Table of Contents

 Introduction, 1

Chapter 1. A Description of Sample Datasets, 9

1.1. A Description of Example Data Sets, 9

1.1.1. White Corn Tortilla Chips, 9

1.1.2. Muscadine Grape Juices, 18

1.1.3. Fried Mozzarella Cheese Stick Appetizers, 21

1.1.4. Data Sets for Panelist and Panel Performance Evaluation, 25

1.2. References, 25

Chapter 2. Panelist and Panel Performance a Multivariate Experience, 27

2.1. The Multivariate Nature of Sensory Evaluation, 27

2.1.1. A Musical Analogy, 27

2.1.2. Understanding Attributes in Context, 28

2.2. Univariate Approaches to Panelist Assessment, 29

2.2.1. Visualizing Raw Data, 29

2.2.2. PanelCheck, 31

2.2.3. Feedback Calibration, 32

2.3. Multivariate Techniques for Panelist Performance, 32

2.3.1. MANOVA, 32

2.3.2. Normalized RV, 33

2.3.3. Principal Component Analysis, 34

2.3.4. Generalized Procrustes Analysis, 37

2.4. Panel Evaluation Through Multivariate Techniques, 43

2.4.1. GPA for Lexicon Reduction, 43

2.4.2. The ESN Multicountry Projects, 44

2.4.3. The INRA Approach, 45

2.5. Conclusions, 46

2.6. References, 47

Chapter 3. A Nontechnical Description of Preference Mapping, 49

3.1. Introduction, 49

3.2. Internal Preference Mapping, 49

3.3. External Preference Mapping (PREFMAP), 58

3.4. Conclusions, 66

3.5. References, 67

Chapter 4. Deterministic Extensions to Preference Mapping Techniques, 69

4.1. Introduction, 69

4.2. Application and Models Available, 69

4.2.1. Partial Least Squares Regression on Average Data, 70

4.2.2. Response Surface Model for External Mapping, 75

4.2.3. Euclidian Distance Approach, 87

4.3. Conclusions, 89

4.4. References, 94

Chapter 5. Multidimensional Scaling and Unfolding and the Application of Probabilistic Unfolding to Model Preference Data, 95

5.1. Introduction, 95

5.2. Multidimensional Scaling (MDS) and Unfolding, 96

5.3. Probabilistic Approach to Unfolding and Identifying the Drivers of Liking, 98

5.4. Examples, 100

5.4.1. Comparison of LSA to External Mapping Methods, 100

5.4.2. Comparison of LSA to Internal Mapping Methods, 104

5.5. References, 109

Chapter 6. Consumer Segmentation Techniques, 111

6.1. Introduction, 111

6.2. Methods Available, 111

6.2.1. Cluster Analysis, 111

6.2.2. Latent Class Models, 112

6.3. Segmentation Methods Using Hierarchical Cluster Analysis, 113

6.4. References, 126

Chapter 7. Ordinal Logistic Regression Models in Consumer Research, 129

7.1. Introduction, 129

7.2. Limitations of Ordinary Least Square Regression, 129

7.3. Odds, Odds Ratio, and Logit, 130

7.4. Binary Logistic Regression, 133

7.5. Ordinal Logistic Regression Models, 144

7.6. POM, 144

7.7. Conclusions, 160

7.8. References, 160

Chapter 8. Risk Assessment in Sensory and Consumer Science, 163

8.1. Introduction, 163

8.2. Concepts of Quantitative Risk Assessment, 164

8.3. A Case Study: Cheese Sticks Appetizers, 166

8.3.1. Prediction of Overall Rejection Rate from Attribute

Acceptance Data, 166

8.3.2. Prediction of Overall Rejection Rate from Descriptive

Sensory Attributes, 173

8.3.3. Prediction of Overall Liking from Descriptive Sensory Attributes, 174

8.4. Conclusions, 176

8.5. References, 176

Chapter 9. Application of MARS to Preference Mapping, 179

9.1. Introduction, 179

9.2. MARS Basics, 179

9.2.1. Knots, 182

9.2.2. Basis Functions, 184

9.2.3. Piecewise Linear Regression Splines, 185

9.2.4. Generalized Cross-validation (GCV), 186

9.3. Setting Control Parameters and Refining Models, 187

9.4. Example of Application of MARS, 188

9.5. A Comparison with Partial Least Squares Regression, 201

9.6. References, 205

Chapter 10. Analysis of Just About Right Data, 207

10.1. Introduction, 207

10.2. Basics of Penalty Analysis, 208

10.3. Boot Strapping Penalty Analysis, 210

10.4. Use of MARS to Model JAR Data, 212

10.5. A Proportional Odds/Hazards Approach to Diagnostic Data Analysis, 215

10.5.1. Proportional Odds Model (POM), 216

10.5.2. Proportional Hazards Model (PHM), 216

10.5.3. Comparison of Proportional Odds and Hazard Models, 216

10.5.4. Examples, 217

10.6. Use of Dummy Variables to Model JAR Data, 220

10.6.1. Analysis of Covariance with Dummy Variables, 221

10.6.2. Partial Least Squares Regression with Dummy Variables, 224

10.6.3. Analysis Example, 227

10.7. References, 233