

WHAT ARE WE GOING TO DO TODAY

- Learn about transportation engineering and careers offered.
- Introduce essential concepts about signal timing.
- Play with a traffic control simulator.
- Have fun!

HOW DO YOU GET TO THE MOVIE THEATER?

WHAT IS TRANSPORTATION ENGINEERING?

VIDEO

Careers Options in Transportation:

- City Traffic Engineer or Planner
- Traffic Engineer Consultant.
- Design Freeways, Mass transit, Rail or streets.
- Design traffic signals.
- Design Intelligent Transportation Systems.
- MANY MORE!!

Gridlock - A situation of very severe traffic congestion.

Source: https://en.oxforddictionaries.com/definition/gridlock

GRIDLOCK BUSTER!

Let's see how good you are at controlling traffic!

GRIDLOCK BUSTER!

Did you know that Transportation Engineers use simulation to develop more efficient signal timing patterns?
$\operatorname{coc}+$

ACTIVITY 1: SIMULATOR INTERACTION. (FOLLOW HANDOUT)

- Otreot

Important Terms for Traffic Signal Timing

	Delay - When a vehicle has to stop at a red light, the driver experiences delay.
	Efficiency - How well a traffic signal operates to reduce the amount of traffic delay.

OBJECTIVES OF TRAFFIC SIMULATION

- Traffic engineers use computer simulations to test new traffic signal timing.
- We follow the scientific method to conduct an experiment \rightarrow which signal timing is the most efficient?
- Compare graphs generated by traffic patterns to select the most efficient traffic signal timing

HOW THE SIMULATOR WORKS?

Choose the simulation settings

RUN THE SIMULATION

Play and Pause the simulator

To Generate a Graph

Click here to get Queue (veh) per Time Graph and then OK

RECORD YOUR RESULTS

To Generate a
Graph

Click here to get
Queue (veh) per
Time Graph and then OK

Queue Statistics

What happens to the line of vehicles during the red phase? When does the queue reach its maximum length?

Queue Statistics

This lines represent the cycles
of the system.

1. What is the longest queue you created?
2. How many cycles are there in your simulation? (a cycle is a peak and valley)
3. How consistent is your pattern?

ACTIVITY 2: THE MOST EFFICIENT SIGNAL

WHAT CAN YOU CHANGE TO IMPROVE THE

 SIGNAL TIMING?䦛

- You can change the length of the green light for each approach
- In our example, we have two approaches
- East-west
- North- south

國 Settings	\square	\times
Intersection [1,1]		
Offset (sec):	0	
N-S Green (sec):	5	
E-W Green (sec):	5	
Save	Cancel	

Click in the Intersession to change the settings of the signal timing.

- Design your experiment!

1. Create a hypothesis
2. Design an experiment to test the hypothesis
3. Perform the simulation.
4. Create whatever graphs you need to confirm or contradict the hypothesis
5. Form a conclusion based on your scientific evidence

Hypothesis: What will you test? In a sentence, state the idea you will test.

Experiment Procedure: List the variables you will use and the steps you will follow to
test your hypothesis:

- Design your experiment!

1. Create a hypothesis
2. Design an experiment to test the hypothesis
3. Perform the simulation.
4. Create whatever graphs you need to confirm or contradict the hypothesis
5. Form a conclusion based on your
 scientific evidence

List of Steps to Modify the Fixed Time Parameters:

2. Pause the game and click on a signal
3. Choose Fixed Time Control

國 Network Settings	-	\square
Traffic Volume	Medium	\checkmark
Vehicle Speed	Medium	\checkmark
Network Size	Single	\checkmark
Control Type	Fixed Time	\checkmark
View Score		Simulate Now

3. Change the signal timing settings

國 Settings -	$\square \times$
Intersection [1,1]	
Offiset (sec):	0
N-S Green (sec):	5
E-W Green (sec):	5
Save	Cancel

- Design your experiment!

1. Create a hypothesis
2. Design an experiment to test the hypothesis
3. Perform the simulation.
4. Create graphs to confirm or contradict the hypothesis
5. Form a conclusion based on your scientific evidence

等 $4-n+8$

