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The Klein paradox consists in the perfect tunneling of relativistic particles through high potential
barriers. It is responsible for the exceptional conductive properties of graphene. It was recently studied in
atomic condensates and topological photonics and phononics. While in theory the perfect tunneling holds
only for normal incidence, so far the angular dependence of the Klein tunneling and its strong variation
with the barrier height were not measured experimentally. In this Letter, we capitalize on the versatility of
atomic vapor cells with paraxial beam propagation and index patterning by electromagnetically induced
transparency. We report the first experimental observation of perfect Klein transmission in a 2D photonic
system (photonic graphene) at normal incidence and measure the angular dependence. Counterintuitively,
but in agreement with the Dirac equation, we observe that the decay of the Klein transmission versus angle
is suppressed by increasing the barrier height, a key result for the conductivity of graphene and its analogs.
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The Klein paradox was initially discovered in the begin-
ning of the 20th century [1,2], immediately after the
formulation of the Dirac equation. The impossibility for a
relativistic electron to be confined inside the nucleus was a
very important conclusion, which ultimately led to the
discovery of the neutron [3]. The description of the Klein
tunneling involves the quantum field theory and the concept
of particles and antiparticles [2,4,5]. However, the perfect
Klein tunneling with relativistic electrons has never been
observed experimentally, because it requires extremely high
and strongly localized energy barriers [2]. The studies of the
Klein tunneling have shown a new surge of interest in the
21st century with the advent of analog systems, such as
graphene [6–9], cold atoms [10], photonics [11], and even
acoustic systems [12], where the Dirac Hamiltonian and the
associatedKlein tunneling phenomenon can be simulated on
demand. The first crucial result was that the exceptional
conductivity of graphene is due precisely to the Klein
tunneling of the electrons in graphene making them insen-
sitive to potential barriers associated with defects [8,13,14].
Theoretical works focused on the consequences of Klein
tunneling and its limits in various 1D and 2D structures [15–
17]. Further studies were focused on the energy dependence
of the tunneling with respect to the barrier height in different
systems [12].
On the other hand, the angular dependence of the Klein

tunneling has not been studied experimentally in detail. In

graphene, ballistic electrons exhibit a broad angular distri-
bution, smoothing out the dependence [18]. Analog sys-
tems potentially offer a better control over parameters.
However, the experiments on Klein tunneling were mostly
implemented in 1D structures which only allow us to study
the normal incidence case [10,11]. Theoretically, in 2D sys-
tems, the tunneling is expected to be perfect only for nor-
mal incidence, and should quickly drop with the incident
angle, depending on the particle energy and on the barrier
height [8,19]. In 2D materials, Klein tunneling is at the
basis of recent experiments and proposals in “electron
optics” [20], such as negative refraction [18] (also in acou-
stics [21]), Veselago lens [22–24], Klein collimation [25],
and 2D microscopes [26].
The rules of the angular dependence, being an indispen-

sable addition to the Klein tunneling theory, show excep-
tional properties compared to ordinary reflecting rules, and
are therefore crucial both from the fundamental point of
view, and for the applied properties of graphene, [8,27–29],
2D materials [30,31], and their optical analogs, as the
incidence is rarely perfectly normal in realistic situations.
The possibilities to study Klein tunneling in 2D photonic

systems were proposed in previous theoretical works using
photonic graphene [32]. Photonic graphene has recently
emerged as a promising analog system with various
implementations [33–37]. It is based on the propagation
of a light probe beam in a 2D honeycomb lattice of
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refractive index. The evolution of the probe beam is well
described by the paraxial approximation of Maxwell’s
equations, where the propagation along an axis is mapped
to an effective time (see Ref. [38]). This configuration
allows one to emulate various Hamiltonians, including the
one of graphene [39]. The advantage of optical systems is
the possibility of direct observation of the wave functions,
instead of the integral quantities used in solid state physics,
such as conductivity. For example, in topological photonics
it has allowed the observation of the photonic quantum Hall
[34,40–42] and quantum spin or valley Hall effects [43–
49], with the associated chiral edge states, promising for
applications. Recently, reconfigurable photonic graphene in
atomic vapor cells has allowed us to study the dynamics of
singularities (quantum vortices) appearing in the Dirac
equation [50]. Obviously, the implementation of angular
dependent Klein tunneling in the photonic graphene
requires a proper experimental strategy to allow building
potential boundaries between areas of linear dispersion.

In this Letter, we use the photonic graphene imple-
mented in an atomic vapor cell to study the angular and
barrier height dependence of the Klein tunneling, in which
the potential boundary is established via the effect of
electromagnetically induced transparency (EIT). Our mea-
surements are in excellent agreement with the analytical
theory based on the Dirac equation. We observe a perfect
tunneling for normal incidence and a strong decrease of the
transmission versus the incidence angle. This angular
dependence is much weaker if the barrier height is
increased. This never observed counterintuitive behavior
is probably responsible for the high conductivity of elec-
tronic graphene, where scattering defects typically corre-
spond to large potential barriers.
To study the Klein tunneling and its peculiar angular

dependence, we used a highly reconfigurable implementa-
tion of photonic graphene based on EIT in atomic vapors
[50–52]. EIT typically occurs in a three-level atomic
system driven by a strong coupling field that modulates
the refractive index of the sample. The scheme of the
experimental setup is shown in Fig. 1(a). Three vertically
polarized coupling beams E2, E0

2, and E00
2 (the lattice

beams) from the same external-cavity diode laser propagate
along z with a small angle ∼ 0.5° between each other,
forming a hexagonal interference pattern in the x-y plane.
The photonic graphene with a lattice constant a ≈ 60 μm is
formed by the dark lattice sites with higher refractive index
(inversely related to the intensity of the coupling field under
the EIT condition, see Ref. [38]), as determined by the
chosen two-photon detuning [Fig. 1(b)]. Formed by the
interference of the coupling beams, the honeycomb pattern
stays approximately uniform along z throughout the entire
length of the atomic cell. A narrow, line-shaped beam E3
(the barrier beam, from a second laser) parallel to the z axis
serves as a static potential barrier (see Ref. [38]). This
barrier is located within the honeycomb lattice potential, as
shown in Fig. 1(a), sufficiently close to the center to avoid
the effects of the lattice contrast reduction. The dispersion
of the photonic graphene, calculated in the paraxial
approximation [38], is shown in Fig. 1(c). The white
dashed lines indicate the regions described by the Dirac
Hamiltonian (see below). The probe beam or beams are
sent at an angle with the z axis, controlling their wave
vector in the x-y plane (see Fig. S2 [38], showing the spatial
arrangement of all beams). Their size and position at the
entrance of the vapor cell are also controlled, determining
the wavepacket in real space. To probe the Γ point, the
beam is sent close to the z axis. To excite the Dirac points,
the probe beam is split into two beams E1 and E0

1, whose
angle with z axis is close to the Dirac point. They form an
interference pattern controlling the pseudospin at the Dirac
points [50]. The probe feels the combined modulation of
susceptibility imposed by the EIT effects of both the lattice
and the barrier beams. To observe the Klein tunneling, the
probe beams are moved slightly away from the Dirac point
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FIG. 1. Photonic graphene and Klein tunneling. (a) A honey-
comb lattice is induced in the Rb vapor cell by the interference of
three coupling beams E2, E0

2, and E00
2 . The probe field is close

either to the Dirac (formed by the interference of E1 and E0
1) or Γ

point (only Gaussian E1). The potential barrier is formed by
another stripe-shaped coupling beam E3. The refractive index
experienced by the probe beam is governed by the EIT effects
arising from both the hexagonal and stripe fields. (b) The Rb
atomic energy levels and the configuration of the EIT effect.
(c) Calculated dispersion of photonic graphene; white dashed
lines are the regions described by the Dirac Hamiltonian in
Eq. (1). (d)–(f) Scheme of the Klein tunneling: filled circles—
particle states, empty circles—hole states. (d) Perfect Klein
tunneling in one dimension. The colors of lines of the dispersion
[EðkÞ] and circles (states) correspond to the conserved particle-
hole pseudospin. Crosses mark the forbidden final states. V is the
potential. (e) Klein tunneling in two dimensions (real space, x-y
plane), arrows indicate the group velocity, φ ¼ tan−1ðky=kxÞ.
(f) States in the 2D reciprocal space. ky is conserved. Arrows
mark the group velocity. All transitions are allowed, because the
states are not orthogonal. (g) Transmission through a finite barrier
calculated with Eq. (2) as a function of the incidence angle and
the barrier height. Magenta and blue arrows: experimental scans
(Figs. 2 and 3).
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by fine-adjusting the beam angle. The probe beams interact
with the honeycomb lattice and the barrier, while all of
them are propagating along z through the atomic vapor cell.
The 2D dynamics of Klein tunneling occurs within the
x-y plane, and the z axis is regarded as the effective axis of
time (see Ref. [38]). Similarly, we can send a single probe
beam close to the Γ point for comparison.
The Klein tunneling is best known in the case of a

massless Dirac Hamiltonian for ultrarelativistic particles.
The model system for the study of the angular dependence
of the tunneling should be at least two-dimensional. The
corresponding Hamiltonian reads

Ĥ ¼ cσ · p̂; ð1Þ
where p̂ is a two-dimensional momentum operator and σ is
a vector of Pauli matrices. This effective Hamiltonian is
implemented at the corners of the Brillouin zone in
honeycomb lattices [7]. The corresponding eigenstates
are characterized by a linear dispersion of eigenenergies
E ¼ �ℏcjkj and a particle-antiparticle spinor for eigen-
states ð�e−iφ; 1ÞT= ffiffiffi

2
p

, where φ is the polar angle of the
wave vector k. The perfect Klein tunneling under normal
incidence is due to the conservation of this pseudospin and
to the particle-hole conversion, making possible the propa-
gation at negative energies. This is illustrated in Fig. 1(d),
showing the normal incidence case with the dispersion
branches in two regions characterized by potentials 0 and
V. The color of the branches indicates the configuration of
the spinor ð−1; 1ÞT= ffiffiffi

2
p

(red) and ð1; 1ÞT= ffiffiffi

2
p

(blue). At the
barrier, the incident particle is converted into a hole with a
negative energy, which continues to propagate in the same
direction because it has the same group velocity.
Backscattering (from “red” to “blue” states) is impossible
because of the pseudospin conservation.
In two dimensions, for an arbitrary angle of incidence, the

spinors of the branches involved in the scattering are not
orthogonal anymore, and the reflection becomes allowed. It
is illustrated in Fig. 1(e). The angle of incidence φ is defined
by the orientation of velocity of the incident beam with
respect to the barrier. The angle of transmission φt is
described by an analog of the Snell-Descartes law,
E sinφ ¼ −ðE − VÞ sinφt. It can be either higher or lower
than the angle of incidence, depending on the barrier height
V with respect to the particle energy E. The scheme of the
process in the reciprocal space is shown in Figs. 1(e) and
1(f): thewave vector along the interface ky is conserved. For
E > V, the isoenergetic circle for the holes is smaller. In this
case, the transmission at high angles becomes completely
impossible and the reflection is total. For a barrier of a finite
length d, the transmission can be found analytically as [19]

T ¼ cos2φcos2φt

cos2φcos2φtcos2ðk0xdÞ þ sin2ðk0xdÞð1þ sinφt sinφÞ2
;

ð2Þ

where k0xd ¼ −2πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ϵþ ϵ2cos2φ
p

, l ¼ Vd=ð2πℏcÞ,
ϵ ¼ E=V. This expression exhibits a strong angular and
barrier height dependence. The angular dependence is
maximal when V=E → 1, where only a narrow range of
incident angles lead to transmission, with total external
reflection at higher angles. This transmission is shown in
Fig. 1(g) as a function of the angle of incidence and the
barrier height. In the following, we present the experimental
scans of this dependence along the arrows (magenta and
blue) shown in this panel.
First, we show the experimental results confirming the

existence of the Klein tunneling at normal incidence
[magenta arrow in Fig. 1(g)], comparing it with the case

� � �

K K K

3a

3a

(a) (b) (c)

(d)

(g)

(e) (f)

FIG. 2. Klein tunneling at normal incidence. The barrier is
delimited by white dashed lines. The probe motion (group
velocity) is indicated by the red arrows. (a)–(c) Ordinary
quantum-mechanical tunneling close to the Γ point excited by
a single Gaussian probe beam. (d)–(f) Klein tunneling excited by
the interference of two probe beams. The high transmission
region is highlighted by a dashed ellipse. The barrier height
increases from zero (a),(d) to maximum V0 ¼ 1.9E (c),(f).
(g) Transmission for both cases (dots—experiment, lines—
theory) for K and Γ points. Error bars mark the experimental
uncertainty. White bars in (a),(d) show the scale.
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of massive nonrelativistic particles as a reference. The large
size of the wave packet in real space ensures its strong
focusing in reciprocal space. The lattice and the barrier
intensity do not appear in the experimental Figs. 2 and 3,
measured at the probe frequency. The lattice covers the
whole image, and the position of the barrier is indicated
with dashed lines.
Figure 2 shows the experimental images of ordinary

quantum-mechanical tunneling [Figs. 2(a)–2(c)], achieved
close to the Γ point in photonic graphene [38]. The barrier
height is increased from left to right from zero [panels (a),
(d)] to maximum [panels (c),(f)] by experimentally chang-
ing the frequency detuning of the barrier beam, and the
transmitted intensity clearly decreases. For the case of
Klein tunneling, achieved with a wave packet close to theK
point (with velocity towards the barrier) described by the
Dirac Hamiltonian in Eq. (1), the increase of the barrier
height does not lead to obvious decrease of the tunneling
[panels (d)–(f)]. Even for the highest barrier [V ¼ V0,
panel (f), see Ref. [38] ], intensity can still be observed
inside and beyond the barrier region (marked “Klein
tunneling” in the figure). This is summarized in Fig. 2(g),
showing the relative transmission with zero-barrier baseline
(see Ref. [38]) as a function of the barrier height in both
cases, as well as the theoretical predictions. In the case of
Klein tunneling (probe close to the K point), a full trans-
mission T ¼ 1, independent of the barrier height V is
expected theoretically (black solid line). This is indeed
confirmed by the experiment (black squares). This full
transmission is in striking contrast with the behavior of the

wave packets close to the Γ point, whose transmission
exhibits a rapid decrease with the barrier height in experi-
ments (red circles). This case is well described by the usual
quantum-mechanical tunneling formula for massive par-
ticles [38,53] (red solid line).
Finally, we demonstrate the strong angular dependence

of the Klein tunneling (Fig. 3) for weak barrier height, the
suppression of this dependence when the barrier becomes
higher, and the recovery of transmission at higher angles for
even higher barrier heights [three blue arrows in Fig. 1(g)].
Figures 3(a)–3(e) show experimental images of the wave
packet with varying angle of the barrier potential (from 0°
to ∼15° for the first two scans and from 0° to 32° for the
third one) with respect to the probe wave vector. The angle
of incidence is therefore controlled by the rotation of the
barrier (“sample”), as in the θ − 2θ goniometer configura-
tion in x-ray diffraction, for example. The beam is still
propagating along x (lying in the x-z plane), but the barrier
is not perpendicular to this direction any more. The experi-
mentally measured transmission is plotted in Fig. 3(f) as
black squares, red triangles, and blue circles. The three sets
of data correspond to different barrier heights V1 ≈ 1.1E,
V2 ≈ 1.7E, and V3 ≈ 2.05E (see Ref. [38]). Theoretical
estimates, calculated using Eq. (2) neglecting the barrier
ellipticity, are shown as solid lines of the corresponding
color. The good agreement of the experiment and the theory
in Fig. 3 confirms the validity of the description of graphe-
nelike structures in terms of the Dirac Hamiltonian. The
fact that the perfect tunneling is observed at zero incidence
for three different barrier heights proves that the effect in
question is not resonant tunneling [54], but really Klein
tunneling. It is also possible to refute the hypothesis of
resonant tunneling for ordinary quantum-mechanical par-
ticles, because it does not exist for energies below the
barrier (for one single barrier), where there is no real wave
vector.
Overall, a higher tunneling is observed at all angles for a

higher barrier V2 > V1. A smaller barrier exhibits a faster
decrease of the tunneling with φ. This counterintuitive
behavior can be understood qualitatively from the modified
Snell-Descartes law illustrated by Fig. 1(f): reducing the
barrier height reduces the transmitted wave vector and ex-
tends the total external reflection region for V=2 < E < V.
Thus, the Klein tunneling is paradoxical not only in its
perfectness, but also in its rapid decay with incidence angle
for small barriers. Thus, smaller defects can strongly affect
the transport properties. For larger barrier heights, the
recovery of transmission can be expected at higher angles
due to the finite barrier thickness [19] (similar to interfer-
ence fringes). This is confirmed by the third measurement
V3, where we have accessed higher angles, and where the
transmission TðφÞ starts to increase after passing through a
minimum.
To conclude, we have used an implementation of

photonic graphene based on EIT to measure one of the
key features of the Klein tunneling—its strong and

(a) (b) (c) (d) (e)

(f)
3a

FIG. 3. Angular and barrier height-dependent Klein tunneling.
The barrier is marked with a dashed ellipse. The probe propa-
gation is marked by the red arrow. (a)–(e) Experimental images of
the probe intensity after the cell with barrier rotation angles 0°, 3°,
6°, 9°, and 15°, respectively, for barrier height V1. (f) Angular
dependence of the transmission for two barrier heights (V1,black;
V2,red; V3,blue; V1 < V2 < V3): dots, experiment; lines,
theory. The error bars mark the experimental uncertainty. V1,
V2, and V3 correspond to detunings Δ3 ¼ −90, −110, and
−115 MHz, respectively. White bar in (a) shows the scale.
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counterintuitive angular dependence. Our Letter makes an
important step towards the potential applications of the
relativistic particle-hole physics of graphenelike structures.
We have been able to measure the angular dependence up to
the incidence angle of 32°. The atomic vapor cells in
the regime of EIT have the important advantage of the
possibility to reconfigure the system on-demand. The use
of Klein tunneling in future photonic devices [55] might
require further miniaturization of the system. The key
parameter determining the size of the system, the lattice
constant, can be reduced from 60 μm down to a few
microns by the use of patterned microcavities [56,57],
which also offer the possibilities of potential engineering
and have a large potential for photonic applications [58].
Practical applications will also require the knowledge of the
limitations of the approximations of the theoretical model,
for example, for particularly narrow barriers. Angular
dependence of Klein tunneling should also be measurable
in such systems [32], and experiments in this direction have
already begun [59].
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