HG, IG,
and degenerate LG modes

High-order HG, IG, and degenerate LG modes feature bi-
nary π -phase wavefronts with different geometric symmetries
[1,3]. Here, we designed a binary π -phase GPP to gener-
ate HG, IG, and degenerate LG eigenmodes. According to
Eq. (7), one can determine the corresponding geometric-phase
distribution of the GPP that precisely counteracts phase fronts
of the high-order modes, so that a Gaussian-like face is formed
in part I. The question here is whether such a transverse-mode
structure has lower losses. To answer this question, we carry
out Fox-Li iteration to discriminate the lowest-loss mode.
Figure 3(a) shows the stimulated GPPs with different binary
π -phase distributions for generating HG, IG, and degenerate
LG modes in part II. The corresponding simulation results
in Fig. 3(b) present one-round-trip transverse-mode structures

in the x = 0 and y = 0 planes. The designed eigenmodes are
produced in part II, and Gaussian-like faces emerge in part
I. The smooth conversions from the Gaussian-like faces to
the designed eigenmode indicate negligible diffraction losses
for the newly constructed resonator mode. Their formations
come from the fact that the Gaussian-like faces encounter the
least diffraction, because the self-imaging process in part I
is valid under the paraxial approximation. Here it should be
noticed that the phases on the GPP may be different from the
phase profiles of the output modes according to the theoretical
prediction of Eq. (8). However, the mismatch between the
GPP and the undesired eigenmode induces large diffraction
losses in one round trip, which can be formed by furtherly
engineering spatial distributions of additional gain and loss in
an actual laser system. Figure 3(c) shows that the simulated
output intensity patterns, which agree well with theoretical
predictions supported by the negligible differences between
simulated and theoretical output results shown in Fig. 3(d).
In our scheme, the GPPs not only perform modal discrimina-
tion, but also shape the transverse-mode structure. Owing to
simultaneous modal modulation and selection, our design can
couple with an input Gaussian mode and convert it into a high-
purity higher-order transverse eigenmode. Furthermore, the
nearly Gaussian profile in part I can be used to match popular
Gaussian-pump or multimode-pump beams with gain media
to extract a high laser gain for efficient output of high-order
laser modes.
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(a)

(b)

(c) (d)

FIG. 4. Discriminating degenerate LG modes to output single high-purity modes. Examples of (a) LG30 and (b) LG33 generations, which
from left to right are the GPPs, the transverse-mode structures inside the resonator, and the simulation output patterns. The two-dimensional
transverse-mode structures are not in scale. Comparisons of cross sections between the simulated and theoretical results at the output for the
(c) LG30 and (d) LG33 modes.

C. Spiral phases for discriminating LG modes with the same
radial index but opposite azimuthal indices

LG modes are usually characterized by two indices: the
azimuthal index l (any integer) and the radial index p (zero or
a positive integer), i.e., LGl p modes. They have attracted much
interest mainly owing to their orbital angular momentum cor-
responding to the azimuthal phase term exp(−ilϕ), where l is
also called the topological charge (TC) [5]. LG modes with the
same p index but opposite azimuthal indices are degenerate
in a traditional resonator caused by their identical intensity
distributions. GPPs with spiral phase distributions have been
incorporated into an optical resonator to break the degener-
acy of LG modes with a zero p index [35–37]. As shown
in Fig. 4(a), a GPP with 2θx,y = 3ϕ is used to generate an
LG30 mode with right-circular polarization. Fox-Li iteration
is used to simulate the resonator mode, which converges into
the transverse-mode structure shown in Fig. 4(a). As evident,
the Gaussian-like face smoothly evolves into a donut pattern
to match the intensity distribution of the designed LG30 mode,
so the output LG mode hardly contains modes with p > 0.
The configuration in this work can be used to generate higher-
order LG modes with nonzero p indexes, which distinguishes
it from our previous work [36]. We design a phase plate with
an azimuthally spiral phase and radially binary π -phase dis-
tributions on the basis of the theoretical prediction of an LG33

mode in part II. The Fox-Li simulated results are shown in
Fig. 4(b), where the radial distribution is self-reproduced. The
LG33 mode smoothly connects with the Gaussian-like face
with the help of the designed GPP, resulting in a well-defined
donut intensity pattern with two nodes in the radial direction.
Figures 4(c) and 4(d) compare the cross sections of the sim-
ulated and theoretical outputs of the LG30 and LG33 modes,
respectively. Their good agreements show high purities of
the output modes. Based on Eq. (12), the spot size of w1

and curvature radius of –R1 are independent on both of the
l and p indices. Therefore, the beam size of the LG mode
on the GPP can be given by wl p = √

l + 2p + 1w1, while
the l index has little influence on the beam waist position.
This configuration provides a practical solution to break the
degeneracy of LG modes in laser resonators for outputting
single high-purity high-order LG modes, which could be po-
tentially applied in the laser interferometer gravitational-wave
observatory (LIGO) system to reduce thermal noise [45].

IV. CONCLUSION

We have theoretically analyzed the transverse-mode solu-
tion in a GPP-assisted optical resonator using the self-imaging
and symmetry of the geometric phase distribution. With the it-
erative Fox-Li method, we have shown its distinct advantages
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including construction of asymmetric transverse-mode
structures, selective output of binary π -phase eigenmode
modes, and high discrimination for higher-order LG modes.
These advantages are difficult to realize in traditional
laser resonators. Other phase distributions satisfying
2(θx,y − θ−x,−y) = �θ can also be designed to match laser
gain or output properties to facilitate customized applications.
GPPs fabricated with liquid-crystal polymers (such as a q
plate) or metasurfaces can be used to realize our proposals
[36,37]. They inevitably introduce transverse dependent
losses due to imperfect fabrication of sharp phase change
in binary π -phase GPP or phase singularity in spiral-phase

GPP apart from uniform transmission loss, which will
affect the output efficiency as well as the transverse-mode
selection in a laser system. These losses can be reduced
by improving fabrication precision and optical film coating
for GPPs. Our design can facilitate special applications
such as high-purity high-order laser beam generation, chiral
light-matter interaction, and gravitational wave detection.
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