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ABSTRACT 
Average payloads define the ton-to-truck conversion factors that are critical inputs to commodity-based freight 

forecasting models.  However, average payloads are derived primarily from outdated, unrepresentative truck 

surveys.  With increasing technological and methodological means of concurrently measuring truck 

configurations, commodity, and weights, there are now viable alternatives to truck surveys.  In this paper, a 

method to derive average payloads by truck body type using weight data from Weigh-In-Motion (WIM) sensors 

is presented.  Average payloads by truck body type are found by subtracting an estimated average empty weight 

from an estimated average loaded weight.  Empty and loaded weights are derived from a Gaussian Mixture 

Model (GMM) fit to a Gross Vehicle Weight (GVW) distribution.  An analysis of truck body type distributions, 

loaded weights, empty weights, and resulting payloads of five axle tractor trailer (FHWA Class 9 or ‘3-S2’) 

trucks is presented to compare national and state-level VIUS data to the WIM-based approach.  Results show 

statistically significant differences between the three datasets in each of the comparison categories.  A challenge 

in this analysis is the definition of a correct set of payloads since both the WIM and survey data are subject to 

their own inherent misrepresentations. WIM data, however, provides a continuous source of measured weight 

data which overcomes the drawback of using out-of-date surveys.   Overall,  average payloads from measured 

weights are lower than both the national or California VIUS estimates.    
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INTRODUCTION 
Truck trip forecasts are needed to analyze freight bottlenecks and to derive freight performance measures to 

guide informed, data-driven freight planning and programming.  Since the number of trucks between freight 

origins and destinations (OD) is not available from existing data sources, samples of commodity flows from 

the Commodity Flow Survey (CFS) are used as a surrogate.  Ton-to-truck conversion factors are then applied 

to estimate the number of truck trips from commodity flow forecasts.  Average payloads- the amount of 

commodity carried by a truck- are direct inputs to ton-to-truck conversion factors used in state and national 

freight forecasting models.  

Freight forecasting models like the Freight Analysis Framework (FAF) rely heavily on the Vehicle Inventory 

and Use Survey (VIUS) (1) to estimate ton-to-truck conversion factors that are commodity, vehicle 

configuration, and truck body type specific (2).  The reliance and use of VIUS presents several limitations.  First, 

VIUS was discontinued over a decade ago.  With changes in economic conditions, truck size and weight 

restrictions, and operating regulations that have occurred since 2002, VIUS payloads and other essential 

estimates are likely no longer relevant.  Second, the VIUS questionnaire asks drivers to report their ‘typical’ 

loaded and empty weights, truck/trailer configuration, and commodity transported over the course of a year.  

Tractor-trailers which pull different commodities on varied trailer configurations only report the most common 

combination. This leads to incorrect associations of commodities and trailers as well as imprecise reports of 

empty and loaded weights by commodity and trailer type.   Third, significant limitations arise when using VIUS 

to derive state-level statistics.  A driver’s state of registration or their declared home base of operation are used 

to pull state-level truck statistics from the national VIUS samples.   This leads to state-level samples biased 

toward trucks with only half of their annual mileage within state-- leaving out trucks that operate inter-state.  

Fourth, the resulting state-level samples tend to be very small, particularly when stratified by body configuration 

or commodity transported.  For instance, of the trucks listed with a home base in California, there were no 

samples of livestock trailers for the common ‘3-S2’ (FHWA Class 9) five axle truck configuration. 

Consequently, using truck payloads and resulting ton-to-truck conversion factors gathered from outdated, 

inaccurate, and under representative samples, effects the accuracy of commodity-based freight forecasting 

models in terms of an under or over estimation of the number of truck trips.  To correct for this, comprehensive 

calibration and validation procedures are employed.  Even so, beginning with quality, precise payload and ton-

to-truck conversion factors would only increase the accuracy of the forecasts. 

To overcome the limitations presented by VIUS, some states have proposed their own VIUS-type surveys (3).  

However, with increasing technological and methodological advances available to concurrently measure truck 

configurations, commodity, and weights, there are now alternate, non-survey means of obtaining truck 

payloads.  New methods range from implementation of advanced sensing technologies at WIM sites (4) to 

advanced mathematical procedures based on standard WIM data (5).  With these technologies, truck 

characteristics and weights can be directly captured from sensors rather than surveys to produce more 

representative payload estimates.  The ability to derive up-to-date, temporally continuous, and spatially 

representative average payloads will add value to the current tons-to-truck conversion procedures.   

In this paper, a method to derive average payloads by truck body type using measured weight data is presented.  

This method uses truck body type and weight data collected at WIM stations to enhance the ton-to truck 

conversion estimates outlined in FAF by: (a) validating and/or calibrating truck configuration and body type 

distributions and (b) supplementing average payload estimates by body type.  Consequently, (b) enhances the 

adjustment procedure needed to ensure mean GVWs reported in VIUS match those measured in the field.    
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BACKGROUND 
Average payload can be calculated by subtracting the unloaded weight of the truck from the loaded weight.  

Payloads have been shown to be commodity specific and vary by truck axle configuration, truck body type, and 

travel distance (6).  Average payloads are major inputs to the calculation of tons-to-truck conversion factors, or 

truck equivalency factor (TEFs) used in FAF.  The procedure to develop TEFs in FAF follows four basic steps 

(7): 

Step 1: Identify primary vehicle groups (e.g. axle configuration groups) and major truck body types 

Step 2: Allocate commodities to truck body types used to transport these commodities 

Step 3: Estimate average payloads by vehicle group and body type 

Step 4: Calculate TEFs 

 

VIUS is the primary input for the TEF calculations.  In Step 1, VIUS is used to define the five vehicle groups 

and nine truck body types based on common average payloads and GVW within each group.  In Step 2, VIUS 

is used to define commodity-vehicle group-truck body type combinations and allocations.  In Step 3, average 

payloads are pulled from VIUS for each vehicle group, body class, and commodity combination.  At this step, 

to ensure VIUS weight data matches measured weights gathered from WIM detectors, VIUS payloads are 

calibrated against measured weight data found in the Vehicle Travel Information System (VTRIS) (8).  This 

calibration attempts to correct for the discrepancies between VIUS and VTRIS which show weight differences 

of 44% and 6.6% for single unit trucks and tractors with single trailers, respectively (6).  In Step 4, the total 

number of trucks needed to move commodity i is calculated according to Eq. 1 (7): 

𝑌𝑖𝑗𝑘 = 𝑋𝑖
𝛽𝑖𝑗𝑘

𝜔𝑖𝑗𝑘
=  𝑋𝑖 × 𝑇𝐸𝐹𝑖𝑗𝑘  Eq. 1 

where  

𝑌𝑖𝑗𝑘 is the total number of trucks to move commodity i  

𝑋𝑖 is the total tonnage of commodity i 

𝛽𝑖𝑗𝑘 is the fraction of commodity i moved by configuration j with body type k 

𝜔𝑖𝑗𝑘 is the mean payload of truck configuration j with body type k transporting commodity i  

𝑇𝐸𝐹𝑖𝑗𝑘 is the conversion factor relating tons of commodity i to number of trucks of configuration j 

with body type k, 𝑇𝐸𝐹𝑖𝑗𝑘 = 
𝛽𝑖𝑗𝑘

𝜔𝑖𝑗𝑘
 

 
As evident in the TEF procedure, researchers rely solely on VIUS for commodity specific average payloads (7).  

This is because VIUS is one of the only combined sources of truck weight, configuration, VMT, and commodity 

data (8).  As previously mentioned, VIUS has several limitations that restrict its use at the state-level and lead 

to inaccuracies in estimated payloads.  While the TEF calibration procedure attempts to account for 

discrepancies between VIUS and VTRIS GVWs, the different classification schemes found in VIUS and VTRIS 

limit the scope of the comparisons (existing measured weight data is limited to axle–based classification).  Also, 

the assumption that calibrating mean GVW by vehicle group implicitly calibrates GVW or average payloads by 

body type does not necessarily hold.  As shown in this paper, the discrepancy between measured and VIUS 

GVWs varies by body type.  So applying adjustments based only on the mean GVW would not be sufficient as 

the adjustments vary by body class as well.   

To calculate payloads from measured weight data, the unloaded weight can be subtracted from loaded weight.  

While the loaded weight, e.g. GVW, can be obtained from WIM devices, it is more difficult to determine the 

unloaded weight.  Theoretically, if one knew the make, model, and year of the truck then the unloaded weight 

would be known with some accuracy and the payload could be calculated after measuring the GVW.  However, 

this is not practically feasible.  Instead, static breakpoints for each axle group are used in VTRIS to determine 
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whether a truck is empty or loaded (8).  But, static breakpoints do not account for geographic variation in truck 

configurations and/or commodities transported.  Alternatively, methods have been developed to depict GVW 

distributions as mixtures of two or three of normal distributions where each distribution represents a specific 

loading class: the lower distribution represents empty trucks, the middle represents partially loaded trucks, and 

the upper represents loaded trucks (9).   

Since weights and payloads can be derived from non-survey data sources, body type and commodity carried 

are the remaining data elements needed to replace VIUS with measured data.  Hyun et al. (5) developed a 

method using axle spacing, vehicle length, and other WIM measured features to determine volume and weight 

distribution by body type.  Volumes of five trailer body classes were estimated with 95% accuracy.  This method 

does not require additional field hardware or sensing technologies.  Hernandez et al. (4) developed a high 

resolution body classification model by fusing advanced inductive loop detector outputs with traditional WIM 

outputs.  The model predicted 23 single unit and 31 tractor-trailer body types with classification accuracies 

higher than 80%.  This approach requires minor adaptations of the roadside detection hardware which 

California is currently undertaking (10).  Either approach would produce the type of truck body class data 

needed for the average payload calculations described in this paper.  

METHODOLOGY 
This paper proposes two enhancements to the TEF estimation, both based on inclusion of measured weight 

data into the estimation procedure.  First, measured body type distributions within vehicle groups were used 

instead of those from VIUS.  Truck body class volumes estimated from Hyun et al. (5) or Hernandez et al. (4) 

can be used as substitutes for the body class distributions found in VIUS.  Second, a procedure to extract 

payloads from measured GVW distributions by body type was developed in this paper for five axle tractors 

trailers specified as ‘3-S2’ trucks in FHWA Class 9.  These trucks are the most common freight truck 

configuration.  For ‘3-S2’ trucks body class refers to the body type of the single trailer.   

A Gaussian Mixture Model (GMM) procedure is used to define the empty and loaded weights for each body 

class group from the measured GVW data.  A GMM is a linear composition of normal distributions combined 

via a mixing parameter (11):  

𝑓(𝑥) =  ∑  𝑝𝑚 ∙ 𝒩(𝑥|𝜇𝑚, Σ𝑚)𝑀
𝑚=1   Eq. 2 

where  

x = continuous-valued data vector  
m = number of mixture components, m = 1…M where M = {2,3} 

𝒩(𝑥| 𝜇𝑚, Σ𝑚) = Gaussian distribution of component m with mean μ and covariance matrix Σ 

pm = mixing proportion of the mth component such that  ∑  𝑝𝑚 = 1𝑀
𝑚=1  

  

To estimate a GMM, the number of components must be predetermined.  Previous studies show GVW 

distributions can be modeled with two or three components (9).   The Akaike Information Criterion (AIC) is a 

goodness-of-fit measure to select the appropriate number of components in a GMM (11).  Once a best-fit 

GMM was established, the average payloads were calculated as: 

𝜔𝑗𝑘 = 𝜇𝑗𝑘𝑀 − 𝜇𝑗𝑘1   Eq. 3 

where  

ωjk = average payload for vehicle configuration j with body type k 

μikM = mean of the mixture component corresponding to the highest GVW weight range such that 
M is the index of the mixture component {2,3} for vehicle configuration j with body type k 
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μjk1 is the mean of the mixture component corresponding to the lowest GVW weight range for 

vehicle configuration j with body type k 
 
The TEFs (Eq. 1) were then calculated using body type distributions and average payloads derived from 
measured weight data.  First, the tonnage of commodity i was distributed across vehicle groups and distance 
ranges based on VIUS data.  Second, tonnages of commodity i in each vehicle group were distributed across 
body types using VIUS commodity-to-body type distributions.  At this stage, VIUS body type distributions are 
calibrated to match truck body type distribution gathered from measured weight data.  Third, the total number 
of trucks needed to move Xi tons of commodity i was calculated as:   
 

𝑌𝑖𝑗𝑘 = 𝑋𝑖
𝛽𝑖𝑗𝑘

𝜔𝑗𝑘
  Eq. 4 

where  

𝑌𝑖𝑗𝑘 = number of trucks needed to transport Xijk tons of commodity i by truck configuration j with 

body type k 

𝑋𝑖 = total tonnage of commodity i 

𝛽𝑖𝑗𝑘 = fraction of commodity i moved by configuration j with body type k 

𝜔𝑗𝑘 = mean payload of truck configuration j with body type k  

 
Note the estimated average payload is not commodity specific since it is derived from measured data which 
does not contain commodity information.  However, the body type distribution is related to the commodity by 
using VIUS data.  This ensures commodity tonnages are only assigned to body types which transport said 
commodity.  The proposed method replaces survey-derived average payloads that vary by commodity type, 

vehicle configuration, and body type (𝜔𝑖𝑗𝑘) with measured average payloads that vary by vehicle configuration 

and body type (𝜔𝑗𝑘) under the assumption that measured payloads are more accurate than those derived from 

VIUS even though they are not commodity specific. 
 

CASE STUDY 
Measured Truck Weight and Body Type Data 

Data were collected at the four WIM sites in California listed in Table 1.  Data was collected over several two 

to three day periods spanning the fall, winter, and spring seasons between 2012 and 2013 and covering a range 

of time periods.  Truck body types vary by location due to the presence commodity specific industries and land 

uses so the selected sites span metropolitan and agricultural regions to capture the full diversity of the California 

truck population.  In northern California forestry is a dominant industry so a heavy population of logging trucks 

was captured at the Redding and Willows sites.  In central California agriculture is widespread so many 

agricultural and farm trailers were captured at the Fresno site.  Southern California is characterized by urban 

land uses and international import/export movements so many van, reefers, and intermodal containers were 

found at the Irvine site.  Each of these sites capture inter- and intra-state travel since they are located on state 

routes and major interstates.   

TABLE 1 INSERT HERE 

For each passing vehicle a digital camera captured a series of still images which were manually matched to the 

WIM records by comparing the timestamps and vehicle configurations of the photos and WIM records.  

Around 35,000 vehicle records were processed, 10,241 of which were five axle tractor trailers.  The resulting 

dataset contained the following information for each truck: 

1. Manually identified vehicle body type  
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2. GVW  

3. Axle configuration (e.g. spacing between each axle and axle count) 

4. Vehicle class based on the FHWA 13 class scheme  

WIM data may be prone to measurement errors in the weight data due to vehicle dynamics over the sensor, 

rounding errors produced by the system electronics, and poor pavement quality.  Therefore, the data was quality 

checked using the Southgate (13) procedure.  This procedure compares axle weight and spacing ratios of 

measured FHWA Class 9 trucks to a standard log-log regression function representing calibrated axle weight 

and spacing ratios and adjusts measured weights as necessary.  The data collected from the four sites did not 

exhibit significant errors in the weight data.   

VIUS Samples 
To obtain the VIUS estimates used in the comparative analysis, samples were drawn from the 2002 VIUS for 

trucks with axle configurations listed as ‘truck tractors’ with ‘3 axle tractors and 2 axle trailers’ to correspond 

with the five axle tractor trailer (‘3-S2’) configured trucks in the measured data.  To obtain the California samples 

from the national VIUS database, trucks reporting a home base in California were selected.  In total there were 

16,585 records in the national sample and 330 in the California sample for the ‘3 axle tractors and 2 axle trailer’ 

vehcile configuration.   

Comparisons 
This section compares the body type distributions, loaded and empty weights, and payloads of ‘3-S2’ trucks. 

An unequal variances two sample t-test, also known as Welch’s t-test, was applied to the measured truck weight 

data, national VIUS, and California VIUS samples.    The unequal variances t-test is an adaptation of the student 

t-test that provides more reliable statistical evidence for two-samples that have unequal variances and sample 

sizes.  The null hypothesis, test statistic, and degrees of freedom are as follows (Eqs. 5 and 6, 14): 

𝐻𝑜: 𝜇𝐴 − 𝜇𝐵 = 0 

𝐻1: 𝜇𝐴 −  𝜇𝐵 ≠ 0 

 

𝑡 =  
𝑥̅𝐴−𝑥̅𝐵

√
𝑠𝐴

2

𝑛𝐴
+

𝑠𝐵
2

𝑛𝐵

  Eq. 5 

𝑣 =  
(

𝑠𝐴
2

𝑛𝐴
+

𝑠𝐵
2

𝑛𝐵
)

2

𝑠𝐴
4

𝑛𝐴
2 (𝑛𝐴−1)

+
𝑠𝐵

4

𝑛𝐵
2 (𝑛𝐵−1)

  Eq. 6 

where 

𝑡 = test statistics distributed according the student’s t-distribution 

𝜇𝐴, 𝜇𝐵 = population means for data sets A and B, respectively 

 𝑥̅𝐴, 𝑥̅𝐵 = sample means for data sets A and B, respectively 

𝑠𝐴
2, 𝑠𝐵

2 = sample variance for data sets A and B, respectively 

𝑛𝐴, 𝑛𝐵 = sample sizes for data sets A and B, respectively 

𝑣  = degrees of freedom 
 
Pairwise comparisons were made between the national, California, and measured data for all eight body types 
and resulting p-values are provided.  At the 95% confidence level, the null hypothesis is rejected when the p-
value is less than 0.025 for the two-tailed hypothesis test, concluding the two populations do not have the same 
mean.   
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Body Class Distributions 

Table 2 summarizes the body type distributions found in the national VIUS, the California VIUS, and measured 

data.  Vans are the dominate body type, representing around 40% of the sample in all three datasets.  

Discrepancies exist in the proportions of platforms, bulk, reefer, and tanks between the three datasets.  These 

more specialized trailers tend to be more commodity specific than vans.  For example, California is a heavy 

agriculture state and thus there may be more reefer trailers to transport fresh produce (15).  Note the California 

VIUS sample does not contain livestock trailers, although these were found in the measured data, suggesting 

state-level VIUS samples do not represent all truck types found in the population.  Under the assumption that 

conditions under which the measured weight data were collected produced a  representative sample of truck 

body types, the measured proportions of body types most closely capture the body class distributions in 

California.  

TABLE 2 INSERT HERE 

Gaussian Mixture Models (GMM) 

The GMMs of the GVW distribution estimated for each body type are shown in Figure 1.  For all but the 

logging body type, a three component GMM was the best fit model based on AIC.  The inclusion of the third 

mixture component helped to reduce the variance of component distributions and better match the location of 

the empty and loaded mean weights seen in the raw data.  Since the middle distribution is not used in the 

calculation of average payload, the location (e.g. mean and variance) are not as critical to the analysis.   The 

weight distribution for auto carriers does not appear to fit as cleanly into a GMM.  Coincidently, the component 

distribution representing empty auto carriers produces a mean empty weight which approximates VIUS. 

FIGURE 1 INSERT HERE 

Loaded Weights 

Figure 2(a) compares the loaded weight by body type with error bars depicting the one standard deviation 

about the mean.  The ‘measured’ loaded weights refer to the mean of the upper range of the GVW distributions, 

i.e. the upper component of the GMM.  For all body types the measured weight distribitions have much smaller 

variance than the VIUS samples.  For five of the eight body types, the measured weight distribitions have 

systematically lower means than the VIUS samples. This is due to two issues with how data is reported in VIUS. 

First, reported loaded weights in VIUS are partially a result of censored responses where the censored value 

corresponds to the 80,000 lb legal GVW limit set in most states (16).  The majority of the national and California 

VIUS samples, 34% and 20% of the responses, respectively, reported an average loaded weight of 80,000 lbs. 

The measured weight data does not show this same trend. Instead, the measured data follow a normal 

distribution centered near 70,400 lbs with a small peak at 80,000 lbs.  Second, the systematic upward bias in the 

loaded weights reported in national and California VIUS are influenced by GVW limits greater than 100,000 

lbs set in nine states (15).  

Table 3 provides the resulting p-values for the pairwise comparisons by body type.  Overall, at the 95% level 

of significance, the measured data have statistically different loaded weight distributions than the national VIUS 

sample.  Compared to the California VIUS sample, four of the seven body classes have statistically different 

loaded weight distributions.        

TABLE 3 INSERT HERE 

 

Empty Weights 

The ‘measured’ empty weights shown in Figure 2(b) and compared in Table 4 correspond to the mean of the 

normal distribution at the lower end of the GVW distribution.  With the exception of logging trucks, the 

measured empty weights are systematically higher than those reported in the national and California VIUS 
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samples.  It is difficult to obtain the weight of empty logging trucks because they commonly transport their 

empty two axle trailers in a piggyback configuration and are thus measured as three axle bobtails.  The method 

proposed in this paper to define the empty weight of logging trucks used the weight of bobtail tractors as a 

supplement.  This results in a much lower estimate than VIUS.  However, the definition of empty weight for 

the particular case of logging trucks is not clearly stated in VIUS.  A driver would not be able to report in the 

questionairre whether his or her five axle truck travels as a three axle bobtail when empty.     

For all three datasets, the average empty weights fall below the VTRIS defined breakpoint of 37,500 lbs for 

empty five axle trucks with the exception of auto carriers.  Compared to other body types, auto carriers do not 

have distinct GVW distributions representing empty, partially loaded, and fully loaded trucks, however similar 

to the national and California VIUS, the GMM approach produces an average empty weight above the VTRIS 

defined breakpoint. This could indicate high variability in the body configuration and/or loading arrangement 

for this class.  The purpose of the VTRIS breakpoint comparison is to demonstrate that comparisons between 

VTRIS data and VIUS at the vehicle group level (e.g. five axle tractor trailers) rather than at the body type level 

would not capture these subtle differences.  Thus, calibration practices such as the FAF TEF estimation which 

compare only vehicle groups may result in skewed payload estimates.   

From the statistical comparison, it can be concluded that for all body types except vans, the national and 

California VIUS samples are not statistically different; the difference between the national VIUS and measured 

data is statistically significant for all body types; and the difference between the California VIUS and measured 

data is statistically significant for all but auto carriers and tanks.   

TABLE 4 INSERT HERE 

Average Payload 

Figure 2(c) compares the average payloads by body type.  ‘Measured’ payloads are calculated by subtracting 

the estimated loaded weight from the empty weight for each body type.  The error bars for the measured 

payload estimates are calculated by summing the variances of the normal distributions representing the empty 

and loaded trucks.  Estimated average payloads from measured weight data were systematically lower than both 

the national and California VIUS samples with the exception of logging trucks.  Since the loaded weights derived 

from measured data were generally lower than VIUS and the empty weights derived from measured data were 

generally higher than VIUS, the resulting payload estimates are lower than VIUS.   

At the 95% level of significance, the statistical comparison summarized in Table 5 reveals the national and 

California VIUS derived payloads are not statistically different; the national VIUS and measured payloads are 

statistically different for all body types; and the California VIUS and measured payloads are statistically different 

for all but logging and auto carriers.  

TABLE 5 INSERT HERE 
 
FIGURE 2 INSERT HERE 
 

CONCLUSIONS 
The purpose of this paper is to demonstrate how measured weight, truck configuration, and body type data can 

be used to enhance the current method used in FAF and several state freight forecasting models to convert 

tons of commodity to number of trucks.  The current approaches to estimate ton-to-truck conversion factors 

rely solely on survey data from VIUS.  This is an issue not only because VIUS has been discontinuted since 

2002, but also because several reports show weight data recorded in VIUS do not accurately reflect actual 

loading characteristics seen on the road.  For example, in VIUS, the majority of drivers reported loaded weights 
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of 80,000 lbs while measured weight data from WIM show much more variation at the upper weight range.  

Futher, state trends in payloads may differ from national trends and the format of VIUS does not permit 

representative sampling at the state level.  State specific statistics from VIUS are typically extracted based on a 

driver’s delcared home base or state of registration, neither of which necessarily capture all trucks operating 

within the state.  Measured weights from WIM stations, on the other hand, capture both in-state and out-of-

state registered trucks operating in a specific region, on a specific route, and thus provide state-specific data.    

The methodology described in this paper fits a GMM to measured GVW distributions to extract empty and 

loaded weights of trucks.  Average payloads by body type are calculated by subtracting estimated loaded and 

empty weights.  The approach is applicable to WIM locations where truck body class can be estimated from 

advanced sensor technologies, mathematical modeling approaches, or through direct observation.  As direct 

observation would be time consuming, states wishing to adopt the proposed payload estimation methodology 

are advised to implement advanced sensors technologies as described in Hernandez et al. (4) to collect truck 

body class data from the field.   The California Department of Transportation (Caltrans) is in the process of 

implementing advanced inducitve loop detector technology at 76 WIM and traffic count locations along their 

state highway network to estimate more than 50 truck body classes (10).     

Comparisons of empty, loaded, and payload estimates resulting from the proposed approach to national and 

California VIUS samples show significant differences between the three datasets for the majority of body types.  

Measured loaded weights have systematically lower mean weights and smaller variation than the VIUS samples.  

This is due to reported weights in VIUS representing censored responses corresponding to  80 kip legal weight 

limits and upwardly biased responses corresponding to legal limits greater than 100 kips.  Measured empty 

weights are systematically higher than those reported in VIUS.  If VIUS overestimates loaded weights and 

underestimates empty weights, then resulting VIUS derived payloads are overestimated.  The consequence of 

overestimated payloads is an underestimate of the number of trucks which cascades to underestimated 

emissions, congestion, pavement loadings, etc.. Further, the comparison to the VTRIS showed that measured 

empty weights were well below the VTRIS defined breakpoint.  This points to possible inaccuracies arising 

from using VTRIS breakpoints in the FAF TEF procedure.       

The difficulty in this analysis centers on establishing a ‘correct’ set of weights and average payloads.  Neither 

the VIUS or measured data provide true payloads.  The VIUS data have no complimentary comparison other 

than the WIM data with which only aggregate comparisons at the truck axle configuration level are possible.  

Even highly aggregate analyses of GVW comparions by truck axle configuration group show significant 

differences between the VIUS and measured weight data.  To correct for the discrepancy between measured 

and surveyed weights, VIUS estimates are typically calibrated to match measured weight data.  This is 

problematic since differences between measured and VIUS weights vary by body type.  Therefore, calibration 

without considering body types can lead to inaccuracies.   Another issue that arises is determining adequate 

sample size and geographic distribution of sites to sample.  For this study, four disparate sites in California were 

sampled.  Based on prior knowledge, the research team strategically selected study sites to provide ample 

coverage truck body types and loadings.  As a result, the number of samples per body class ranged from 50 to 

4,200 and the distribution of body classes at each site differed.  Without a true population estimate of the body 

class distributions or loading spectra, it is difficult to select locations to provide representative coverage.  As an 

extention of this work, truck body and weight data collected from the 76 sites in California (10) will be leveraged 

to examine the applicability of sample size estimation methods and to develop guidelines on adequate samples 

size and geographic distribution of sample collection sites.  

Several improvements to the proposed approach are possible in future studies.  First, the measured GVW data 

is prone to error as the WIM sensors themselves can introduce measurement errors.  However, with proper 

calibration and maintenance, differences between measured and actual weights are as low as 6% (17).  Some 

state agencies have implemented quality control/assurance (QA/QC) checks to insure valid WIM 
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measurements (18).   Caltrans, for instance, provides a data quality table indicating whether the daily weight and 

volume data is ‘good’, has ‘acceptable minor errors’, or is in need of calibration.  Robust QA/QC procedures 

can be assessed and applied prior to estimating payloads.  Second, while the fit of the GMM were optimized, 

the mean empty and loaded weights derived from the GMM contain some error resulting from the fit of the 

estimated model.  Third, the assumption that the lower and upper components of the GMM represent empty 

and loaded trucks is partially sensitive to the commodity being transported.  Certain light-weight commodities 

may meet the volume limits before reaching weight restrictions, e.g. a truck transporting a low density 

commodity may be fully loaded even though its measured weight is lower than the empty breakpoint.   

With the increasing availability of methods and tools to concurrently gather truck configuration, commodity, 

and weight data through non-survey approaches, methods like that presented in this paper are needed to adapt 

these new data sources to meet freight planning needs.  While this paper presents a viable approach for 

obtaining payloads from measured weight and body type data, several challenges still need to be addressed.  

Ideally, payloads from measured weight data need to be commodity specific.  It may be possible to meet this 

need through further development of advanced sensors that capture commodity type such as volumetric load 

scanners (19) or inductive signature based technologies.  Further, to establish the accuracy of the proposed 

approach, estimated payloads based on measured weight data could be used to calibrate a state freight 

forecasting model.  The resulting errors in truck volumes could be compared to those resulting from VIUS 

estimated payloads.  Lastly, the insights presented here can be used to better the design of new state and national 

VIUS-like surveys for freight planning applications. For instance, a trip-diary format requiring weigh station 

measurements may provide more accurate payload data and allow drivers to report empty and loaded weights 

for each truck configuration.  Ultimately, a blend of survey and measurement-based data sources would be an 

apt platform to collect commodity, weight, and truck configuration data needed to support freight forecasting 

models.   
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TABLE 1 Summary of Data Collection Sites 

Site  Description Date Time Period 
Avg. Speed 

(mph) 

Irvine 

I-5 Southbound, Southern 
California, Urban, Approx. 45mi 
from San Pedro Bay Ports, 5% 

truck traffic1 

Sept. 21, 2012 10:45AM – 6:00PM 56.4 

Oct. 2nd, 2012 
Oct. 3rd, 2012 

1:00PM – 6:45PM 
6:30AM – 9:15AM 

57.7 
48.2 

March 20th, 2013 
March 25th, 2013 

6:30AM – 7:45PM 
7:30AM – 4:15PM 

61.9 
59.1 

Fresno 
SR-99 Southbound, Central 

California, Semi-Urban, 
Agricultural, 22% truck traffic 

Nov. 7th, 2012 
Nov. 8th, 2012 

10:15AM -5:15PM 
6:15 AM – 4:45PM 

57.6 
56.8 

Willows 
I-5 Northbound, Northern 

California, Rural, 25% truck traffic 

Dec. 10th 2012 
Dec. 11th,2012 
Dec. 12th,2012 

10:30AM – 4:45PM 
7:15AM - 4:45PM 
7:00 AM – 3:00 

PM 

62.1 
59.0 
61.9 

Redding 

I-5 Southbound, Northern 
California, Rural, Approx. 120mi 
from OR-CA border, 25% truck 

traffic 

Dec. 10th 2012 
Dec. 11th,2012 
Dec. 12th,2012 

1:30 PM – 5:00 PM 
7:00 AM – 4:45PM 
7:00 AM – 1:00PM 

57.8 
57.7 
58.8 

Total  13 days 97.25 hours 58.5mph 
1 Percent of total trucks, Source: Caltrans Traffic Counts for AADTT (12) 
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TABLE 2 Distribution of Body Types Across National, California, and Measured Samples 

Body Type National VIUS California VIUS Measured 

Van 5,983 36% 136 41% 4,286 42% 

Platform 3,462 21% 72 22% 1,519 15% 

Bulk 3,071 19% 41 12% 637 6% 

Reefer 1,701 10% 35 11% 2,834 28% 

Logging 378 2% 3 1% 54 1% 

Livestock 269 2% 0 0% 94 1% 

Auto Carrier 142 1% 5 2% 176 2% 

Tanks 1,579 10% 38 12% 641 6% 

Total 16,585 330 10,241 
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TABLE 3 Statistical Comparison (p-values) of Loaded Weight by Body Type 

Body Type Nat. vs. CA Nat. vs. Measured CA vs. Measured 

Van 0.000* 0.968 0.000* 

Platform 0.336 0.022* 0.518 

Bulk 0.061 0.000* 0.000* 

Reefer 0.127 0.000* 0.387 

Logging 0.435 0.000* 0.000* 

Livestock + 0.003* + 

Auto Carrier 0.334 0.003* 0.683 

Tanks 0.018* 0.000* 0.004* 
+ No samples contained in the CA VIUS dataset for Livestock  

* Reject the null hypothesis at the 95% level of significance (p-value < 0.025)  
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TABLE 4 Statistical Comparison (p-values) of Empty Weight by Body Type 

Body Type Nat. vs. CA Nat. vs. Measured CA vs. Measured 

Van 0.000* 0.000* 0.000* 

Platform 0.393 0.000* 0.000* 

Bulk 0.769 0.000* 0.000* 

Reefer 0.243 0.000* 0.000* 

Logging 0.190 0.000* 0.006* 

Livestock + 0.000* + 

Auto Carrier 0.733 0.000* 0.207 

Tanks 0.790 0.024* 0.931 
+ No samples contained in the CA VIUS dataset for Livestock  

* Reject the null hypothesis at the 95% level of significance (p-value < 0.025)  
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TABLE 5 Statistical Comparison (p-values) of Average Payloads by Body Type 

Body Type Nat. vs. CA Nat. vs. Measured CA vs. Measured 

Van 0.034 0.000* 0.000* 

Platform 0.304 0.000* 0.002* 

Bulk 0.287 0.000* 0.000* 

Reefer 0.172 0.000* 0.001* 

Logging 0.844 0.000* 0.001* 

Livestock + 0.000* + 

Auto Carrier 0.816 0.000* 0.065 

Tanks 0.046 0.000* 0.000* 
+ No samples contained in the CA VIUS dataset for Livestock  

* Reject the null hypothesis at the 95% level of significance (p-value < 0.025)  
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FIGURE 1 GMM by body class. 
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(a) Loaded weight 

 

 
(b)  Empty weights 

 
(c) Average payloads  

FIGURE 2 Comparison of Loaded Weights, Empty Weights, and Average Payloads by body type. 


