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Abstract: We theoretically study the Raman-induced self-frequency shift of dissipative Kerr
soliton in silica optical resonators by taking into consideration the Boson peak. We find that the
Boson peak will greatly increase the soliton self-frequency shift and contribute even more than
the shift induced by the Lorentzian response for certain pulse durations. We also show that the
revised Raman shock time is associated with the pulse width even for a relatively long pulse.
Moreover, we demonstrate that the background continuous wave decreases the self-frequency
shift of the soliton via the interference with the soliton. Our theoretical and simulated results
display excellent agreement with the previous experimental values in the silica-based Kerr-soliton
microcomb.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nowadays, dissipative Kerr soliton frequency combs [1,2] have attracted great interest in both
nonlinear optical physics and applications, such as integrated optical atomic clocks [3], coherent
optical communication [4,5], low noise microwave and terahertz wave signal generations [6–8],
and spectroscopy [9,10]. Usually, when the Kerr soliton combs are generated in amorphous
materials such as silica and silicon nitride, they will experience a self-frequency shift [11–14]
due to the interactions between the Raman nonlinearity and the solitons. This Raman soliton
self-frequency shift (SSFS) has an impact on the dynamics [15,16], efficiency [12], bandwidth
[17], as well as on the quantum diffusion [18] of the generated solitons. On the other hand,
such SSFS, which is important for some practical applications, can be utilized in dual-comb
technologies [19,20] based on a single microresonator and low-noise microwave generation with
a quiet point [21].

Recently, to model the SSFS in Kerr soliton frequency combs [11,12,15], the Raman response
of the materials is usually simplified as a Lorentzian profile [22]. However, the real Raman
response in amorphous material exhibits complicated dynamics due to the excess density of
vibrational states at Terahertz frequencies [23,24].

To accurately model the Raman response of the amorphous material such as silica, the Boson
peak (BP) [24–26], which refers to the significant excess of vibrational modes in the THz range,
should be considered. The BP is a characteristic feature of many glassy and amorphous materials,
and is believed to play a crucial role in understanding the vibrational states of these materials.
Although it has been used to model conventional temporal solitons propagating in optical fibers
[27], the influence of the BP on the dissipative Kerr solitons has not been investigated thus far.
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In this work, we theoretically investigate the SSFS in silica resonators with a more accurate
Raman response function [27]. We surprisingly find that the BP will lead to even more SSFS
than that induced by the Lorentzian part of the Raman response. We also derive a revised Raman
shock time and point out that the Raman shock time is related to the soliton pulse width even for
a relatively long pulse duration. Moreover, we demonstrate that the interference between the
continuous-wave (cw) background and the soliton will affect the Raman SSFS.

2. Theoretical analysis

We begin with the solitonary solution of the generalized mean-field Lugiato-Lefever equation
(LLE) [28–30] by taking into account the delayed Raman term [14,17]. Such modified equation
that is capable of describing the temporal evolution of the envelope of the optical field circulating
in a resonator takes the following form in a co-rotating frame:
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where A(t, τ) is the slowly varying envelope oe optical field, t is the slow time (compared to
the roundtrip time), and τ is the fast-time. In Eq. (1), γ = γ0 + κ stands for the total damping
rate of the optical mode with γ0 and κ representing the intrinsic damping and external coupling
rates, respectively, and ∆ω = ωp − ω0 denotes the pump-cavity detuning with ωp. and ω0 being
the pump and resonant frequencies, respectively. In our modeling, we only consider the overall
group velocity dispersion D2. (positive for the requirement of the anomalous dispersion in the
Kerr-soliton generation) and use D1 to characterize the free spectral range (FSR) of the modes.
Additionally, g defines the coupling coefficient of the Kerr nonlinearity. In the delayed Raman
term, fR and hR(τ) correspond to the Raman fraction and response function, while ⊗ denotes the
convolution and Sin gives the amplitude of the input pump field.

Taking into account the cw background light [29] and treating the Raman term as a perturbation
[12], the solitonary solution of single soliton for Eq. (1) can be expressed in the following
mathematical form:

A(t, τ) = A0eiϕ0 + Bsech
(︃
τ − τ0
τs

)︃
eiΩ(τ−τ0)+iϕs , (2)

where A0 and φ0 stand for the amplitude and phase of the background field, B and φs give the
amplitude and phase of the soliton field, while τ0 and τs represent the temporal position and
pulse width of the soliton envelope in τ-coordinate, respectively, and Ω is the center frequency
shift of the single soliton spectrum.

To analyze the soliton evolution in the system, we employ the method of moments [31] and
calculate the frequency shift of the single soliton state as
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Note that E = 1
2π ∫

π
D1
−π
D1

|A|2dτ is the average energy of the soliton state inside the cavity. By
first taking the time derivative of µc in Eq. (3), and then assuming the boundary conditions
A
(︂
τ = ± π

D1

)︂
= A0eiϕ0 , and finally performing the integral by parts, one will eventually reach the
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following dynamical equation of µc with the help of Eq. (1):

∂µc
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fRg
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Next, under the condition of the dynamical equilibrium by setting ∂µc
∂t = 0, we obtain
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From Eq. (5), one can compute the SSFS denoted by ΩRaman, as long as the Raman fraction fR
and the response function hR(τ) are available.

Following the previous studies [12,14,22] on the soliton pulses (duration > 100 fs) propagating
in the cavities, one can simplify the Raman term to the first order

hR ⊗ |A|2 ≈ |A|2 − τR
∂ |A|2

∂τ
(6)

by means of the Taylor series, where τR is the Raman shock time taking the form

τR = fR ∫∞0 hR(τ)τdτ. (7)

Under the deep-red-detuned pumping we can adopt a simple sech-shape envelop of the optical
field to compute ΩRaman [29]:

A(t, τ) ≈ Bsech
(︃
τ − τ0
τs

)︃
eiΩ(τ−τ0)+iϕs , (8)

since B ≫ A0.
By plugging Eq. (6) into Eq. (5) and utilizing Eq. (8), we finally arrive at [12]
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after some algebra. It indicates a τ−4
s -dependence with [12]
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To theoretically estimate the value of ΩRaman in a silica resonator, we will work with two
different forms of the Raman response function hR(τ). By the first one we model the Raman-gain
spectrum of the fused silica with a single Lorentzian profile [22]:

hR,1(τ) =
τ1

2 + τ2
2

τ1τ22 exp(−τ/τ2)sin(τ/τ1), (11)

where τ1 = 12.2 fs and τ2 = 32 fs. In this model, the value of the Raman fraction is fR,1 = 0.18.
Substituting Eq. (11) into Eq. (7) yields an invariable value (denoted as τR,1) of ∼1.46 fs [32].
This result somewhat deviates from those of the previous researches— in Ref. [11], the soliton
pulse of 250 fs has a Raman shock time 2.4 fs; in Ref. [21], the soliton pulse of 175-230 fs
is with a Raman shock time of 2.5 fs; in Ref. [33], the soliton pulse of 170-200 fs was found
to have a Raman shock time of 2.7 fs. All these results based on such oversimplified Lorentz
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model neglect the commonly observed phenomenon of the BP in silicon material. The obtained
invariable Raman response time τR,1 in this way [the black solid line in Fig. 2(a)] gives

Ω1st
Raman,1 ≈ −

8τR,1D2

15γD2
1τ

4
s

. (12)

Due to the existence of the BP, we here introduce another improved response function [27],
which can explain the appearance of the hump at the frequencies ∼2.5 THz of the actual
Raman-gain spectrum [see Fig. 1(b)].

Fig. 1. (a) Illustration for the Raman-induced self-frequency shift of the Kerr-soliton
frequency comb. (b) Raman-gain spectrum of the fused silica.

The form of the Raman response thus becomes a linear combination

hR,2(τ) = (1 − fB)hR,1(τ) + fBhR,B(τ), (13)

of the Lorentzian profile and the contribution

hR,B(τ) =
2τb − τ
τb2 exp

(︃
−
τ

τb

)︃
, (14)

from the BP, where fB = 0.21 and τB = 96 fs. Here, the response function hR,B(τ) of the BP is
with the Raman fraction fR,2 = 0.245.

One can simply apply the Raman response function Eq. (13), instead of Eq. (11), to compute
τR (denoted as τR,2) with Eq. (7), and it is found to be ∼1.57 fs [the blue dash-dotted line in
Fig. 2(a)]. After a further examination, however, we find that the result is still far away from the
realistic one because the approximation in Eq. (6) has implicitly overlooked the BP response. To
clarify this issue, we first notice the integral,

∫
∞
0 hR,B(τ)τdτ = 0, (15)

from which one will easily have

τR,2 = fR,2 ∫
∞
0 hR,2(τ)τdτ = fR,2(1 − fB) ∫∞0 hR,1(τ)τdτ. (16)

Then, under the approximation of the first-order Taylor-series expansion, the contribution of
the BP response to the Raman shock time approaches to zero and is thus entirely neglected. To
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Fig. 2. (a) Raman shock time τR as a function of the pulse width τs: black solid line, the
Raman shock time τR,1 acquired by Raman response function hR,1(τ); red solid curve, the
corrected Raman shock time τ′R,2 obtained by modified Raman response function hR,2(τ).
The blue and green dash-dotted lines represent the contributions of the Lorentzian response
τR,2 and the BP response 15

16 τR,BP to τ′R,2, respectively. Brown dashed curve, the Raman
shock time τ′′R,2 directly calculated by Eq. (5) with the function hR,2(τ). Violet dashed
curve, the evaluated contribution of the Lorentzian response τR,L to τ′′R,2. (b) Corresponding
computed values of contributions to the Raman soliton self-frequency shift ΩRaman plotted
versus 1/τ4s , where τs ranges from 105 to 300 fs. In the plots, the parameters of the free
spectral range, dispersion, and damping rate are set to D1 = 2π× 22 GHz, D2 = 2π× 4 kHz,
and γ = 2π × 4 MHz, respectively.

account for the influence of the BP response to the SSFS, we go back to the precise form of the
frequency shift, Eq. (5), while adopting the response function in Eq. (13), and then obtain

ΩRaman,2 ≈ Ω1st
Raman,2 +ΩRaman,BP. (17)

In Eq. (17), the Lorentzian-profile part of the Raman-gain spectrum takes the same form as
Eq. (12) but with the factor τR,2, while the BP contribution
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can be evaluated with Eqs. (13) and (8). After some algebra, we will obtain
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Putting together the above results involving the BP contribution, we eventually find
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′

R,2, (21)

where
τ
′

R,2(τs) = τR,2 +
15
16
τR,BP(τs) (22)

is the corrected Raman shock time.
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Equation (22) shows that the time constant τ′R,2 is related to the pulse width τs. In Fig. 2(a), we
plot τ′R,2 (red solid curve) as a function of the pulse width, which clearly reveals that the Raman
shock time obtained by the complete response function [Eq. (13)] is generally more than twice
longer than the time obtained by Eq. (6) for certain pulse durations. In our calculations, we also
compute τR,2 [the contribution of Lorentzian response in linear approximation to τ′R,2, the blue
dash-dotted line of Fig. 2(a)] and 15

16τR,BP (the contribution of BP response, the green dash-dotted
line), and find that the contribution of the BP response in τ′R,2 even surpasses that of the Lorentzian
response for certain pulse durations. This is due to the fact that as the pulse duration increases,
the low-frequency Raman gain gradually contributes more to the Raman shock time. When the
pulse duration increases to a certain extent (70-260 fs), the BP response [resonance at ∼2.5 THz
in Raman spectral, see Fig. 1(b)] dominates in the low-frequency domain. Meanwhile, when
the pulse continues to increase (greater than 260 fs), the Lorentzian response contribution in
the lower frequency domain (less than 1 THz) dominates again. On the other hand, when the
pulse duration is especially short (less than 100 fs), we need to reexamine the contribution of
Lorentzian response (denoted as τR,L as the violet dashed curve) to Raman shock time through
Eq. (5), due to the invalidation of the approximation in Eq. (6). From the calculation [the violet
dashed curve in Fig. 2(a)], one may find that the Lorentzian response will dominate when the
pulse duration is less than 70 fs. Intriguingly, we notice that τR,L will reach a maximum around
23 fs, which can be attributed to the resonant frequency ∼12.5 THz of Lorentzian response. In
addition, the brown dashed curve in Fig. 2(a) shows the Raman shock time τ′′R,2 directly computed
from Eq. (5), which indicates that Eq. (22) [the red solid curve in Fig. 2(a)] is a well approach
to the Raman shock time given by modified Raman response function when the pulse duration
τs>100 fs.

To gain an intuitive comparison of the amount of the Raman SSFS with (the red solid curve)
and without (the black one) a consideration of the BP response, we examine Eqs. (12) and (21)
using the different pulse widths and respectively plot the corresponding results in Fig. 2(b). As
one can see, the SSFS in the presence of the BP is significantly larger than the one in the absence
of the BP. The contribution from the BP response (the green dash-dotted line) to the SSFS is
also drawn in Fig. 2(b) and, intriguingly, one can see that this contribution is generally larger
than that of the Lorentzian response (the blue dash-dotted line) to the SSFS. In Fig. 2, we further
compare the analytical values with the numerical ones (the brown dashed curve) by performing
the integral of Eq. (5) with the use of Eq. (13). Despite a little discrepancy, we can conclude that
Eq. (21) gives a good approximation for the Raman SSFS taking into account the generalized
response function in Eq. (13).

3. Numerical simulations

To show the exact SSFS under the effect of BP response, we perform the numerical simulations
based on Eqs. (1) and (13) and with the parameters of real silica microresonators. For this
purpose we introduce the mode-coupled equations [29] to simulate Eq. (1) and further employ
the fast-Fourier-transform method [34] to efficiently deal with the Kerr term. Meanwhile, we
process the Raman term as ifRgF−1{F[hR(τ)] × F[A(t, τ)2]}A(t, τ), where the symbols F[. . . ]
and F−1[. . . ] represent the Fourier transform and inverse Fourier transform, respectively. In the
numerical simulations, we set the wavelength of the pump laser to be 1550 nm and the intrinsic
and external decay rates to be γ0 = 2π×2 MHz and κ = 2π×2 MHz, respectively. Then, we take
the refractive and Kerr nonlinear indexes of the silica to be n0 = 1.45 and n2 = 2.2×10−20 m2/W,
respectively, as well as setting the FSR to be D1 = 2π × 22 GHz. Here, we consider two
different resonators with the group velocity dispersions of D2,1 = 2π × 4 kHz (resonator #1) and
D2,2 = 2π × 17 kHz (resonator #2), respectively. In addition, the effective volumes of the optical
modes are estimated as Veff ≈ 5.65 × 10−4 mm3 from the 3-mm-diameter microdisks, which give
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the coupling coefficients of the Kerr nonlinearity at g = 6.75× 1015 Hz/J [29]. These parameters
are obtained based on previous works [11,12]. Finally, to trigger the Kerr solitons, we seed the
system with the Gaussian pulses [30].

The soliton spectrum of resonator #1 obtained from numerical simulation is displayed in
Fig. 3(a). There, we set the pump-cavity detuning to ∆ω = −2π × 7.5 MHz, to have the
corresponding Raman self-frequency shift ∼−97.81 GHz. In Figs. 3(b) and 3(d), we depict the
numerically acquired Raman SSFSs (the red dots) against the fitted pulse width in the two silica
resonators. We can find that the SSFSs grow with 1/τ4

s , in good agreement with the tendency
given by Eq. (21). In addition, one can see that the SSFSs of resonator #1 are much larger than
that of resonator #2. This is due to the smaller group velocity dispersion of resonator #1 than that
of resonator #2, resulting in the narrower pulse widths of the solitons generated in resonator #1.
Correspondingly, the calculated Raman shock times are ∼3.1 fs for ∼120 fs of pulse width [see
Fig. 3(c)] will decrease to ∼2.4 fs for ∼300 fs pulse width [see Fig. 3(e)], and it is in agreement
with the previously measured results [11,21,33]. Furthermore, based on numerical simulations,
we can calculate that the BP contributes approximately 1.7 fs and 1.1 fs to the Raman shock time
in Fig. 3(c) and Fig. 3(e), respectively. The ratios of the BP’s contribution to Raman shock time
are consistent with that in Fig. 2.

The analytical predictions in Figs. 3(b) and 3(d) (the black solid lines) do not exactly fit the
values of the numerically simulated SSFSs (the red dots). Correspondingly, the analytical Raman
shock times [the black curves in Figs. 3(c) and 3(e)] are also deviating from the results obtained
by 1/τ4

s fitting of the simulated SSFSs [the red dots in Figs. 3(c) and 3(e)]. A main reason is that
the condition B ≫ A0 is not usually well satisfied under the actual parameters so that Eq. (10)
becomes invalid. Therefore, we need to improve Eq. (21) to

ΩRaman,2 ≈ −
16πgPsol

15γD1τ
2
s
τ′R,2 (23)

proportional to Psol =
D1B2

2π , the intracavity peak power of the soliton field. To calculate Psol, we
first use Eq. (2) to fit the simulated soliton envelopes. However, as shown in Figs. 3(b) and 3(d)
the values (the green squares) obtained from Eq. (23) still deviate greatly from the numerical
simulations (the red dots). We attribute this discrepancy to ignoring the destructive interference
between the background light and the soliton due to the out of phase between them, which will
decrease the peak power of the generated soliton and mitigate the stimulated Raman scattering
effects [see Fig. 4(a)]. In Fig. 4(b), we display the peak power of the soliton with (the red
dots) and without (the black dots) consideration of the interference between the soliton and the
background light, respectively. And it shows that the interference reduces the peak power of the
solitons compared to the case without such interference, even though the intracavity power of the
background field (P0 =

D1A2
0

2π ) is much lower than the soliton peak power. Keeping this picture
in mind, we recalculate the SSFSs by substituting Eq. (2) into Eq. (5). From Figs. 3(b) and
3(d), one can see that the theoretical Raman SSFSs (the blue stars) considering the interference
between the soliton and the cw background light will greatly decrease, and it agrees well with
the simulated values (the red dots). Moreover, the corresponding Raman shock times [the blue
stars shown in Figs. 3(c) and 3(e)] also match well with numerical values (the red dots). For
a comparison, we also plot the analytical values [given by Eq. (12) as the black dashed line in
Figs. 3(b) and 3(d)] of the Raman SSFSs without considering the BP and cw background light.
According to Figs. 3(b) and 3(d), our theoretical values respectively exceed the analytical ones by
110% for a soliton with the pulse width of approximately 120 fs and by 64% for another soliton
with its pulse width of 300 fs.

To better understand the significance and importance of our work, we here provide an example
to compare our simulations with the previous experimental results [11]. According to Ref. [11],
the Raman shock time and Raman SSFS of a soliton pulse with a pulse width of 150 fs are ∼2.4
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Fig. 3. (a) The soliton spectrum obtained from numerical simulation in resonator 1#, and
the insert is the corresponding temporal waveform. (b) and (d), soliton self-frequency shift
ΩRaman plotted versus 1/τ4s . The black solid and dashed lines are the analytical results of the
Raman SSFSs calculated from the model including [Eq. (21)] and not including [Eq. (12)]
the BP, respectively. The red dots indicate the numerically simulated results. Moreover, the
blue stars are the values with the BP and cw background light (BL) obtained from Eq. (5),
while the green squares represent the theoretical values acquired with Eq. (23). (c) and
(e), the obtained Raman shock time against the pulse width. The red dots are the values
acquired from the simulations (with 1/τ4s fitting), and the black curve depicts the analytical
values of τ′R,2, in addition to the blue stars as the theoretical results considering background
fields. (b) and (c) are the results of resonator #1, and (d) and (e) are about resonator #2.
The width of the soliton pulse varies with changes in the pump-cavity detuning ∆ω (from
-2π×5.2 MHz to -2π×7.5 MHz), and the corresponding pump power (80 mW-130 mW) also
changes accordingly.

fs and 0.37 THz in the experiment, respectively. Based on Eqs. (1) and (13) (the numerical
calculations are based on the parameters derived from Ref. [11]), we generate a soliton with
the pulse width of 150 fs and find its corresponding Raman shock time and Raman SSFS are
∼2.8 fs and 0.43 THz, respectively, which match well with the experimental results in Ref. [11].
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Fig. 4. (a) An example of the soliton temporal profile in resonator #1. The red (black)
curve presents the intracavity power of the soliton field with (without) consideration of its
interference with the cw background. (b) For different pulse widths τs in resonator #1, we fit
the intracavity peak powers of the solitons without (Psol) and with (P′

sol) considering the
interference with the cw background, as well as the powers of corresponding background
fields (P0) inside the resonator.

Furthermore, these simulated results are also consistent with the theoretical ones considering the
background field, which are computed with Eq. (5). However, as for the model without including
the effect of the BP, its correspondingly simulated Raman shock time and Raman SSFS are
respectively ∼1.3 fs and 0.20 THz, which considerably deviate from the actual experimental data
in Ref. [11]. In addition, we conclude that, in Ref. [11], the BP contributes approximately 1.4 fs
and 0.21 THz (58% of the total Raman response) to the Raman shock time and Raman SSFS,
respectively, when the soliton has a pulse width of 150 fs. All these results validate the accuracy
of our model for the prediction of the Raman SSFS in silica microresonators.

4. Conclusion

In conclusion, we have examined the SSFS of the dissipative Kerr soliton in the presence of the
BP in the Raman-gain spectrum of a silica resonator. It is surprisingly found that the contribution
from the BP response to the SSFS is non-negligible and even larger than the Lorentzian response
part of the Raman effect for certain pulse durations. We also point out that the cw background
field will attenuate the peak power of the soliton through an interference, leading to a decrease
of the SSFS. One prospect of our study is the modification of the theoretical limitations on the
span or efficiency of the dissipative Kerr soliton combs. Although our model is based on silica
resonators, the theory is expected to be relevant to other amorphous material platforms such as
high-index doped silica [35] or Tantalum oxide [36,37].
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