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*SI is the symbol for the International System of Units.  Appropriate rounding should 
be made to comply with Section 4 of ASTM E380. (Revised March 2003) 

 
 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL 
WHEN YOU 
KNOW 

MULTIPLY 
BY 

TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

in inches 25.4 millimeters mm 

AREA 

in2 square inches 645.2 square millimeters mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square kilometers km2 

VOLUME 

fl 
oz 

fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

MASS 
oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T 
short tons (2000 
lb) 

0.907 
megagrams (or 
"metric ton") 

Mg (or "t") 

TEMPERATURE (exact degrees) 

oF Fahrenheit 
5*(F-32)/9 or 
(F-32)/1.8 

Celsius oC 

ILLUMINATION 
fc foot-candle 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 
FORCE and PRESSURE or STRESS 

lbf pound-force 4.45 newtons N 

lbf/in2 
pound-force per 
square inch 

6.89 kilopascals kPa 
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*SI is the symbol for the International System of Units.  Appropriate rounding should 
be made to comply with Section 4 of ASTM E380. (Revised March 2003) 

 
 
  

SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS FROM SI UNITS 

SYMBOL WHEN YOU KNOW 
MULTIPLY 
BY  
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LENGTH 
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 

km kilometers 0.621 miles mi 
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mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yard yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 

VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 

Mg (or "t") 
megagrams (or 
"metric ton") 

1.103 
short tons 
(2000 lb) 

T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 

lx lux 0.0929 foot-candle fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 0.225 pound-force lbf 

kPa kilopascals 0.145 
pound-force 
per square 
inch 

lbf/in2 
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EXECUTIVE SUMMARY 
Severe weather conditions, i.e. snowfall, floods, ice storms, etc. can have major 

effects on traffic volumes along the highway network.  Unlike passenger vehicles, which 
may choose not to travel during inclement weather, freight trucks need to adhere to 
delivery schedules requiring them to alter their route rather than cancel a trip.  While 
previous studies have modeled the effects of weather on total traffic volumes, very few 
studies have examined the effect of weather on truck volumes.  Due to differences in 
travel behaviors between passenger and freight trucks, the study of weather effects on 
truck volumes requires advanced modeling techniques that are able to capture effects 
over space.   
 

This study applies spatial regression techniques to develop a predictive model 
that relates variations in truck traffic patterns to weather conditions, with a focus on 
extreme weather events. The study uses traffic classification data from six Weigh-in-
Motion (WIM) stations and weather data from six weather stations in Arkansas.  As 
expected, reduction in truck volume occurs due to extreme weather events such as 
snowfall, fog, hail, winter storms, flash flood, etc.  The study finds extreme cold events 
(i.e. snow) reduces daily truck volumes by approximately 22% while heavy rainfall, 
flood, and flash flood reduces daily truck volumes by 13%, compared to the average 
daily truck traffic. Non-weather variables including road type, day of week, season, and 
presence of construction all had statistically significant impacts on daily truck volume 
relative to Annual Average Daily Truck Traffic (AADTT).  Comparison of the Ordinary 
Least Squares (OLS) approach used in previous studies to the spatial regression model 
used in this work shows that the spatial model is able to explain 7% more variability in 
the data than the OLS model.  The adjusted R2 goodness-of-fit statistic of the spatial 
model was 53% compared to 46% for the OLS model.  In addition to better fit, the 
spatial model estimates the degree of spatial autocorrelation in the data.  In this study, 
the spatial autocorrelation parameter was negative (-1.73). This parameter captures 
truck re-routing behavior, e.g. reductions in truck volume at one site are countered by 
higher truck volumes at neighboring sites. 
 

The study can assist state and regional transportation agencies in developing 
scenario-based, freight-oriented programs and policies for road and winter 
maintenance, structural and geometric pavement design, highway life cycle analysis, 
and long-range transportation planning.  For instance, the results of this study can 
quantify the shifts in truck volumes that may occur as extreme winter storms increase in 
frequency or duration. Future work will examine (i) the applicability of spatio-temporal 
models intended to capture both spatial and temporal autocorrelation and (ii) the use of 
mobile sensor data from truck GPS units to expand the spatial coverage of truck volume 
data beyond the limited number of WIM sites. Mobile sensor data from truck GPS would 
also allow for estimation of truck vehicle miles travelled (VMT) and truck vehicle hours 
traveled (VHT) which would further enhance winter maintenance and freight operations, 
programming, and planning decision. 
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INTRODUCTION 

PROBLEM STATEMENT 

Trucking is a critical component of freight transportation system.  Although freight 
shipments traverse a multimodal system comprised of air, rail, water, and truck modes, 
trucking is and is forecast to be the dominant mode for freight.  In 2007, trucks 
accounted for 68% and 65% of the market by both weight and value, respectively [1].  
Further, the Freight Analysis Framework Version 3 (FAF3), FHWA’s national freight 
forecasting model, estimates that the weight of freight shipments moved by truck will 
grow 43% between 2012 and 2040 [2]. A reliable estimation of freight travel demand by 
truck is important for effective planning, design, and management of the freight 
transportation system.  

Severe weather conditions such as cold temperatures, high wind speed, ice, and 
snowfall, affect traffic volumes along the highway network especially in regions subject 
to extreme weather patterns [3]. Extreme weather events such as tornadoes and 
flooding can cause significant disruptions to the freight transportation network resulting 
in economic impacts to the trucking industry and industries served by the trucking 
industry. Impacts include displaced congestion effects as well as shipment delays and 
related costs. Impacts to or in the vicinity of Primary Freight Network (PFN) segments, 
in particular, will have far reaching effects on freight movements across the nation.  
Understanding the impacts of weather events on freight movements can help state 
agencies assess the economic impacts of such events in order to provide monetized 
benefit estimates for highway infrastructure maintenance or upgrades.  To assess 
impacts such as route changes and time delays, more accurate models are needed to 
predict the number of affected vehicles and geographic extent of the impacts.   

The impact of a weather event, such as a winter storm, can be measured in part 
by the difference in traffic volumes along the highway network. Faced with adverse 
weather, drivers may postpone a trip (i.e. temporal shift), change routes (i.e. spatial 
shift), or cancel a trip all together (i.e. volume reduction).  Unlike passenger traffic, 
freight traffic is subject to more rigid pickup/delivery windows and assigned schedules. 
Thus, freight truck traffic exhibits less flexibility in the decision to travel than passenger 
traffic.  Consequently, while reductions in total traffic volumes may occur due to severe 
weather, truck traffic may actually increase along certain routes as a result of spatial 
shifts.   

BACKGROUND 

Previous research has found that in the presence of adverse weather such as 
snowstorms, total traffic volumes can reduce as much as 56% [4] since many travelers 
cancel their trips.  However, prior studies, although limited, show differing effects for 
freight trucks [5,6]. For instance, due to re-routing, traffic volumes at the weather-
impacted site may decrease while the neighboring sites may experience volume 
increases. Using truck GPS data, Pierce and Short [7] showed spatial volume shifts in 
truck traffic caused by flooding along Arkansas Interstate 40 in May 2011.  The study 
showed that many trucks choose regional detours to re-route around the flooding 
closure [7].  
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Ordinary least square (OLS) regression is a commonly used method to measure 
the effect of weather events on total traffic volume [8,9,10,11,12,13,14,15,16]. The body 
of work related to the effects of weather on truck traffic volumes is considerably more 
limited. First, there are very few studies that model the effects of weather on truck traffic 
separately from that of total traffic due in part to limited truck count data.  Previous 
studies on traffic volume variations due to weather events have used traffic data from 
fixed sensors such as Automatic Traffic Recorders (ATR) to obtain total traffic volumes 
and Weigh-in-Motion (WIM) sensors to obtain truck traffic volumes.  Of all traffic sensors 
types, WIM provide the highest level of detail about the vehicle population. WIM sensors 
measure axle configuration, axle weight, vehicle length, and speed to predict vehicle 
type. Information on truck type allows analysis of weather related impacts to be 
determined solely for the truck population. Restricting analysis to semi-tractor trailer 
trucks allows for an even finer level of impact assessment on freight trucks since these 
types of trucks are responsible for the majority of freight commodity movements (single 
unit trucks, for instance, tend to be service or local delivery trucks). 

Second, considering that trucks may choose to re-route rather than cancel a trip 
in the presence of adverse weather, it is necessary to incorporate spatial effects into 
explanatory models. Though OLS models can explain a normally distributed linear 
relationship, they are not suitable when dependent or independent variables show 
spatial autocorrelation.  When spatial autocorrelation is suspected, spatial regression 
techniques are more appropriate than OLS.  There are several reasons to consider 
spatial autocorrelation in truck traffic volumes as they related to weather conditions.  
First, as indicated by previous studies, trucks are more likely to re-route rather than opt 
out of traveling.  This means negative spatial auto-correlation may exist in traffic 
volumes such that low volumes along the main route due to adverse weather 
correspond to higher volumes along alternate routes. Second, due to the inherent form 
of the highway network, spatial patterns of dependent and independent variables may 
exhibit spatially non-stationarity.   For instance, the density of the road network differs 
across each region.  In regions with high network density, detours around adverse 
weather may be more feasible compared to regions of low network density.  Thus, there 
may be spatial correlation in traffic volumes if network density is not explicitly captured 
as an independent variable.  Lastly, willingness to delay a trip due to a weather event 
may be contingent on the commodity transported, e.g. refrigerated and perishable 
goods would be more sensitive to delays than would manufactured products.  As freight 
trip generation is tied to land use, it is possible that spatial autocorrelation exists due to 
commodity types.  

OBJECTIVES 

The goal of this study is to develop a predictive model that relates the spatial 
variations in long-haul, freight truck traffic volumes to weather conditions, with a focus 
on extreme weather events (i.e. snowfall, winter storms, flash flood, heavy rain, tornado, 
high wind, etc.). The main objectives of the study include: 

i. Fusing fixed truck traffic sensor measurements (e.g. WIM data) with weather 
sensor data.  
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ii. Developing ordinary least squares (OLS) and spatial regression models to 
explain and predict the impact of weather events on truck traffic volumes and 
travel patterns. 

iii. Investigating the feasibility of fusing static (e.g. WIM) and mobile (e.g. Global 
Positioning System, GPS) data to predict Vehicle Miles Traveled (VMT) and 
Vehicle Hours Traveled (VHT) impacts based on forecasts of extreme weather 
events 

 
The study employs a spatial regression model to predict the percentage change 

in daily freight truck volume due to weather conditions including extreme heat and cold 
temperatures, wind speed, and precipitation.  The spatial regression model incorporates 
(i) temporal data including historical truck volume trends, seasonality, and daily 
variations in traffic volumes, and (ii) environmental factors such as road type (i.e. 
interstate, highways, etc.).   

A better understanding of the effect of weather events on truck traffic can help 
state and regional transportation agencies to develop freight-oriented programs and 
policies for winter road maintenance programs, extreme event maintenance, structural 
and geometric pavement design, highway life cycle analysis, and long-range 
transportation planning.  Likewise, freight carriers need to understand how severe 
weather events impact the spatial and temporal traffic patterns of their trucks to better 
plan routes. 
 

REPORT ORGANIZATION 

The body of this report is organized as follows.  The methodology section details 
the traffic and weather data sources and model specification.  The results section 
compares the OLS and spatial regression models and interprets the significant 
coefficients of the spatial regression model.  The report concludes by highlighting 
significant findings, noting limitations, and suggesting future improvements. 
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LITERATURE REVIEW 
Multiple studies have examined the effect of extreme weather on total traffic 

volumes [4,9,6,11]. Studies show statistically significant reductions in total traffic 
volumes that result from winter storm events.  Hanbali and Kuemmel [4] applied multiple 
linear regression (MLR) models to conduct a regional analysis covering 11 sites across 
New York, Wisconsin, Minnesota, and Illinois. They found reductions in total traffic 
volume between 8% and 56%, depending on the depth of the snowfall.  In Iowa, Knapp 
and Smithson [9] reported reduction in total traffic volume between 16% and 47% during 
winter storm events characterized by more than four-hour durations of snowfall at 0.51 
cm (0.2 inch) per hour.  Similar to Hanabali and Kuemmel [4], Knapp and Smithson 
(2010) used MLR including independent variables representing snowfall intensity and 
total snowfall to predict the percent reduction in total traffic volume.  Maze [6] found that 
strong wind and reduced visibility due to snow lead to traffic volume reductions as great 
as 80%.  Dalta and Sharma [11] reported reductions of around 30% during periods with 
air temperatures below -25°C and reductions of 51% during periods of snowfall of 30 cm 
(12 inches) or more in Alberta, Canada.  Dalta and Sharma [11] found that reduction in 
traffic volume due to snow and cold varies with day of week, hour of day, type of 
highway, and adversity of cold with traffic volume reductions of 80% during snowy days 
when the visibility is less than a quarter mile and wind speed is more than 40 mph.   

Modeling efforts also revealed that roads carrying non-discretionary trips 
experience less volume reduction (0.5% - 1.7%) than the roads that carry recreational 
trips (0.5% - 3.15%) [11].  In their MLR model, the authors use historical traffic data, 
snowfall depth, temperature, and an interaction term on snow depth and temperature as 
independent variables. Keay and Simmonds [10] use OLS to predict the percentage 
change in traffic volume relative to the mean traffic volume.  The authors developed two 
models, one for daytime and another for nighttime conditions, using historical traffic 
volumes, day of week, and rainfall as independent variables. Roh [12] used MLR to 
develop models predicting passenger cars and freight truck volume based on snowfall, 
temperature, snowfall-temperature interaction term, and four-year average of daily truck 
volume factors, i.e. expected volume for a given day of the week and day of the year. 

Studies also find that in addition to extreme weather events other meteorological 
parameters, i.e. maximum temperature, minimum temperature, rainfall, wind speed, etc. 
can have an effect on traffic volumes [11]. Shang et al. [15] found that traffic volume 
decreased by 6% to 14% depending on the intensity of rainfall.  Keay and Simmonds 
[10] found that 2mm to 5mm rainfall in the Spring reduced traffic volume by 3.43%.  

Compared to the body of work related to total traffic, limited research exists on 
the effect of weather events on the spatial and temporal variations in truck traffic 
volumes.  Roh [14] found that truck traffic increased during extreme winter storms, 
possibly due to trucks shifting away from secondary highways to primary highways that 
had higher priority in winter maintenance programs.  In addition, the impact of weather 
on truck traffic was generally found to be similar for weekdays and weekends [12]. 
Similarly, Maze [6] found that, compared to passenger vehicles, trucks were less likely 
to divert trips due to inclement weather conditions. 

Beyond developing a model specifically for truck traffic volume prediction, several 
novel expansions of the studies described above are presented in this paper: (1) 
improvements in the spatial and temporal scope and resolution of the traffic data and (2) 
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expansion of existing modeling techniques to include spatial regression techniques.  
Eleven years (2005-2015) of daily truck volume data from six Weigh-in-Motion (WIM) 
stations and six corresponding weather stations in Arkansas are used to develop the 
spatial regression model.  None of the studies mentioned above consider the spatial 
autocorrelation of weather and/or truck traffic volume. Therefore, in this study spatial 
diagnostic statistics are applied to an OLS model to determine then estimate an 
appropriate spatial model.  Spatial Error (SE) and Spatial Lag (SL) models are 
considered in this study to predict the percentage change in truck volume due to 
extreme weather events (i.e. snow, flood, etc.), precipitation, humidity, wind gust speed, 
and extreme hot and cold temperatures with respect to day of week, season, highway 
functional classification, and historical trends in daily truck volumes. 
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METHODOLOGY 
The study develops a predictive model that explains the spatial relationships 

between percentage change in truck traffic volume and weather conditions.  The model 
incorporates traffic variables (Annual Average Daily Truck Traffic, AADTT and Expected 
Daily Volume Factor, EDVF), daily weather variables (i.e. humidity, precipitation, wind 
speed etc.), extreme weather events, seasonality, and network variables (e.g. highway 
functional classification).  After detailing the data sources and pre-processing steps, a 
discussion of the model specification is provided. 

DATA PRE-PROCESSING AND ANALYSIS 

The study requires two types of data: (i) weather data to track the occurrence of 
extreme events and (ii) Weigh-in-Motion (WIM) data to measure truck volumes. The 
following section provides a brief description of the two datasets and the pre-processing 
tasks required to comply with later modeling efforts. 

Weather Data 

Since the WIM stations do not collect weather data, it was necessary to gather 
weather data from an alternate source.  Daily and hourly weather data were obtained 
from the National Oceanic and Atmospheric Administration (NOAA). In addition, ‘5-
minute’ weather data from 40 weather stations were obtained from the Arkansas 
Department of Agriculture. The study used daily weather data for 11 years (2005-2015) 
to develop the regression model as it was more temporally complete and provided more 
weather parameters. Weather data includes: 

1. temperature (°F) 
2. dew point (°F) 
3. wind speed (knots) 
4. maximum speed (knots) 
5. maximum temperature (°F) 
6. minimum temperature (°F) 
7. precipitation (inches) 
8. snow depth (inches)  

Since the main objective of this project is to know how weather affects trucks 
patterns, a deeper analysis of the weather parameter in the state of Arkansas was 
necessary to determine the distance to consider the weather as homogenous, this 
distance is called the ‘cut-off distance’. The cut-off distance was used to pair each 
weather station with a WIM station. Next, extreme weather events were incorporated 
into the weather data set. Finally, a correlation analysis was performed to reduce set of 
weather variables to a statistically valid sub-set for regression modeling. The 
methodology developed for each task is described in this section. 

Selection of Cut-off Distance for WIM-Weather Station Pairing 
Roh [12] argues in his paper that homogenous distance for weather parameters 

varies from 15km to 24 km in Canada during winter. Tessier [16] states that weather is 
considered homogenous at a certain range depending on the area under study. As 
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Arkansas has different weather characteristics and topography than Canada, it was 
necessary to determine a new cut-off distance for this study.  

A cut-off distance defining homogeneous weather patterns was defined to 
determine how to best pair of each WIM station with the nearest weather station when 
more than one weather station was located near the WIM site. First, the monthly 
average of each weather parameter was calculated.  Next, a correlation matrix 
representing the Pearson correlation [18] between each pair of weather stations for 
each weather variable was calculated according to Equation 1:  

 

 

Equation 1 

Where,  
N = Number of observations 

A = Mean of A 

A = Standard deviation of A 

B = Mean of B  

B = Standard deviation of B 
 

 

Next, the Euclidean distance between each pair of weather stations was 
calculated as per Equation 2.  The resulting distances between each pair of weather 
stations was referred to as the distance matrix.  

 

𝑑𝑠𝑡
2 =  (𝑥𝑠 − 𝑦𝑡)(𝑥𝑠 − 𝑦𝑡)′ 

 

Equation 2 

Where,  

𝑑𝑠𝑡
2  = Squared distance between two stations 

𝑥𝑠  = Latitude coordinates of the station 
𝑦𝑡 = Longitude coordinate of the station 

 
Figure 1 shows the correlation (R2) vs the distance (miles) for each pair of 

weather stations. To get the maximum possible homogenous weather pattern, the study 
fit a quadratic curve to the data and defines the cut-off distance. In the example shown 
in Figure 1, if the distance between two weather stations is 65 miles, the weather 
pattern is 94% homogenous. Thus, if the distance between a WIM and weather station 
exceeds 65 miles, then that WIM site cannot be included in the study. 
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Figure 1: Correlation vs Distance for Precipitation in 2015 

Extreme Weather Events 
Extreme event data includes the time and date of the extreme weather event with 

a beginning and ending latitude-longitude, which represents the spatial extent of the 
event. The research team identified the nearest weather station for each event. Table 1 
shows the number of extreme events in Arkansas during the study period of 2005-2015. 

 
Table 1: Number of Extreme Events in Arkansas 

Year 
Number of 

Cold Events 

Number of 
Precipitation 

Events 

Number of 
Wind Events 

Number of 
Heat Events 

2005 4 335 71 28 
2006 44 559 51 37 
2007 125 402 24 39 
2008 161 912 153 3 
2009 103 996 61 4 
2010 120 444 59 249 
2011 156 981 105 490 
2012 51 371 23 474 
2013 120 358 41 148 
2014 167 318 35 0 
2015 157 628 29 61 

Total 1208 6304 652 1533 
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Correlation Analysis 
Correlation analysis was applied to the weather variables to identify possible 

multicollinearity among variables. The study used Equation 3 to calculate correlation 
coefficients: 
 

𝑟 =
Ʃ(𝑥 − �̅�)(𝑦 − �̅�)

√Ʃ(𝑥 − �̅�)2 Ʃ(𝑦 − �̅�)2 
 

Equation 3 

Where,  
 r  = Correlation coefficient 
 x  = First weather variable 
 y  = Second weather variable 

 �̅�  = Mean of variable x 
�̅�  = Mean of variable y 

 
 

Temperature was found to be highly correlated to maximum and minimum 
temperature. Wind speed was directly correlated to maximum wind speed. Therefore, 
the study used temperature and wind speed in the regression analysis and omitted 
maximum temperature, minimum temperature, and maximum wind speed. Since dew 
point was correlated to temperature, the study removed dew point from the regression 
analysis.  Moreover, the existence of snow, i.e. a binary variable, was used instead of 
snow depth variable to avoid multicollinearity.  Lastly, humidity (%) was calculated using 
average temperature and dew point temperature (Equation 4) and serves as a proxy for 
the probability of precipitation.  The use of humidity, extreme cold and extreme heat 
variables reduces the presence of multicollinearity among model variables. 
 

𝐻𝑑 = 100 −  
25

9
× (𝑡𝑑 − 𝑑𝑑) 

Equation 4 

 
Where, 

 𝐻𝑑 = Humidity of a particular date d 

 𝑡𝑑 = Average temperature of a particular date d 

 𝑑𝑑 = Dew point temperature of a particular date d 
 

 

Weigh-in-Motion (WIM) Data 

There are 69 WIM stations in Arkansas that collect temporally continuous traffic 
data.  Data from six of the 69 stations was used in this study after applying the 
homogenous weather distance cut-off described in the previous section.  Figure 2 
shows the locations of WIM sites and corresponding weather stations. Five of the six 
WIM sites are located along the interstate and one is located along a non-interstate 
route. The location and site characteristic details for each of the WIM sites are found in 
Appendix A.
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Figure 2: WIM Station Locations and Selection of Study Sites 
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WIM data includes timestamps, vehicle configuration (i.e. axle counts, axle 
spacing, and axle-based classification), and truck weight. The research team obtained 
11 years of data (2005-2015) from the Arkansas Department of Transportation 
(ARDOT). The data was provided as “Per Vehicle Record” (PVR) data. PVR files 
contain the individual truck records. For this study, the PVR data was aggregated to 
hourly volumes by vehicle class from which Annual Average Daily Truck Traffic 
(AADTT) was calculated. All holidays were removed from the data before calculating 
model parameters. Highway Functional class (e.g. interstate, other freeways and 
expressways, rural principal arterial, another principal arterial, etc.) was gathered for 
each WIM site location. Road construction zone information was gathered from ARDOT 
for the dates corresponding to the study period [19]. 
 

In this study, we consider only the volumes of five-axle tractor-trailers, e.g. ‘3-S2’ 
configuration or FHWA Class 3 according to Scheme F, as these are most likely to be 
long-haul freight trucks. The volume of long-haul tractor-trailers, e.g. FHWA Class 9 or 
‘3S2’ configured trucks, varies from year to year as shown in Figure 3 for 2010 to 2015. 
Figure 4 shows the average across all years (2010-2015). The highest truck volume 
was recorded in February 2012 while the lowest truck volume was recorded in 
September 2011. On average, 2013 has a lower truck volume throughout the year 
compared to other years. 

 

 

 
Figure 3: Average Daily Truck Volume by Month in Arkansas by Year from 2010-2015 

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12A
n
n
u
a
l 
A

v
e
ra

g
e
 D

a
ily

 T
ru

c
k
 T

ra
ff

ic
 

(A
A

D
T

T
)

Month

2010

2011

2012

2013

2014

2015



12 
 

 
Figure 4: Average Daily Truck Volume by Month Across All Years from 2010-2015 in 
Arkansas 

 
Figure 5 shows the average hourly truck volume of weekdays for 2010 to 2015. It 

indicates that all weekdays follow the same general pattern with a peak during the mid-
day hours between 10AM and 4PM.  Tuesday, Wednesday, and Thursday have the 
highest truck volume. Figure-5 also shows that truck volume varies with time of the day. 
10AM to 4PM are the peak hours for truck movement having more than 40% of truck 
volume. After 4PM truck volume starts decreasing till 11PM.  

Figure 5: Average hourly truck volume of weekdays (solid) and weekends (dashed) (2010-

2015) 
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This study uses historical truck volumes as an independent variable in the 
regression analysis.  Specifically, the Expected Daily Volume Factor, EVDF.  EDVF 
captures the historical trend of truck volume and is calculated according to Equation 5 
[12]. It represents the average daily truck volume factor over a six-year period (2005 to 
2010). This period was chosen based on available data. 
 

𝐸𝐷𝑉𝐹𝑖,𝑗,𝑘,𝑠 =  
∑ (𝐷𝑉𝐹𝑖,𝑗,𝑘,𝑦𝑟,𝑠)𝑟=2010

𝑟=2005

6
 Equation 5 

 
Where,  

𝐸𝐷𝑉𝐹𝑖,𝑗,𝑘,𝑠 = Expected daily volume factor for a particular day i of the week 

(i.e. Monday, Tuesday), a particular week j of the month (i.e. 
Week 1 – Week 5), a particular month k of the year (i.e. January 
– December) of station s  

𝐷𝑉𝐹𝑖,𝑗,𝑘,𝑦𝑟,𝑠 = Daily Volume Factor for a particular day i of the week (i.e. 

Monday, Tuesday), a particular week j of the month (i.e. Week 1 
– Week 5), a particular month k of the year (i.e. January – 
December) of station s in year yr (i.e. 2005-2014) calculated as  

𝐷𝑉𝐹𝑖,𝑗,𝑘,𝑦𝑟,𝑠 =
�̅�𝑖,𝑗,𝑘,𝑦𝑟,𝑠

𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟
 

 
𝐴𝐴𝐷𝑇𝑇𝑠, 𝑦𝑟  = Annual Average Daily Truck Traffic of WIM station s in year yr 

�̅�𝑖,𝑗,𝑘,𝑦𝑟,𝑠  = Average truck volume for a particular day i of the week (i.e. 

Monday, Tuesday), a particular week j of the month (i.e. Week 1 
– Week 5), a particular month k of the year (i.e. January – 
December) of station s in year yr (i.e. 2005-2014) 

 
 

The study uses the percentage change in daily truck volume (𝑦𝑑,𝑠,𝑦𝑟) relative to 

the AADTT (𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟) of each WIM station (s) as the dependent variable in the 

regression analysis.  Equation 6, and Equation 7 show the formula to obtain the 
estimated 𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟 and 𝑦𝑑,𝑠,𝑦𝑟. 

 

𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟 =
∑ 𝑣𝑑,𝑠,𝑦𝑟

𝑁

𝑑=0

𝑁
 

Equation 6 

Where,  
 𝐴𝐴𝐷𝑇𝑇𝑠, 𝑦𝑟  = Annual Average Daily Truck Traffic of WIM station s in year r 

 𝑣𝑑,𝑠,𝑦𝑟  = Truck volume for a particular date d of station s in year r 

 N  = Number of days in year r for which data was recorded  
 

 

 

𝑦𝑑,𝑠,𝑦𝑟 =
𝑣𝑑,𝑠,𝑦𝑟 −  𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟

𝐴𝐴𝐷𝑇𝑇𝑠,𝑦𝑟
 × 100 

Equation 7 

Where,  
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 𝑦𝑑,𝑠,𝑦𝑟 = Percentage change in daily truck volume to the AADTT for a particular 

date d of station s in year r 
All other variables as previously defined. 

 

REGRESSION ANALYSIS  

The study includes the independent variables listed in Table 2 to predict the 
percentage change in truck volume relative to the AADTT (𝑦𝑑,𝑠,𝑦𝑟).  An ordinary least 

squares (OLS) regression model was estimated to determine the type of spatial model 
appropriate for the data.   
 
Table 2. Model Parameters included in Regression Analysis   

Parameter Group Parameters 

Historical traffic 
volumes 

 Expected Daily Volume Factor (EVDF) 

Weather variables  Extreme heat1 (e.g. temperature > 100 degrees F) 
 Extreme cold1 (e.g. temperature < 32 degrees F) 
 Gust Speed (knots) 
 Precipitation (inches) 
 Humidity (%) 
 Cold Event1 (i.e. snow, winter storm, hail, fog, etc.) 
 Heat Event1 (i.e. drought) 
 Precipitation Event1 (i.e. flash flood, flood, heavy rainfall, 

etc.) 
 Wind Event1 (i.e. tornado, high wind storm, etc.) 

Highway environment  Functional Classification1 (e.g. Interstate or Other) 
 Presence of construction zone1 

Temporal variables  Day of week dummy variables (e.g. Tuesday, 
Wednesday, etc.)  

 Seasonal dummy variables: fall (September, October, 
and November), winter (December, January, and 
February), and spring (March, April, and May) 

1: Binary variables with ‘1’ representing the existence of an event/characteristic and ‘0’ 
the absence of the event/characteristic. 

 

Ordinary Least Squares Regression 

OLS regression analysis is commonly used to explain relationships among 
weather variables and traffic volumes.  OLS is the most common method for estimating 
multiple linear regression (MLR) models [20]. OLS provides a global model of the effect 
of the explanatory variables on the dependent variable and takes the form shown in 
Equation 8 [21]:  

 



15 
 

𝑦 = 𝑎𝑜 +  ∑ 𝑎𝑘 𝑥𝑘 

𝑛

𝑘=1

+ 𝑒 Equation 8 

Where, 
y  = dependent variable (Estimated daily truck volume) 
xk  = Independent variables (i.e. EDVF, temperature, etc.) 
ak  = coefficient of explanatory variable xk  
ao = coefficient of intercept 
e  = disturbance term  

 

Spatial Regression 

An OLS model cannot explain the effect of the independent variables when there 
is spatial dependence. Instead, a spatial regression model is required. Spatial 
regression models explain the effect of the independent variables after removing the 
effect of spatial dependence. There are two common types of spatial regression 
models: Spatial Error (SE) and Spatial Lag (SL) models.   

Spatial Error Model 
SE models are appropriate when errors are spatially correlated due to random 

features associated with location and when both the dependent and the independent 
variables have spatial autocorrelation. SE captures the effect of the independent 
variables on the dependent variable after removing the effect of spatial dependencies 
from dependent and independent variables.  Equation 9 shows the specification for an 
SE model.  

 
(1 − 𝜆𝑊)𝑦 = (1 − 𝜆𝑊)𝑥𝑘𝛽𝑘 + 𝜇 

Where, 
y = dependent variable (e.g. 𝑦𝑑,𝑠,𝑦𝑟) 

W  = Weight matrix of spatial model 
xk = explanatory variables (i.e. EDVF, temperature, etc.) 
βk = coefficient of explanatory variables, xk 

λ = Spatial autoregressive parameter 
μ = a vector of homoskedastic and uncorrelated errors 
 

Spatial Lag Model 
SL models are appropriate when the dependent variable is spatially correlated. It 

means that spatial dependencies exist directly among the levels of the dependent 
variable. SL captures the effect of the independent variables on the dependent variable 
after removing the effect of spatial dependencies from the dependent variable. SL 
residuals show a random pattern while the OLS residuals have a non-random pattern 
and/or clustering. Equation 10 shows the formation of SL model.  

 
(1 − 𝜌𝑊)𝑦 = 𝑥𝛽 +  𝑒 

Where, 
Wy      = spatially lagged dependent variable 

Equation 9 

Equation 10 
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ρ = Spatial autoregressive parameter 
e = a vector of error terms 
Other terms as previously defined 

Model Selection 
A Lagrange Multipliers (LM) test was used to determine the specific spatial 

dependence of the data [22]. A LM test statistic is identical to Moran’s I according to 
[22]. In this study, Moran’s I value was -0.09 and significant at the 99% level of 
confidence, indicating a dispersed spatial relation in the data.  

Next, a Robust Lagrange Multipliers test was used to determine the best spatial 
model for the study. The result of Robust Lagrange Multipliers test showed that a SL 
model is more representative of the type of spatial dependency in the data than the SE 
model. Therefore, a SL model was applied to predict the effect of weather events on 
daily truck volumes. 
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RESULTS  
Based on the spatial diagnostic statistics, a Spatial Lag (SL) Model was applied 

to determine the effect of weather events on truck traffic volume. WIM and weather data 
from 2005-2015 was collected from six WIM and six corresponding weather stations.  
Data from 2005-2010 was used to compute EVDF while the data from 2011-2015 was 
used to estimate the model. Comparative results of the OLS model and SL model are 
shown in Table 3. 

 

Table 3: Estimated Coefficients of OLS Model and Spatial Lag Model 

Independent Variables OLS Model SL Model 

Constant -31.18 * * * 23.61 * * * 

EDVF 25.79 * * * 14.67 * * * 

Interstate1 12.79 * * * 6.78 * * * 

Construction  -4.52 * -11.41 * * * 

Tuesday2 10.74 * * * 12.12 * * * 

Wednesday2 12.32 * * * 14.13 * * * 

Thursday2 11.02 * * * 12.44 * * * 

Fall3 4.93 * * * 4.90 * * * 

Winter3 4.42 * * 5.93 * * * 

Extreme Heat Day 2.63 * * 3.87 * * * 

Extreme Cold Day -7.82 * * * -8.34 * * * 

Gust Speed (knots)     -0.25 * * * 

Humidity     -0.08 * * * 

Precipitation (in) -4.26 * * *   
 

Cold Event -22.68 * * -21.82 * * * 

Precipitation Event -8.97 * * -12.73 * * * 

Spatial Autoregressive Parameter, rho (ρ)   -1.73 * * * 

 

Wald test of rho (ρ) 0.00 * * * 

Likelihood ratio test of rho (ρ) 0.00 * * * 

Lagrange multiplier test of rho (ρ) 0.00 * * * 

 

No. of Observations 822 
 

822 
 

Log-Likelihood -3211.92   -3166.12 
 

R-Squared / Variance Ratio 0.47   0.52 
 

Adjusted R-squared/ Squared Correlation 0.46   0.53 
 

RMSE/ Sigma 12.15 
 

11.35 
 

* * *significant at 99% confidence level; * * 95% confidence level; * 90% confidence level 
1. Reference variable is Non-Interstate  
2. Reference variable is Monday 
3. Reference variable is Summer 

 
The spatial autoregressive parameter rho (ρ) was negative (-1.73) for the SL 

model. Statistical evaluation including the Wald test, Likelihood ratio test, and LM test of 
rho (ρ) show that rho is significant at the 99% level of confidence. Rho (ρ) reflects the 
spatial dependence inherent in the data. Recall that the SL model explains spatial 
autocorrelation in the dependent variable, percentage change in daily truck volume 
(yd,s,yr). It is measured as the average influence of observations by neighboring 
observations. The negative value of rho indicates that dissimilar values are in close 
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spatial proximity, e.g. high values at one site correspond to low values at a neighboring 
site. Negative spatial autocorrelation captures the re-routing behavior of trucks in this 
study.  Consider, for example, a constant total daily truck volume traveling along a 
primary and alternate route between an origin and a destination.  If a weather event 
closes the primary route reducing its volume to zero, and all trucks must still make the 
journey from origin to destination, the alternate route will see an increase in truck 
volume.  This is captured by the negative spatial autoregressive parameter. 

The squared correlation represents the pseudo-adjusted-R2 value of the spatial 
regression model. It signifies that the spatial regression model can explain 53% of the 
data while OLS regression model can explain 46% of the variance in the data. The SL 
model also has a lower log-likelihood value than the OLS model indicating a better fit. 

Each of the significant variables not related to weather included in the estimation 
of the SL model are summarized as follows: 

 The estimated parameter values of the SL model show that EDVF has a 
positive effect on the percent change in daily truck volume (yd,s,yr). If higher 
volumes are expected for that particular station on that particular day based 
on historical data, then an increase is expected in the percent change in 
volume relative to AADTT, all else held constant.   

 Daily truck volumes increase by 6.78% on interstate compared to non-
interstate according to the SL model.  This potentially captures trucks shifting 
to interstate routes from local routes since interstate routes provide straighter 
alignments and higher speeds and are more suitable for heavy-trucks. 

 Presence of a construction zone on the route of the WIM site decreases truck 
volume by 11.41%.   

 Tuesday, Wednesday, and Thursday have higher daily truck volumes relative 
to AADTT compared to Monday.  The parameters for Tuesday, Wednesday, 
and Thursday were 12%, 14%, and 12%, respectively.  This is similar to 
findings in previous studies.  Hallenbeck [23] show in their paper that Monday 
truck volumes tend to be the lowest while Wednesday has the highest truck 
volume of a week (excluding weekends).  

 Higher truck volumes are expected in fall and winter seasons compared to 
summer.  The estimated parameters are approximately 5% and 6% for fall 
and winter, respectively. This is potentially due to fall and winter experiencing 
higher volumes due to the movement of agricultural goods during harvest 
(fall) and planting (winter). Considering the dominance of agricultural 
industries in Arkansas this is a feasible outcome. Hallenbeck [23] found that 
lower truck volume is seen in the winter months while higher truck volume is 
observed in the late spring through early fall. However, land use in the two 
study areas differ leading to these conflicting results.  
 

Overall, controlling for day of week, season, facility type, and historical truck 
volumes, weather related variables in the SL model have varied impacts on daily truck 
volumes relative to AADTT.  Results are summarized as follows: 

 Extreme heat and cold have opposing effects on truck volumes with 
estimated parameter coefficients of approximately 4% and -8%, respectively.  
The occurrence of an extreme heat day indicates a higher truck volume, i.e. 
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positive coefficient, while the occurrence of an extreme cold day indicates a 
lower truck volume, i.e. negative coefficient, compared to AADTT. Extreme 
cold days correlate with the occurrence of snow, fog, hail, black ice, etc. Due 
to the inclusion of separate independent variables for extreme cold/heat, 
season, and extreme weather events, compounding effects are present in the 
model.  For example, an extreme cold day (coefficient of -8.34% in SL model) 
occurs in tandem with a cold event (-21.82%) and would tend to occur during 
the winter (5.93%).  Thus, the overall effect of a cold event is a decrease of 
24.23% in volume relative to AADTT (-24.23 = -8.34-21.82+5.93).   

 Truck volume is higher on days when maximum temperature exceeds 100˚F, 
e.g. extreme heat day, which would tend to occur in the summer months 
when volumes tend to be higher. However, summer is the reference variable 
for seasons and thus the extreme heat day variable can be interpreted 
independently. Heat events (e.g. drought) do not significantly affect daily truck 
volumes. 

 Cold events (i.e. snowfall, winter storm etc.) and precipitation events (i.e. 
flood, heavy rainfall etc.) decrease truck volumes relative to AADTT. Both 
cold events and precipitation events may physically hinder truck movements 
depending on the severity of the event and the response time for special road 
maintenance, i.e. snowplowing, salt spreading, etc. In terms of the magnitude 
of the impact on truck volume, cold events like snow and ice are more 
dangerous for trucks than rain or heat. Therefore, cold events have the 
highest negative impact on the percent change in daily volume relative to 
AADTT in the SL model with an estimated coefficient of -21.82%.  

 Gust speed and humidity are significant in the SL model but not in OLS 
model. These variables have negative effects on truck volumes after 
removing the effect of spatial autocorrelation. If gust speed increases by 1 
knot, daily truck volumes compared to AADTT will decrease by 0.25% at that 
WIM site. Similarly, if humidity (the probability of rainfall) increases by 1%, 
daily truck volumes will decrease by 0.08% relative to AADTT.  
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CONCLUSIONS AND RECOMMENDATIONS 
This study investigated the effect of weather on truck traffic volume. It considered 

the spatial variation of weather effects on truck volume through the application of a 
Spatial Lag (SL) model.  The SL model has higher explanatory power than an ordinary 
least squares (OLS) approach.  The SL model is able to explain 7% more variability in 
the data compared to the OLS model (the adjusted-R2 of the SL model was 53% 
compared to 46% with the OLS model).  The estimated model explains how one unit 
change in weather parameters (i.e. precipitation, humidity, gust speed, etc.) can affect 
the daily truck traffic volume relative to the Annual Average Daily Truck Traffic (AADTT), 
controlling for day of week, season, facility type, and presence of construction activities.  

A historical truck volume factor, e.g. EDVF, was computed over a six-year period 
(2005-2010) to predict future truck volumes (2011-2015). Other weather variables i.e. 
humidity, gust speed, precipitation, extreme hot and cold days, and cold, heat, and 
precipitation events were used as independent variables in the model and found to be 
significant.  

The study finds that the percentage change in daily truck volume depends on the 
type of road, i.e. interstates, day of week, season, and presence of construction. 
Monday has comparatively lower truck volume relative to AADTT than other days (i.e. 
Tuesday, Wednesday, etc.).  Truck volume is higher during the harvesting season (Fall) 
and planting season (Winter) compared to summer season. The greatest reduction in 
truck volume is attributed to cold events (22% reduction in daily volume relative to 
AADTT), including snowfall, fog, hailstorm, etc. Precipitation events including flood, 
flash flood, and heavy rainfall decrease daily truck volume but to a lesser percent 
(13%). The difference in magnitude between the effects of cold events and precipitation 
events can be attributed to the severity of the event on drivability and safety.  

While passenger vehicles may cancel a trip due to bad weather, truck drivers 
must stick to rigid schedules and thus choose to re-route rather than cancel a trip.  The 
estimated model captures this effect through the spatial autoregressive parameter.  In 
this study, truck volume presented statistically significant spatial dependency, 
specifically negative spatial autocorrelation. To capture spatial dependency, it was 
appropriate to estimate a spatial regression model, rather than adopt an ordinary least 
squares approach. Analysis using spatial modeling explains the re-routing behaviors of 
trucks in the face of inclement weather. A negative spatial autoregressive parameter 
indicates that neighboring values tend to be dissimilar, i.e. volume increases along a 
route are countered by volume decreases on neighboring routes for a fixed volume of 
trucks.   

Results of this work can improve highway planning and maintenance operations. 
For example, the results of the model can support planning for winter weather 
maintenance. Specifically, scenarios of winter weather event frequency and severity can 
be evaluated using the SL model estimated in this study to determine truck volumes 
along various interstate and non-interstate routes. The results allow decision makers to 
prioritize winter maintenance scheduling based on freight impacts.  

Improvements to the methodology described in this paper include expansion of 
the methodology to investigate spatial-temporal models and expansion of the dataset by 
using mobile sensor data.  First, there is likely to be temporal correlation among traffic 
volume and weather variables. Not only may trucks re-route (e.g. spatial shift), they may 
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also delay a trip (i.e. temporal shift), or there may be a temporal offset between the 
occurrence of a weather event and a volume shift.  While the spatial lag model 
addressed spatial correlation, higher explanatory power is possible by explicitly 
considering temporal correlation among independent and dependent variables. Future 
studies will consider such temporal effects together with spatial effects with spatio-
temporal models.   

Additionally, this study used data from only six of 69 available WIM stations.  
Sixty-three WIM stations with quality truck volume data could not be used for the study 
because no weather stations were in close enough proximity to the WIM station.  
Instead of relying on static sensor data, e.g. WIM sites, as the dominate means of 
collecting truck volumes it is possible to measure approximate truck volume and activity 
using mobile sensors such as GPS.  Using GIS tools, the number of trucks can be 
measured via GPS traces at each weather station. In this way, the study would not be 
limited to the WIM site locations, but could be expanded to a much more spatially 
diverse study area.  The research team has already collected mobile sensor data from 
the American Transportation Research Institute (ATRI), a non-profit organization that 
collects and distributes GPS data from trucking fleets across the country. The raw data 
was processed as part of an ongoing ARDOT project (ARDOT TRC 1702, 2016).  Raw 
pings were converted to truck trips which were then extracted for each WIM site.  Trip 
length, number of stops, route used, origin/destination, and other freight characteristics 
were extracted from the processed GPS data.  In future studies, the research team will 
collect truck volumes by time of day at each weather station using truck GPS data and 
use this to estimate OLS and spatial regression models to more fully capture the re-
routing behaviors of trucks due to weather events.      
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Table A-1: Description of WIM and Weather Stations 

WIM 
Site ID 

Weather 
Station 

ID 

Distance 
from WIM 

to Weather 
Station (in 

miles) 

Latitude 
of WIM 

Site 

Longitude 
of WIM 

Site 

Latitude 
of 

Weather 
Station 

Longitude 
of 

Weather 
Station 

City of 
WIM Site 

County of 
WIM Site 

Interstate 
Number/ 

County Road 
Number of 
WIM Site 

160058 
723407-

03953 
13.40 35.85 -90.77 35.83 -90.65 Jonesboro Craighead 63 

350314 
723417-

93988 
16.35 34.22 -92.07 34.18 -91.94 Pine Bluff Jefferson 530 

460286 
723418-

13977 
3.45 33.42 -94.00 33.45 -94.01 Texarkana Miller 49 

750006 
723429-

53920 
11.17 35.18 -93.16 35.26 -93.10 Dardanelle Yell 7 

170049 
723440-

13964 
15.79 35.45 -94.44 35.33 -94.36 Dora Crawford 40 

720236 
723445-

93993 
4.47 36.04 -94.19 36.01 -94.17 Fayetteville Washington 49 


