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We theoretically demonstrate through numerical methods that the triple-photon state generated by three-
photon spontaneous parametric down-conversion is a non-Gaussian Greenberger-Horne-Zeilinger state, showing
super-Gaussian statistics. Interestingly, the degree of entanglement between the modes of the triple-photon state
is stronger than that corresponding to the two-mode squeezed vacuum state produced by a quadratic Hamiltonian
with the same parameters. Furthermore, we propose a model to prepare two-mode sub-Gaussian entangled states
with a tunable negative Wigner function based on quadrature projection measurements. We find that these
Gaussian projection measurements with outcomes X � 1 not only improve the entanglement of the residual
two modes but also introduce a Gaussian component, resulting in the coexistence of Gaussian and non-Gaussian
entanglement.
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I. INTRODUCTION

Early development of continuous-variable quantum infor-
mation technologies (CV-QITs) mainly focused on Gaussian
states and Gaussian operations [1,2], achieving remarkable
accomplishments [3–5]. In CV-QITs, information is encoded
in the amplitude and phase quadratures of optical fields
and retrieved by homodyne detection. Nonclassical sources
in CV-QITs are generally single-mode squeezed and two-
mode entangled states. They are Gaussian states because the
associated quadratures exhibit normal distribution. The com-
bination of Gaussian states and Gaussian operations provides
a complete framework for many CV-QIT protocols [6–12].
However, there has been growing awareness of some impor-
tant inherent limitations of this Gaussian framework, such as
quantum distillation [13], which is an essential protocol for
long-distance quantum communication, especially quantum
key distribution. A prominent no-go theorem states that Gaus-
sian operations cannot distill Gaussian states [14]. It has been
demonstrated that sub-Gaussian (SG) sources are necessary to
achieve universal CV quantum computation [15–19].

Since the available resources for CV-QITs are, by na-
ture, mostly Gaussian, one must rely on degaussification via
quantum nonlinear processes to produce SG resources. Our-
joumtsev et al. used photon subtraction as a non-Gaussian
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operation to prepare and increase entanglement between two
Gaussian states [20,21]. So far, photon subtraction and addi-
tion have been employed to prepare various optical SG states,
such as superposition of coherent states [22–25], hybrid entan-
glement [26,27], and multimode SG states [28]. However, one
of the main advantages of CV-QITs is determinism, but the
probabilistic degaussification protocol losses this key feature.

A promising quantum technology that can deterministi-
cally generate SG states is the triple-photon generation (TPG)
process. Douady and Boulanger [29] first demonstrated the
existence of phase-matched TPG in the KTiOPO4 crystal in
the regime of double seeding. Recently, the outstanding work
of observing spontaneous TPG in a superconducting paramet-
ric cavity was reported by Sandbo Chang et al. [30]. Optical
fiber is also a potential candidate for preparing a spontaneous
triple-photon state (TPS) [31]. In a fully degenerate config-
uration, the Wigner function of the TPS exhibits negativities
[30,32,33], a clear signature of SG statistics, which is impos-
sible to achieve by second-order down-conversion (SODC)
and linear optics. Nonlinear steering has been proposed and
verified based on a partially degenerate configuration [34].
González et al. revealed the relationship between Gaussian
entanglement and both number of seeded modes and intensity
in the nondegenerate case [35]. Very recently, work [36] has
shown that the nondegenerate TPS in a spontaneous paramet-
ric regime possesses fully inseparable and genuine tripartite
entanglement. However, deeper insight into the physics of
nondegenerate TPS is still missing.

In this paper, we theoretically demonstrate through
numerical methods that TPS is a non-Gaussian
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FIG. 1. (a) Quadrature joint probability distribution of modes A, B, and C for interaction strength ξ = κtαp = 0.3. The photon number
distribution of mode A in linear and log scales for (b) ξ = 0.3, (c) ξ = 0.5, and (d) ξ = 0.7, where modes B, C, and P are traced out. Black and
red histograms represent TPS and SODC. (e), (f), and (g) are, respectively, the marginal distribution of the photon number states represented
by (b), (c), and (d), where the full line and the dotted line represent TPS and SODC respectively. The insets on the left and right in (e), (f), and
(g) are, respectively, the Wigner functions of mode A of TPS and SODC.

Greenberger-Horne-Zeilinger (GHZ) state, presenting
super-Gaussian statistics. The degree of entanglement of TPS
is higher than the two-mode squeezed vacuum state produced
by the SODC with the same interaction parameters. We also
reveal how a two-mode SG entangled state with tunable
non-Gaussianity is prepared by performing simple quadrature
projection measurements and how the entanglement and SG
level of the generated states depend on the measurement of
quadratures.

II. NON-GAUSSIAN NATURE AND
ENTANGLEMENT OF TPS

We start our analysis by considering the interaction Hamil-
tonian describing the nondegenerate TPG process,

Ĥ = ih̄κ (3)(â†b̂†ĉ† p̂ − âb̂ĉ p̂†), (1)

where κ (3) is the third-order coupling constant that describes
the strength of the nonlinear interaction. The annihilation
operators â, b̂, ĉ, and p̂ describe, respectively, the three down-
converted modes and the pump mode. Using this Hamiltonian,
the Schrödinger equation is solved to deduce the final state of
system at time t when considering that the initial state is vac-
uum for the triplets and a coherent mode αp for the pump. The
evolution equation can be numerically solved by the Monte
Carlo method [37–40]. Figure 1(a) shows the quadrature joint
probability distribution corresponding to modes A, B, and C.
The distribution, which was initially spherical in the 3D plot—
modes A, B, and C are initially vacuum states—is now very
complex, exhibiting star shapes and interferences, indicating
quantum correlations between them.

We will now discuss the quantum properties of a single
mode of TPS. For comparison, we also present the photon
number distribution of the twin modes generated by SODC
and described by the Hamiltonian HS = ih̄κ (2)(â†b̂† p̂ −
âb̂p̂†), where κ (2) is the second-order nonlinear interac-
tion strength. To facilitate the comparison of the physical

properties of TPS and SODC, we assume κ (2) = κ (3) = κ .
Figures 1(b), 1(c), and 1(d) show the photon number distribu-
tion of mode A in linear and log scales for interaction strengths
ξ = 0.3, 0.5, and 0.7, where ξ = κtαp. These processes could
be obtained by considering the third-order nonlinear mate-
rial in a high-finesse cavity or an optimized superconducting
parametric cavity. These photon number distributions of TPS
(in black) are quite different from the exponential decay of
SODC (in red), the Poisson distribution of coherent states, or
the Bose-Einstein distribution of thermal states [41,42]. With
the increasing of the interaction time, the shape of the photon
number distribution of TPS gradually goes from an arc to an
“�” shape in the log scale, whereas it is always linear for
SODC. This nonlinear photon number distribution has impli-
cations on the marginal distributions (full line) represented in
Figs. 1(e), 1(f), and 1(g) along with the Gaussian marginal
distribution (dotted line) of SODC. As the interaction strength
increases, the marginal distribution of TPS becomes super-
Gaussian, exhibiting a higher peak, narrower shoulders, and
longer tails. The TPS displays a super-Gaussian statistics in
the quadratures, demonstrating thus the non-Gaussian nature
of nondegenerate TPS.

After studying the single-mode properties of the TPS, we
focus on its multimode SG and entanglement features. As
shown in Figs. 1(e), 1(f), and 1(g), it is difficult to qualitatively
grasp the super-Gaussian nature of the TPS from the Wigner
function. This is in contrast to photon subtraction or addition,
where the negativity of the Wigner function at the origin of
the phase space is a signature of SG. Thus, a measure of
non-Gaussianity based on a different model is necessary here.
We employ the quantum relative entropy (QRE) to quantify
the super-Gaussian nature of the TPS. The QRE between a
given quantum state � and a reference Gaussian state γ is
defined as follows [43]:

δ[�] = EvN (γ ) − EvN (�), (2)
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FIG. 2. (a) QRE and (b) entanglement of states generated by
TPG and SODC, respectively. ν− is the smallest symplectic eigen-
value of the partially transposed covariance matrix of the TPS.

where EvN (�) = Tr[� ln �] is the von Neumann entropy
(VNE) and γ has the same covariance matrix and the first
moments as �. The VNE of a Gaussian state with covariance
matrix γ and symplectic eigenvalue ν j is

EvN (γ ) =
n∑

j=1

f (ν j ), (3)

where f (x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x − 1

2 ).
Let us first consider the SODC process. The VNE (entan-

glement entropy) of the two-mode squeezed vacuum is [41]

ES
vN = cosh2(ξ ) ln cosh2(ξ ) − sinh2(ξ ) ln sinh2(ξ ). (4)

Figure 2(a) shows in circles the QRE [δ(�SODC
AB ) =

ES
vN (γAB) − ES

vN ] of SODC (see the Appendix for details),
where ES

vN (γAB) represents the VNE of a reference two-mode
Gaussian state. Not surprisingly, it is equal to zero for
all interaction times since γAB = �SODC

AB . Any single-mode
element of SODC is in a thermal state, and the VNE is
ES

vN (�A/B) = ES
vN . Similarly, the QRE of a single mode

[δ(�SODC
A )] is equal to zero, as shown in Fig. 2(a) by the dots.

Thus, for every Gaussian state, independent of the number of
modes, the QRE is zero.

When the interaction strength is small, the TPS can be ap-
proximated as |ψT 〉 ≈ (|000〉 + ξ |111〉 + ξ 2/2|222〉)ABC . The
entanglement entropy of the TPS is still equal to the VNE
of each subsystem. Due to the symmetry of the system, we
obtain ET

vN (ρA/B/C ) = ET
vN (ρAB/BC/AC ). Thus, the QRE mainly

depends on the VNE of the reference Gaussian state. For the
TPS represented by |ψT 〉, the covariance matrix related to
the reference Gaussian state is γABC = Diag(λ, · · · , λ), where
λ = 3ξ 2 + 5ξ 4/4. The VNE of the reference Gaussian state
satisfies the relationship ET

vN (γABC ) = 3ET
vN (γAB/BC/AC )/2 =

3ET
vN (γA/B/C ). Therefore, we can deduce a mathematical re-

lation for the QRE between the TPS and its subsystems,
given by

δT (ρABC ) − δT (ρAB) = δT (ρAB) − δT (ρA). (5)

Figure 2(a) displays the evolution of QRE as a function of
the interaction strength. We see that the QRE of TPS in-
creases monotonically throughout the interaction time. For its
subsystems ρAB and ρA, their QRE still exists, as shown in
Fig. 2(a) by the dotted-dashed and dotted lines, respectively.
The different results in Fig. 2(a) are calculated numerically
without any assumption about the evolved state, validating the
relation of Eq. (5).

Next, we show that the TPS is not only super-Gaussian
but also entangled. As an entanglement witness we use the
logarithmic negativity defined as EN = ln ||�TA ||1 [44], where
�TA is the partial transpose over mode A and || · ||1 is the trace
norm. Obviously, modes A, B, and C are entangled. This is
shown in the logarithmic negativity plots in Fig. 2(b) (full
line). In addition, the minimum symplectic eigenvalue ν− of
the partially transposed covariance matrix of TPS is greater
than or equal to 1/2 [â = (X̂A + iP̂A)/

√
2] for all interaction

times [dashed line in Fig. 2(b)], which means that there is
no Gaussian entanglement among the modes A, B, and C
[45]. This is consistent with the experimental results [30].
The reason for this is that the quantum correlations of the
TPS are purely super-Gaussian, not detected by Gaussian-type
inseparability criteria. Higher-order cumulants need to be cal-
culated for non-Gaussian statistics. Remarkably, for the same
interaction strength, although the TPS contains more vacuum
noise, its degree of entanglement is higher than that of the
SODC. Another feature is that when one mode is traced out,
the remaining two modes are not entangled, although they
are super-Gaussian, which is also a distinctive signature of
the GHZ state. The evolution of the entanglement of the TPS
versus the losses is discussed in the Appendix.

Experimentally, the numerical results can be studied in
a resonant configuration where the third-order nonlinear in-
teraction is enhanced using a cavity. To fully characterize
TPS, we can use the optical tomographic method [46–48].
Assuming that modes A, B, and C are selected close to the
degeneracy point (ωp/3), a single classical field oscillating at
ωp/3 can be used as a local oscillator for the three homodyne
detections. Such a field could be easily locked in phase to
the pump of the TPG after producing a field at ωp through
third-harmonic generation. Our theoretically analysis could
also be implemented in the radio-frequency regime following
the recent results in Ref. [30].

III. TWO-MODE ENTANGLED STATE WITH A TUNABLE
NEGATIVE WIGNER FUNCTION

Entangled states with negative Wigner functions have been
proven to be the key to speed up computation in quantum
computing [49]. Nowadays, photon addition and subtraction
are the most effective ways to prepare two-mode SG states
exhibiting negative Wigner functions. However, to the best of
our knowledge, the SG properties produced by these methods
are not readily tunable. In our proposal, the projection induced
by the measurement of a quadrature allows the SG proper-
ties to be tuned continuously. Experimentally, the projection
measurement can be regarded as the postselection processing
of the reconstructed density matrix. Figure 3(a) shows the
dynamic evolution of the QRE of the conditional two-mode
(�C

AB) and arbitrary single-mode (�C
A/B) states versus the pro-

jection measurement XC of mode C. For the outcome XC = 0
in the homodyne detection, the probability distribution is the
largest, and δ[�C

AB] is greater than zero. In the vicinity of
XC = 0, as |XC | increases, the photon number distribution of
�C

AB gradually tends to decay exponentially, making δ[�C
AB]

decrease. This is a gaussification process. As |XC | continues to
increase, �C

AB starts to deviate from the exponential decay dis-
tribution; thus, the QRE increases significantly, corresponding
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FIG. 3. (a) The QRE of conditional two-mode ρC
AB (dotted line) and ρC

A (full line) versus XC when ξ = 0.3. The insets show the Wigner
functions of projected mode A when (a1) XC = 0, (a2) 1, (a3) 2, and (a4) 3 (mode B is traced out). (b) The logarithmic negativity is greater
than zero for all projection measurements, indicating entanglement between modes A and B. (c) The quadratures display EPR steering when
XC � 1 and are not EPR steerable when XC = 0. The jitter in (b) and (c) is caused by a lower probability of projection measurement when
ξ is small.

to the degaussification process. The QRE of mode A shows an
evolution law similar to that of δ[�C

AB] if mode B is traced
out. In insets (a1), (a2), (a3), and (a4) of Fig. 3(a), we plot
the Wigner functions of mode A for values of XC = 0, 1, 2,
and 3, respectively. The SG signature exhibited by the Wigner
functions becomes more and more obvious [from inset (a2) to
(a4)], although no negativity appears.

In addition, �C
AB is inseparable and describes entanglement

between modes A and B, as shown in Fig. 3(b), representing
the logarithmic negativity EN as a function of the interaction
strength and for different XC outcomes. With fixed interaction

FIG. 4. Wigner functions of conditional two-mode
states. (a1)–(a4) are the Wigner functions W (XA, 0, XB, 0) for
values of XC = 0, 1, 2, and 3, respectively. (b1)–(b4) are the same
as (a1)–(a4), but for W (0, PA, 0, PB ). (c) and (d) are 3D plots of
W (0, PA, 0, PB ) and W (XA, PA, 0, 0) when XC = 3, respectively.

strength, EN (�C
AB) increases monotonically with the increase

of XC . However, compared to the TPS, EN (�C
AB) is reduced

when XC = 0. This is because the projection measurement
XC = 0 will increase the vacuum noise. For XC � 1, EN (�C

AB)
is significantly increased compared to the TPS. For com-
parison, we studied the linear steering of �C

AB [50], defined
as RA|B = (XA + gB,X XB)(PA + gB,PPB) < 1, where gB,X

and gB,P are optimized real numbers. The quadrature mode
A is steerable by mode B if RA|B < 1. In Fig. 3(c), we see
that the quadratures of mode A is steerable by B within
a short interaction time when the projection measurement
outcomes are XC = 1, 2, and 3. Interestingly, we find that
RA|B is always greater than 1 under XC = 0; that is, there is
only non-Gaussian entanglement between modes A and B.
Considering that the TPS contains only non-Gaussian entan-
glement, the homodyne detection XC = 1, 2, and 3 introduce
the Gaussian component to �C

AB, resulting in the coexistence
of non-Gaussian and Gaussian entanglements.

FIG. 5. (a) Evolution of two symplectic eigenvalues of γAB and
(b) its VNE. (c) and (d) are the same as (a) and (b), but for γA.
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FIG. 6. (a) Evolution of the symplectic eigenvalue of γABC . (b) The VNE of the single mode of the TPS (dotted-dashed line) and the VNE
of its reference Gaussian state (full line). (c) The VNE of TPS (dotted line) and SODC (full line).

To visualize the dynamic evolution of SG and entangle-
ment characteristics of �C

AB with the projection measurement,
we plot the Wigner function of �C

AB for the values of
XC = 0, 1, 2 and 3 in Fig. 4. For an outcome on XC = 0,
W (XA, 0, XB, 0) [see Fig. 4(a1)] and W (0, PA, 0, PB) [see
Fig. 4(b1)] reveal quadruple symmetry (super-Gaussian) and
that the amplitude and phase quadratures do not exhibit
any correlation, which is also confirmed by the steer-
ing in Fig. 3(c). For the values of XC = 1, 2, and 3,
W (XA, 0, XB, 0) [from Figs. 4(a2) to 4(a4)] shows that the
amplitude quadratures are correlated, while the phase quadra-
tures are anticorrelated in W (0, PA, 0, PB) [from Figs. 4(b2)
to 4(b4)]. Importantly, the correlation gradually increases
with the increase of XC . Finally, we also show 3D plots of
W (0, PA, 0, PB) and W (XA, PA, 0, 0) for an outcome on XC =
3 in Figs. 4(c) and 4(d). The Wigner function shows clearly
negative values which are real evidence of the SG nature of
the generated states.

IV. CONCLUSION

In summary, we have theoretically revealed that the
triple-photon state produced by triple-photon generation is a
pure super-Gaussian GHZ state, robust to optical losses. We

FIG. 7. Evolution of the logarithmic negativity EN of TPS as a
function of the optical losses for ξ = 0.3.

have proposed to use projection measurements to prepare
two-mode sub-Gaussian entangled states with a tunable neg-
ative Wigner function. Our results extend the boundaries of
quantum optics and have potential applications in quantum
information processing and quantum computing.
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APPENDIX

We show the intermediate results of calculating the QRE
and the effects of losses on the entanglement of the TPS.

1. Quantum relative entropy

It is well known that Gaussian states can be fully character-
ized by their covariance matrix and their first-order momenta,
the mean values of their quadratures. Therefore, for any quan-
tum state ρ, we define the reference Gaussian state γ with
the same covariance matrix and first-order momenta as the
quantum state ρ. For the two-mode squeezed vacuum state
generated by SODC, we express its reference Gaussian state
as γAB. In Fig. 5(a), we show the evolution of the two sym-
plectic eigenvalues of γAB as a function of the interaction
strength. The corresponding VNE ES

v (γAB), as defined by
Eq. (3) of the main text, is represented in Fig. 5(b). For a
two-mode squeezed vacuum state the VNE corresponds to
its entanglement entropy. Therefore, the QRE of SODC is
equal to zero and is independent of the interaction strength.
Similarly, we can define the reference Gaussian of any of the
two modes of SODC. The density matrix of such a mode is
denoted by ρSODC

A , and its reference Gaussian state is denoted
by γA. Figures 5(c) and 5(d) show, respectively, the symplectic
eigenvalues of γA and the corresponding VNE. Obviously,
ρSODC

A is a thermal state, and its QRE is equal to zero too.
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The form of the covariance matrix of the reference Gaus-
sian state of the TPS is γABC = Diag(ν, . . . , ν), where ν is
a variable that depends on the interaction strength. There-
fore, the symplectic eigenvalue of γABC is ν. In Fig. 6(a), we
show the evolution of ν as a function of the interaction
strength. The VNE of an arbitrary single mode in the TPS
(dotted-dashed line) and the VNE of its reference Gaussian
state (full line) are shown in Fig. 6(b). The QRE of any single
mode in the TPS is not equal to zero, as shown in Fig. 2(a). On
the other hand, the comparison of the VNE between the TPS
and the SODC is shown in Fig. 6(c). We see that the VNE of
the TPS is higher than that of the SODC, which shows that

the degree of entanglement of the TPS is higher than that of
SODC.

2. Optical losses in triple-photon generation

In quantum optics experiments, optical losses acting on the
system are unavoidable and will lead to the degradation of
quantum properties. In general, the calculation of loss can
be modeled by placing a virtual beam splitter in front of an
ideal detection system. Here, for simplicity, we assume that
the losses of three down-conversion modes are the same. Con-
sidering that the initial TPS has the form |ψ〉 = ∑n

n=0 cn|nnn〉,
the expression of the measured TPS is modified as

ρ ′
abc =

∑
n

c′
n

∑
m

c′
m

[(
min(m,n)∑

k=0

Ck
nCk

m

√
(n − k)!(m − k)!k!

√
1 − η

m+n−2k × ηk|n − k〉〈m − k|
)

a(
⊗

min(m,n)∑
k=0

Ck
nCk

m

√
(n − k)!(m − k)!k!

√
1 − η

m+n−2k
ηk|n − k〉〈m − k|

)
b

⊗
(

min(m,n)∑
k=0

Ck
nCk

m

√
(n − k)!(m − k)!k!

√
1 − η

m+n−2k
ηk|n − k〉〈m − k|

)
c

]
,

where c′
j = c j/

√
j!3, Ck

n(m) is the binomial coefficient, and η is the reflection coefficient of the beam splitter. In Fig. 7, we show
the evolution of logarithmic negativity EN of TPS and SODC as a function of optical losses, where ξ = 0.3. We see that the
degree of entanglement of TPS after 7% loss per mode reaches the level of entanglement of lossless SODC. Such robustness
is due to the super-Gaussian statistics of TPS. More interestingly, if the loss experienced by each mode is less than 20%, the
entanglement of TPS is higher than that of the SODC; otherwise, the entanglement of the TPS is lower than that of the SODC.
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