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Highlights
Singlet fission holds great potential to
boost the efficiencies of solar cells by
converting one photo-excited singlet ex-
citon into two triplets via an intermediate
state of triplet pairs with different ex-
change couplings.

Magnetic field effects (MFEs) are induced
by spin mixing between the triplet pair
manifolds with different spin characteris-
Singlet fission can double the photon-to-electron conversion efficiency by splitting
a singlet exciton into two triplets via an intermediate state of a triplet pair. The spin
mixing of tripletpair manifolds with different spin characters is a determining factor
for the efficiency of final triplet generation. In this review, we summarize recent
studies of magnetic field effects (MFEs) on singlet fission dynamics, from theoreti-
cal models to recent experimental results. The analyses of MFEs support a three-
step model with dynamic equilibrium between strongly and weakly coupled triplet
pairs, suggesting an intermediate regime of intertriplet coupling to be favorable for
singlet-quintet mixing toward efficient triplet generation for practical applications.
tics. The strongly and weakly coupled
triplet pairs exhibit MFEs with magnetic
field strength in different regimes.

The quintet channel is themajor pathway
for highly efficient generation of free trip-
lets. Singlet-quintet mixing is enabled by
dynamic equilibrium between strongly
and weakly couple triplet pairs through
spatial separation and/or structure
fluctuation.

Intermediate intertriplet coupling is
suggested for the efficient generation
and dissociation of triplet pairs for
highly efficient singlet fission for prac-
tical applications.
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Triplet pair states
Singlet fission is a spin-allowed process that converts two triplets from a photo-excited singlet state in
molecular systems [1,2]. Research interest in singlet fission has grown rapidly over the past decade,
being motivated by the potential use of such singlet fission in solar cells to exceed the Shockley–
Queisser limit (see Glossary) [3–7]. Intensive efforts have been made to study intermolecular and
intramolecular singlet fission systems. In a commonly used view of singlet fission, a photo-excited
singlet state (S1) on one molecule interacts with the neighboring one in the ground state S0 to form
a triplet pair state 1(TT) distributed over two molecules [8–12]. This intermediate 1(TT) state is subse-
quently dissociated into two individual triplets, that is,S0 +S1↔

1(TT)↔ T1 + T1 [9,13–15]. Elucidating
the generation and dissociation dynamics of triplet pair states is pivotal for understanding the
mechanism of singlet fission [9,10,16–28], which may guide expanding chromophore pools of singlet
fission materials for potential applications [29–36].

The effect of magnetic fields (i.e., MFE) has been widely applied in the study of triplet pair states
since the inception of singlet fission. As early as 1960s, the MFE on delayed fluorescence was
observed as experimental evidence for the involvement of triplet pair states in the photophysics
of crystalline acenes [37–41]. Utilizing state-of-the-art techniques, including the optically detected
sublevel resonance approached by applying a microwave and/or magnetic field [42–47], quantum
beat spectroscopy [48–52], and time-resolved electronic spin resonance (tr-ESR) [53–60],
has deepened our understanding of triplet pair states in recent years [46,61]. MFEs on delayed
fluorescence in the weak field regime (<1 Tesla) is relevant for the population redistribution of the
manifolds of the triplet pairs with weak exchange coupling. For triplet pairs with strong exchange
coupling, the eigenstates at zero magnetic field comprise the pair states with singlet (S = 0), triplet
(S = 1), and quintet (S = 2) spin characters. Spin mixings between triplet pairs with different spin
characters, as probed by MFE studies, are essential for understanding the dissociation processes
of triplet pairs.

Models of MFEs on triplet pair dynamics
The theoretical understanding of MFEs starts from a model proposed by Johnson and Merrifield
that describes triplet–triplet annihilation with triplet pair states [39]. Assuming the spin operators
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Glossary
Delayed fluorescence: triplets
created by singlet fission fuse back to
singlet states, which recombine to the
ground state and emit fluorescence.
Delayed fluorescence is induced by the
regenerated singlets, which has a later
arrival in the time domain than the
fluorescence emission from direct
optical excitation.
Dextermechanism: transfer of excited
electrons from one molecule to another
via a nonradiative path, which requires a
wavefunction overlap between the two
molecules.
Eigenstates: states of a quantized
system in which one of the variables
(i.e., energy or angular momentum)
defining the state has a fixed value
(eigenvalue).
Hamiltonian: operator corresponding
to the total energy of a system.
Herzberg–Teller coupling: on
symmetry grounds, certain ‘forbidden’
vibronic transitions are activated due to
‘intensity borrowing’ via a nontotally
symmetric mode of appropriate
symmetry, known as Herzberg–Teller
mixing.
Level crossing resonances: energies
of two levels are tuned by an external
field to near-degeneracy.
Optically detected magnetic
resonance: in a static magnetic field,
the spin degeneracy is lifted with
bSi ¼ bSi,x, bSi,y , bSi,z

� �
(i = 1, 2) are the spin operators of the two triplets, the spin part of the

Hamiltonian for a triplet pair can be expressed using Equation 1 [42,44,61,62]:

bHspin ¼ ∑
i¼1, 2

bHi,zfs þ bHex þ ∑
i¼1, 2

bHi,zeeman

bHi,zfs ¼ D bSi,z2− 1
3
bSi2� �

bHex ¼ JbS1 ⋅ bS2bHi,zeeman ¼ gμB
⇀B ⋅ bSi

½1�

Here, bHi,zfs is the zero-field splitting interactionwith parameter D, bHex is the exchange interac-

tion with the coupling strength J, and bHi,Zeeman is the Zeeman interaction from the applied
external magnetic field.

In term of exchange coupling strength due to orbital overlap, the triplet pairs can be catalogued
into weakly (J ≤ D) and strongly (J >> D) interacting regimes. Weakly and strongly coupled triplet
pairs may coexist in the same material, which can be described by a three-step model, that is,
S0 + S1 ↔

1(TT)↔ 1(T…T)↔ T1 + T1[13,61,63,64]. This model was first proposed by Scholes
and coworkers to describe the spatial separation of triplet pairs in the crystalline pentacene film
[63,65]. In aggregates or crystalline solids, the 1(TT) and 1(T…T) states may be distinguished by
the intertriplet distance, being strongly and weakly interacting triplet pairs. In dimeric molecules, de-
spite the limitation of spatial separation, exchange coupling is proposed to fluctuate significantly
due to intermolecular vibrations [66,67]. The dynamic equilibrium between strongly and weakly
interacting triplet pairs in dimers may be also rationalized within the three-step model. From this
consideration, we refer to (TT) and (T…T) for the triplet pairs with strong and weak exchange
interactions, respectively, in the following.
TrendsTrends inin ChemistryChemistry

Figure 1. Theoretical models describing the magnetic field effects (MFEs) of singlet fission dynamics. (A) The
original Merrifield scheme, which involves nine manifolds of correlated triplet pairs [68]. (B) MFEs of singlet projections of
the nine states of weakly exchange-coupled triplet pairs in a weak field regime (<1 Tesla). The data are calculated using
the parameters of tetracene molecules with J = 1 μeV. (C) The modified scheme including strongly and weakly coupled
triplet pairs [20,61,62].
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multi-sublevels separated due to
Zeeman interactions. An external
microwave field may mix the sublevels
with resonance energy difference,
leading to a change in fluorescence
emission. By detecting the emission
intensity as a function of magnetic field
amplitude, we can observe the
resonance phenomenon and calculate
the magnitude of the interaction.
Quantum beats: time-domain
oscillation behaviors of populations of
excited states in a superposition, which
may be probed by time-resolved
spectroscopy.
Shockley–Queisser limit: in a single
junction organic solar cell, the detailed
balanced limit of power conversion
efficiency was predicted to be ~30% in a
seminal paper byShockley andQueisser
[5].
Time-resolved electronic spin
resonance: temporal resolution
technique used to directly detect
changes in microwave intensity due to
transitions between levels of different
spin characters.
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Zeeman interaction: in a magnetic
field, the spin degenerate states are split
into several components, first
discovered by Pieter Zeeman.
Zero-field-splitting interaction:
contains various types of interaction that
split degenerate states even in the
absence of a magnetic field.
The original Merrifield model has described the triplet pair manifolds with a nine-spin state repre-
sentation without considering orbital overlaps [68]. This approach can well describe the MFE of
the (T…T) states with weak exchange coupling. As sketched in Figure 1A, singlet state S1

undergoes fission to one of the eigenstates (|Pi〉) of triplet pair at a rate Γsfαi, where αi is the over-
lap between the spin wave functions of the singlet and triplet pair states, that is, αi = |〈S|Pi〉|

2

[48,51]. The triplet pair can dissociate into free triplets at rate kd or fuse back to reform the singlet
exciton at a rate kfsαi. The MFE is mainly caused by the Zeeman interaction-induced change of αi
(Figure 1B). For the weakly coupled (T…T) states, the zero-field splitting mixes the singlet and
quintet states. Magnetic fields with a relatively weak magnitude may strongly alter αi, resulting
in a marked MFE. Such a model well explains the MFE on the steady-state photoluminescence
(PL) emission in crystalline SF materials. Assuming that PL emission is solely from the singlet
state, the steady-state PL can be roughly described using Equation 2 [42]:

I ¼ I0
X
i

α i 1þ ksf
kd

α i

� �−1
" #−1

½2�

The emission intensity depends nonlinearly on αi which varies when the Zeeman interaction
changes. Moreover, the coherence between the manifolds of triplet pair states may lead to the
quantum beatsmanifesting with oscillations in the time-domain PL traces. The beating frequen-
cies (i.e., the energy differences between the triplet pair eigenstates) are susceptible to the
magnetic field, resulting in the MFE of quantum beatings in the delayed fluorescence [48,50].

The strongly coupled 1(TT) triplet pair state is particularly important at the initial stage of singlet
fission [26,61,64,69,70], which has not been included in the original Merrifield model. In the
strong exchange coupling regime (J >> D), the eigenstates have well-defined spin multiplicity.
In the nine-spin state representation, the triplet pair manifolds comprises one singlet [1(TT)0],
three triplet [3(TT)1,

3(TT)0,
3(TT)–1], and five quintet levels [5(TT)2,

5(TT)1,
5(TT)0,

5(TT)–1),
5(TT)–2].

The MFE is insignificant in the weak-field regime. With a strong magnetic field, Zeeman interaction
can detune the energy gaps between the triplet pair manifolds to the regime in which the zero-field
splitting can mix the singlet–quintet, singlet–triplet, and triplet–quintet pair states. To explain the
MFE in this regime, it is necessary to revise the Merrifield model to include the strongly coupled
triplet pairs (Figure 1C) [20,61,62].

Quantum beats
PL emission directly probes the singlet population. TheMFE on PL emission suggests the involve-
ment of triplet excitons during the deactivation process of photo-excited singlet states. In the
weak field regime, the MFE of PL emission from intermolecular singlet fission systems can be
well described with the Merrifield model for the weakly-coupled 1(T…T) states [71,72].

Quantum beats arising from superposition of triplet pair manifolds have been detected in delayed
fluorescence [49–51,73]. Crystalline tetracene samples are the most widely studied among the
few systems showing quantum beats (Figure 2A) [51]. The beating frequencies coincide well
with the energy spacings between the eigenstates of triple pairs as direct evidence for the triplet
pair states. Nevertheless, the signature of intertriplet interactions was not captured by the ESR
measurement at the early stage.

Quantum beats also show MFEs in crystalline tetracene (Figure 2B) [50], which can be well
described by the Merrifield model. In tetracene crystals, MFEs on fluorescence decay are
observable at the stage when the triplet pair fusion becomes significant. By properly aligning the
530 Trends in Chemistry, June 2022, Vol. 4, No. 6
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Figure 2. Magnetic field effects (MFEs) of quantum beats in delayed fluorescence. (A) Time-resolved photoluminescence (TRPL) trace of a solution-grown single
crystal of tetracene and the oscillation components obtained by subtracting the exponential decay components [51]. (B) The beating amplitude is plotted as functions of the
frequency andmagnetic field amplitude. The field is applied aligning the x-axis with a small angle tilted relative to the x-axis. The dependences of quantum beat amplitude on
the field tilt angles near level crossing resonances (C,D) are monitored to evaluate the intertriplet interacting strength for a tetracene single crystal [50]. (C) The field of 420
Gauss is applied in the xy plane with a tilt angle (θ) with respect to the x-axis [50]. (D) The field of 3000Gauss is applied in the xz plane with a tilt angle (Δф) with respect to the
resonance alignment (ф = 69°) [50]. Adapted, with permission, from [50,51].
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magnetic field, the energy levels of triplet pairs may be tuned to near degeneracy (Figure 2C). The
degeneracy condition can also be approached by field alignment in the strong field limit (Figure 2D).
Under these degenerate circumstances, the weak intertriplet interaction becomes detectable in the
low beating frequency regime (Figure 2B). In principle, the gap values are linearly proportional to the
field tilting angle if the intertriplet is not included. As shown in Figure 2C,D, the dependences of
beating frequencies on the field direction are different from the interaction-free case. The strength
of intertriplet interaction can be evaluated from the experimental data to be ~30 neV at room tem-
perature [50], which is comparable to the value of the intertriplet interaction for geminate triplets at
cryogenic temperatures measured by optically detected magnetic resonance [43]. The value
ismuch smaller than expected for intertriplet exchange coupling at the adjacentmolecules. Assuming
Trends in Chemistry, June 2022, Vol. 4, No. 6 531
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a triplet–triplet dipolar interaction, the two triplets in a pair are separated over an average distance of
multiple molecules, implying that the intermediate states are the weakly coupled 1(T…T) state.

While quantum beats and the low-field MFE on PL emission are signatures of triplet pair formation,
these effects are not commonly observed in singlet fissionmaterials. For exothermic systems, such
as pentacene and its derivatives, PL emissions are weak at room temperature and the MFEs are
hardly detected. Recently, the MFE on PL emission from triplet pair states was observed through
Herzberg–Teller coupling in pentacene at low temperature [20]. For the 1(TT) state produced in
singlet fission dimers, the MFE is insignificant in this field regime because the Zeeman interaction is
much weaker than the exchange interaction. In principle, the quantum beats in the time domain
can only be detected from the states with the electronic coherence retained. The hopping from
the 1(TT) to 1(T…T) states may cause loss of electronic coherence between the 1(TT) and S1 states
established at the initial stage of singlet fission. The quantum beats imply a possible coherent
formation channel of 1(T…T) states in addition to the incoherent hopping from the 1(TT) states. In
crystalline tetracene, a portion of weakly exchanged triplet pairs is possibly generated through a
coherent pathway from the delocalized singlet excitons [74–76].

Level anticrossing resonances
For strongly coupled triplet pairs, spin and energy eigenstates coincide at zeromagnetic field. The
singlet–quintet and singlet–triplet gaps are ~3J and J, respectively [42]. For strongmagnetic fields
with Zeeman interaction comparable to J, the exchange interaction may be compensated, leading to
the singlet–quintet statemixing due to the zero-field splitting interaction [44,61]. Singlet–quintetmixing
strongly changes the singlet projections, resulting in a marked change in the PL emission (Figure 3A).
The magnitudes of magnetic field on resonances of the quintet states (Sz = 1, 2) correspond to
B = 3J/μg and B = 3J/2μg, respectively. The singlet-triplet level crossings occur at B = J/μg.
Nevertheless, the pair spin eigenstates are symmetric for singlets and antisymmetric for triplets
under particle exchange. In principle, the zero-field interaction cannot mix the states with different
symmetries when the triplets are equivalent. Nevertheless, this mixing becomes possible when
the two triplets are inequivalent with random orientations, which breaks the particle-exchange
symmetry. The singlet–triplet mixing results in the MFE of PL emission with magnitude typically
less than that for singlet–quintet mixing.

The strongMFEs at the level crossing resonances are valuable for quantitatively evaluating the
strength of intertriplet exchange interaction [44]. By increasing the magnetic field, three magnetic
resonances for each configuration of triplet pairs may be detected by emission dips (Figure 3B,C).
Bayliss and colleagues have shown that, in TIPS-tetracene crystallites, three distinct triplet pair
sites show triple correlative resonance dips at <2 K. Correspondingly, the strength of exchange
interaction is in the range of 0.3–5 meV, implying multiple spatial separations for triplet pairs
[44]. These results are consistent with the scenario that the triplet excitons may hope to separate
the 1(TT) states to form the weakly coupled triplet pairs [62,63,77].

Triplet pair dissociation
Triplet pair dissociation is essential for the final products of free triplets, which has also been inten-
sively studied by transient optical spectroscopy. In crystalline samples, the separation process
from the adjacent triplet pair 1(TT) to 1(T…T) states can be viewed as a triplet energy-transfer
process [21,64,65,77]. The triplet pair separation is an entropy-producing process, which may
compensate slight endothermicity in crystalline systems. In intramolecular dimer systems, the
spatial separation is unavailable; thus, the two triplets stay spatially adjacent. Nevertheless, the
subsequent process of spin decoherence may not be captured by transient optical spectros-
copy, which is not a spin-sensitive approach.
532 Trends in Chemistry, June 2022, Vol. 4, No. 6
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Figure 3. Magnetic field effects (MFEs) arising from singlet–quintet and singlet–triplet mixing of triplet pair states. (A) Schematic of spin-pair generation with
different exchange interactions. The Zeeman interaction drives the mixing of triplet pair states with different spin characters, inducing the magnetic field resonances of
fluoresce changes. (B) Photoluminescence (PL) spectrum of a crystal of TIPS-tetracene recorded at 1.4 K showing three peaks at λa, λb, and λc corresponding to three
different sites of triplet pairs. (C) MFE of fluorescence emission showing the field resonances measured at three peaks and the triplet pair-associated emission spectra.
Adapted, with permission, from [44].

Trends in Chemistry
Tr-ESR measurements penetrate deeper into the dynamics of spin characters of triplet pairs
(Figure 4A), providing direct evidence of 5(TT) states during the conversion from 1(TT) to free triplet
pairs. In a study of crystalline TIPS-tetracene,Weiss and colleagues reported different ESR features
of transient species at a delay of 300 ns at 300 K and 10 K (Figure 4B) [56]. By simulating the
experimental results, these features are attributed to the ESR transitions for the weakly coupled
triplet pairs [1(T…T)] and strongly coupled triplet pairs [5(TT)], respectively. The significant difference
in ESR response at room and cryogenic temperatures raised the question whether different
pathways are involved in the formation of independent triplets. In the semidiluted pentacene
sample, 5(TT) is also observed at room temperature when diffusion is suppressed (Figure 4C)
[54]. These results suggest that efficient thermally driven diffusion results in short-lived 5(TT) at
room temperature that cannot be resolved by time-resolved ESR in crystalline samples.

Quintet states have also been observed in intramolecular dimer systems. In pentacene dimers
with p-phenylene bridges, Tayebjee and colleagues observed the features of quintet and triplet
species in sequence (Figure 4D) [55]. The data support that singlet–quintet mixing is also viable
Trends in Chemistry, June 2022, Vol. 4, No. 6 533
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Figure 4. Time-resolved electronic spin resonance (tr-ESR) characterization of triplet pair dissociation. (A) ESR transitions for weakly and strongly exchange-
coupled triplet pairs showing the transitions related to triplet and quintet sublevels [56]. (B) Tr-ESR spectra recorded from a film of TIPS-tetracene at room temperature and 10 K
showing the features of weakly and strongly exchange-coupled triplet pairs with triplet and quintet spin characters [56]. (C) Tr-ESR spectrum recorded from a film of 10%
pentacene in p-terphenyl showing the triplet pairs with quintet characters at room temperature [54]. (D) Tr-ESR spectra of an intramolecular singlet fission system
of 3 p-phenylene-linked pentacene dimer (BP3) at 40 K and the transients taken at the four peak features [55]. (E) Tr-ESR spectra of a dimer of TDI2 aligned in a nematic liquid
crystal. The mixing of triplet pair states with triplet and quintet characters is probably responsible for the unusual signal of triplet state [57]. Adapted, with permission, from [54–57].

Trends in Chemistry
for the generation of free triplets in intramolecular SF materials. The interchromophore coupling
strength in the intermediate regime is suggested for efficient triplet generation. The coupling
needs to be strong enough to allow triplet generation but not too strong to suppress the triplet
pair dissociation. Given that the spatial separation of triplet pair is prohibited in dimers, the disso-
ciation pathways may not be the same as those in the crystalline systems. The temperature-
dependent measurements suggest the presence of a nonthermal channel in addition to the ther-
mally activated channel that may drive the dissociation of triplet pairs with quintet characters.

In addition to the quintet pair states, triplet pair states with triplet spin characters [3(TT)] have also
been identified in intramolecular SF materials. In a terrylenediimide dimer, Wasielewski and
colleagues observed an unusual spin polarization of the triplet state likely due to enhanced mixing
between the quintet–triplet mixing (Figure 4E) [57], which is susceptible to the alignment of
molecular axis. The mixing leads to a strong MFE for the final products at the field of resonant
magnitudes. Nevertheless, the 3(TT) channel of triplet pair dissociation will lead to the net loss
of one triplet due to the triplet channel of triple pair annihilation forming a hot triplet exciton [53].
Such a loss channel, together with the singlet channel of triplet annihilation, is a competing
pathway for independent triplet formation. From the available data, it is most likely that formation
of a pure quintet state is essential to achieve a high yield of independent triplets because it affords
protection from both singlet- and triplet-channel annihilation loss pathways.
534 Trends in Chemistry, June 2022, Vol. 4, No. 6
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Although the formation of quintet state is pivotal for the overall output of independent triplets from
triplet pairs, it remains elusive how the quintet state is converted from the singlet state. In crystal-
line materials, triplet hoping allows the spatial separation of the triplet pair, which reduces the
exchange–split energy gaps, enabling the singlet–quintet mixing of 1(T…T) and 5(T…T) states.
Triplet pair separation may also drive the formation of the quintet state in the intramolecular
systems. When the hoping channel is activated in oligomers with three or more repeating
units, the generation efficiencies of free triplets are significantly enhanced in multiple systems
[53,62,78]. In the dimer systems without spatial separation, Collins and coworkers proposed
a model with fluctuating exchange interactions [67]. Due to nuclear reorganization of the
dimer bridge in the ground and excited states, the time-varying exchange interaction in dimeric
SF drives interconversion between the singlet and quintet pair manifolds. This scenario well
explains the strong linker dependence of independent triplet generation in dimers [79].

The radiative recombination of singlet state is typically on the timescale of ~10 ns for molecules.
For efficient triplet generation, the spin dynamics of triplet pairs on the timescale is particularly
important. While the spin characters of triplet pairs are available with Tr-ESR measurements,
the temporal resolution has been limited on the timescale of ~100 ns or longer. The dynamics
of singlet–quintet mixing on the earlier stage cannot be fully extracted even though the MFE
may also be significant. In recent work on tetracene oligomers, Wang et al. showed a marked
MFE of triplet generation dynamics on a sub-ns timescale in tetracene oligomers with three
or more repeating units (Figure 5) [62]. The MFE with a relatively weak field (<1 Tesla) can
be connected to the formation of a spatially separated (T…T) state in the trimer or tetramer
TrendsTrends inin ChemistryChemistry

Figure 5. Magnetic field effect (MFE) of singlet fission dynamics on the sub ns timescale. (A) Schematics of spatially adjacent (TT) and separated (T…T) states.
Kinetic curves representing singlet and triplet dynamics in a tetracene dimer (B) and trimer (C) recorded with and without the application of an external field of 0.8 Tesla.
Adapted, with permission, from [62].
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Outstanding questions
Can the dynamics of spin mixing
between triplet pair states with singlet
and quintet characteristics be probed
on a timescale of nanoseconds or
shorter?

Is the 1(T…T) triplet pair only a sequential
intermediate step or generated directly
from the singlet state? Can the
coherence retain as the triplets separate?

How can the quintet pathway of triplet
pair deactivation be promoted to
avoid the losses of singlet and triplet
channels?

Is it possible to synthesize materials
with highly efficient singlet fission
and bandgaps suitable for excitation
transfer to semiconductors in state-
of-the-art solar cells?

Could high-yield triplets be harvested
for photodynamic therapy or the
triplet pair coherence be implanted for
quantum information applications?
(Figure 5A). The efficiency of free triplet generation has been significantly promoted in the trimer
and tetramer (Figure 5B,C), which suggests that the singlet-quintet mixing occurs on a timescale
faster than the radiative recombination.

MFEs in singlet fission-based devices
Singlet fission can be integrated in host solar devices through energy transfer or charge transfer
processes to boost the overall solar conversion efficiency [3,80–83]. Triplet energy transfer is
generally governed by the Dexter mechanism relying on the short-range exchange interaction
[84], making interface and surface treatments challenging in combining singlet fission with photo-
voltaic devices. Recently, highly efficient sensitization of silicon by singlet fission was successfully
demonstrated by Baldo and coworkers by integrating an ultrathin protective HfOxNy layer [82]. In
the silicon-HfOxNy-tetracene structure, the overall yield of photon-to-exciton conversion reached
133%, establishing the potential of breaking the Shockley–Queisser efficiency limit. Efficient
energy transfer from singlet fission materials to semiconductor nanocrystals was demonstrated
with efficiency near 100% in the pentacene/PbSe [85] and tetracene/PbS [86] hybrid systems.
The hybrid design improves the performance of nanocrystal solar cells [87], which could be
applied as photon multipliers [4]. Charge transfer has also been demonstrated in the organic
blends with singlet fission materials to improve the efficiencies of the photodetectors and photo-
voltaics devices. Based on the pentacene/C60 systems, external quantum efficiency of 130% at
the featured spectral range has been realized in the organic solar cells [3]. To break the Shockley–
Queisser limit, we need to overcome the challenges of finding proper hybrid systems with
optimized band alignments and reducing the loss of open circuit voltage [4].

MFEs have been widely characterized in these singlet fission-based devices. Typically, the
photocurrent and/or light emission from the active hybrid layers show MFEs in the weak field
regime (<0.5 Tesla), suggesting that the 1(T…T) triplet pairs are critical intermediates in these working
devices. The results are consistent with current solid-state devices using intermolecular singlet fission
systems. The intramolecular singlet fission materials may act as light harvesters for dye-sensitized
solar cells. Moreover, the strongly coupled 1(TT) triplet pairs with orbital overlaps in dimers may
serve as a molecular platform for potential quantum information applications [88–90].

Concluding remarks
In summary, MFEs on singlet fission dynamics mainly arise from the mixing of triplet pair states
with different spin characters by zero-field splitting [42]. For strongly coupled triplet pairs, the
energy spacings between the triplet pair manifolds, as determined by the exchange coupling
strength, are large at zero field [14,91]. MFEs become detectable only when the Zeeman interaction
can compensate the energy gaps. For weakly coupled triplet pairs, the singlet and quintet levels are
mixed at zero field so that MFEs are observable with a weak magnetic field. The studies of MFEs
suggest that the quintet state of triplet pairs is the key intermediate determining the efficiency
of free triplet production [55–57]. Nevertheless, the generation dynamics of the quintet triplet
pairs are not fully characterized due to the instrumental limitations. The three-step model, that is,
S0 + S1 ↔

1(TT) ↔ 1(T...T) ↔ T1 + T1, is current the most widely accepted scheme in the literature
[13]. It remains unclear whether the 1(T…T) triplet pair is a sequential intermediate step or has a
distinct role in singlet fission (see Outstanding questions). Understanding the orbital overlaps of
the triplet pairs also provides a fascinating model for the investigations of many-body interactions
in molecule systems [65,91–94]. The magnitude of MFE is much larger than the value predicted
by Merrifield model [62], implying that the spin decoherence effect is also critical [46,61]. Interpreting
the spin decoherence (i.e., how the correlated spins interact with the dephasing environment [95])
may facilitate the applications of singlet fissionmaterials in the spintronics [96] and quantum informa-
tion science [88,90]. Implementing these new perspectives in designing intramolecular singlet fission
536 Trends in Chemistry, June 2022, Vol. 4, No. 6
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materials [11,12,23,31–33,35,53,62,70,78,79,97–99] may stimulate research exploring new
conceptual optoelectronic devices with unprecedented performances [3,82,100].
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