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1 Project Description 

1.1 Project Overview and Objectives 
The purpose of this project is to estimate the performance of multi-modal supply chains that use inland 
waterway ports. This is accomplished by developing a method to fuse publicly available datasets 
including truck and marine vessel tracking data and lock performance data. The study builds on a 
growing body of research related to multi-modal freight performance measurement, specifically freight 
fluidity measures. Freight fluidity measurement attempts to capture freight system performance from a 
multi-modal supply chain perspective. To date, most freight fluidity measures are not truly multi-modal, 
and rather capture only one end of the supply chain, i.e. the long-haul portion of the trip that uses 
either truck, rail, or barge. In addition, freight fluidity measures are yet to be implemented on inland 
waterways. In this study, we effectively combine marine Automatic Identification System (AIS) data with 
truck Global Positioning System (GPS) data. Both data sources track vessel and vehicle movements and 
can be used to determine measures such as travel times, dwell times, and other freight activity 
characteristics. By spatially, temporally, and contextually conflating vehicle tracking data and aggregated 
commodity data sources (i.e. maritime Lock Performance Monitoring System (LPMS)), it is possible to 
measure port throughput, vessel to truck ratios, multimodal geographic extents (or freight “catchment 
areas”) of ports, and characterize vessel trips and trip chains by commodity. Each of these derived 
performance measures can assist freight planners in identifying critical freight corridors and bottlenecks 
both on the marine and land side. This can ultimately help guide and prioritize investment decisions and 
be used to develop effective transportation policy.  

 

1.2 Motivation and Contribution 
In relation to the objectives of the MarTREC research program, this project contributes to the areas of 
maritime and multimodal logistics management and infrastructure preservation by providing necessary 
data for effective (1) freight planning and travel demand modeling efforts, and (2) mode shift analyses. 
Valuable performance metrics, which constitute parameters commonly used in freight planning and 
modeling, can be derived from the multi-modal data conflation proposed in this work. These include:  

• annual port throughput by commodity, mode, and direction, 
• spatial distributions of vessel and truck movements to and from port terminals, allowing for 

identification of corridors with competition between modes and thus, potential mode shift, 
• multimodal vehicle hours and miles travelled to and from port terminals, 
• number and identification of unique Traffic Analysis Zones (TAZ) that constitute the origin, 

destination, or intermediate stop of multimodal shipments to and from a port terminal, 
• population and businesses within multimodal port terminal catchment areas, 

The specific objectives of this project are to:  

I. spatially, temporally, and contextually conflate AIS data and truck GPS data,  

II. develop measures of freight fluidity for inland waterway port terminals based on the 
conflated data, and  

III. apply the developed performance metrics to inland port terminals in Arkansas to 
demonstrate value for highway and marine planning activities.  
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• vessel dwell time by port terminal, 
• travel time share within the multimodal transportation system 

Each performance measure has significant implications for long-range freight planning and travel 
demand modeling practices carried out by the Federal Highway Administration (FHWA) and state 
Departments of Transportation (DOTs). Commodity based freight forecasting models (Figure 1) produce 
forecasts of vehicle volumes and are used primarily for surface highway project prioritization, project 
selection, policy development, and policy analysis. In these models, commodity specific payload factors 
(e.g. tons to vessel/truck ratios) for barge and truck play a critical role in converting from commodity 
forecasts to network volumes. These payload factors could be greatly enhanced with the multi-modal 
data conflation proposed in this project. For example, truck GPS data alone does not contain commodity 
information, but such information may be derived from marine data and used to determine port 
throughput by commodity. 

Figure 1.  Overview of a standard 
commodity-based freight travel demand 
model.  

Commodity tonnages are predicted for a 
forecast year (‘Generation’) based on 
industrial sector employment and other 
predictors and distributed across zones 
(‘Distribution’). Then Origin-Destination (OD) 
tonnage flows are split among modes (‘Mode 
Split’) according to predefined mode 
percentages or models estimated from costs 
and travel times. Finally, payload factors are 
applied to convert OD tonnage flows to 
vehicles and assigned to the respective 
network (‘Assignment’). 

Fused multi-modal data can also support mode shift scenario development and policy analysis. For 
example, mode shift to the U.S. Marine Highway Routes is purported to maximize freight efficiency and 
preserve existing transportation infrastructure. Insight into port performance indicated by vessel trips 
characterized by commodity and dwell time, and landside constraints indicated by traffic congestion 
may explain why port-to-port shipments were made by truck and along the waterways. Overall, by 
including marine vessel inflow and outflow in the analysis of truck GPS data we have more insight into 
the volume of commodities shifting between truck and barge, how dwell time and frequency impact 
landside traffic flows temporally and spatially, and the ways in which land side traffic constraints might 
affect inland port operations. Through a multi-modal perspective on what affects inland port 
throughput, we can more effectively allocate resources and direct operations and maintenance 
programs towards ports and areas that would be likely to experience efficiency gains resulting from 
mode shifts. 

The research objectives highlighted above are in line with the marine transportation system priorities 
recommended by the U.S. Committee on the Marine Transportation System (CMTS).  In particular, some 
of the recommendations highlighted by CMTS are:  i) coordinate and apply big data analytics to reveal 
research gaps and overlap, foster potential collaboration, manage knowledge, and inform decision-
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making; ii) couple the newly-available vehicle probe data sets with more traditional freight data 
resources to quantify and contextualize travel times, dwell times, trip counts and other metrics; iii) 
create specific MTS system-scale performance indicators that relate to the freight flow network so they 
may be periodically updated and used for network calibration and validation; iv) develop and use 
decision support tools to identify nationally significant priority areas and project locations where 
agencies can leverage a variety of funding opportunities (U.S. Committee on the Marine Transportation 
System (CMTS), 2018). 

1.3 Scope 
In the context of inland waterway transportation, more than 25,000 miles of U.S. inland waterways carry 
about 14% of all domestic freight, representing more than 600 million tons of cargo annually (American 
Society of Civil Engineers, 2017). In particular, the methodologies developed for this project are applied 
to the Arkansas portion of the McClellan Kerr-Arkansas River Navigation System (MARNS), which 
consists of 308 miles of river, and contributes to the national economy with $4,535M in sales, $168M in 
business taxes, and 33,695 jobs (Nachtmann et al., 2015). Within the next 50 years, the net present 
value of sales, Gross Domestic Product (GDP), and generated taxes of the MKARNS are expected to be 
$232.5B, $111.3B, and $7.8B respectively (Oztanriseven et al., 2019). In 2017, the MKARNS transported 
11.5M tons of goods, equivalent to 7.7 thousand barges, 443.9 thousand trucks or 115.4 thousand 
railcars, respectively.  There are 43 freight port terminals are located along the Arkansas River (Figure 2), 
and 14 locks divide the river into 13 sections. Each lock chamber on the MKARNS is 110 feet wide by 600 
feet long and can handle up to eight barges and a towboat. The U.S. Army Corps of Engineers (USACE) 
maintains a channel depth of nine feet on the MKARNS, allowing for barges to be loaded up to 1500 
short tons (ODOT 2018). 

Commodities transported on the MKARNS include iron & steel, fertilizers, petroleum products, minerals 
& building materials, grain (soybeans, wheat, and others), equipment and machinery, etc. (ODOT 2018).  
For this project, products transported on the MKARNS are grouped into nine categories, following the 
Lock Performance Monitoring System (LPMS) scheme (Table 1). Crosswalk tables between LPMS and 
other commodity classification schemes can be found in (US Army Corps of Engineers 2018). The 
temporal scope is one year. Data from 2016 was gathered from the sources listed in Table 2.  
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Figure 2.  Arkansas portion of the MKARNS 

Table 1.  LPMS Commodity Classification 

Code – Commodity group 

10 – Coal, lignite, and coal coke 

20 – Petroleum and petroleum products 

30 – Chemicals and related products 

40 – Crude materials, inedible, except fuels 

50 – Primary manufactured goods 

60 – Food and farm products 

70 – Manufactured equipment and machinery 

80 – Waste material 

90 – Unknown or not elsewhere classified 
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Table 2. Datasets Used in This Work 

Data type Brief Description Entity Reference 

Commodity flow 
data 

LPMS Waterborne monthly 
commodity data, 2016. USACE (U.S. Army Corps of 

Engineers) 
Freight vehicle 
tracking data Statewide Truck GPS data, 2016. ATRI (American Transportation 

Research Institute, 2019) 

Freight vehicle 
tracking data 

Waterborne AIS data 
(timestamped geospatial vessel 

locations), 2016 

U.S. Guard & 
USACE 

(Office for Coastal 
Management, 2018) 

Freight vehicle 
count by location 

LPMS: number of commercial 
vessels per lock, 2016 USACE (U.S. Army Corps of 

Engineers, 2018) 

Business County business patterns, 2016 U.S. Census 
Bureau 

(U.S. Census Bureau, 
2018) 

Demographics Arkansas TIGER/Line® 
Shapefiles: Census Tracts 

U.S. Census 
Bureau 

(U.S. Census Bureau, 
2019b) 

Geopolitical 
boundaries 

Traffic Analysis Zones polygon 
layer 

Arkansas 
Department of 
Transportation 

AR-STDM zone layer 
(Alliance Transportation 

Group, 2015) 

1.4 Background 

1.4.1 Freight Fluidity 
Given the complexity of the multimodal freight transportation system, there has been increased interest 
in developing multimodal “freight fluidity” indicators that capture end-to-end supply chain performance 
(Transportation Research Board 2014). Freight fluidity is a measure of the ease at which freight (in 
quantities of tonnage or volume) can move through the multi-modal supply chain. Fluidity indicators 
were first introduced by Transport Canada with the purpose of evaluating the efficiency and 
competitiveness of the multimodal transportation system, by examining how gateways and key 
multimodal freight corridors interact operationally (Transport Canada 2012).  

Focused on the time component, end-to-end supply chain performance is examined, and capacity and 
demand of the multimodal system is evaluated by determining issues and bottlenecks that affect the 
efficiency of international freight flows. In particular, Transport Canada measures freight fluidity as the 
total transit time of inbound containers from overseas markets to strategic North American inland 
destinations via various Canadian gateways (Transport Canada 2017). Since there is no single data 
source (or provider) that can capture transit time data for the entire container trip, total transit times 
are calculated by summing all mode segments of end-to-end movement (Transport Canada 2012).  

Transport Canada collects and publishes monthly port performance indicators for key gateways. Five 
ports are considered in the set of gateways and the following metrics are reported for each: average 
truck turnaround time (minutes), berth utilization (TEU/meter of workable berth), average vessel 
turnaround time (measured both in hours and seconds/TEU), average container dwell time (days), dwell 
target (percentage under 72 hours), port productivity (TEU/gross Ha), vessel on-time performance, 
crane productivity (lifts per hour), number of vessel calls per month, average number of TEU per vessel 
call per month, and container throughput (number per month) (Bureau of Transportation Statistics 
2017). 
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In the U.S., an application of multi-modal freight flows encompassing the end-to-end trip of goods (e.g., 
port-rail-highway-customer) such as the one Canada has implemented has not yet been developed 
(FHWA 2017). The FHWA is leading national efforts to implement freight fluidity system performance 
measures and analysis. In particular, the I-95 Corridor Coalition and the U.S. Department of Commerce 
are applying the concept of fluidity to major supply chains and corridors. However, those efforts are 
currently limited to the use of truck probe data.  

In Maryland, the I-95 Corridor Coalition gathers the following freight fluidity metrics: approach travel 
time index, buffer time index, planning time index, truck volume, truck miles of travel, and vehicle miles 
of travel (Cambridge Systematics, Inc. 2011). Such measures are obtained for critical supply chains, and 
updated on a quarterly basis on a database, GIS mapping, and dashboard visualization tools that help to 
better communicate this information to decision makers  (I-95 Corridor Coalition 2019). Such mapping 
and visualization tools are the basis to understand origin-destination patterns, resiliency, and reliability 
for public officers to identify and monitor the performance of critical freight corridors (Eisele, et al. 
2016) (Transportation Research Board 2018). Similarly, the North American Transportation Statistics 
Interchange apply the fluidity concept using probe data to the North American Free Trade Agreement 
(NAFTA) corridor from Windsor, Ontario to Nueva Laredo, Mexico. These efforts focus on the use of 
truck probe data and will supplement multi-modal data as their projects progress, to illustrate the 
performance of multi-modal connections (FHWA 2017).  

Contributing to the measurement of multimodal transportation system performance and freight fluidity, 
the USACE developed several applications of fluidity using Automatic Identification System (AIS) data, 
namely: i) Lock operations management (interactions between individual vessel operators and the 
system), ii) Inland Marine Transportation System Travel Time Atlas (under development, will include 
travel time, travel time reliability, and port terminal dwell time); and iii) Port Fluidity Performance 
Measurement Methodology (port system time from anchorage to exit, cycle time from entrance to 
channel exit, travel time, travel time indices) (Transportation Research Board 2018). For the 
development of the Inland Marine Transportation System Travel Time Atlas, USACE produces travel time 
estimates for key waterway segments, updated quarterly. Travel time is estimated from AIS historical 
data, allowing reports generated on a variety of spatial scales (DiJoseph and Mitchell 2015). The output 
is presented in vessel travel time tables that summarize the 25th, 50th, and 75th percentile travel times 
between inland waterway ports that constitute origin-destination pairs per river segment (Kress, et al. 
2016). 

1.4.2 Port Performance Metrics 
Data on port throughput by commodity can be used by public agencies and private investors to identify 
opportunities for port capability and capacity expansion at existing or new facilities.  While data about 
the commodity flows through each port may be collected by port operators, this data is proprietary and 
is not regularly shared with public agencies. Publicly available maritime port statistics, namely the Port 
Performance Freight Statistics Program introduced by the U.S. Bureau of Transportation Statistics, 
informs port throughput and capacity metrics, as well as dwell times (Table 3).  However, the Port 
Performance Freight Statistics is limited to the top-25 ports in the US (U.S. Department of 
Transportation, 2019), which excludes most inland waterway ports. Notably, the USACE collects 
comprehensive port throughput and vessel cargo by commodity through the Waterborne Commerce 
Statistics Center (WSCS) (U.S. Army Corps of Engineers, 2018), but such datasets have limitations. First, 
the data is collected from manually-completed surveys and are thus prone to human error. Second, the 
data is confidential and its use is restricted to collecting agencies, thus it is not available in the public 
domain (U.S. Army Corps of Engineers, 2018).  
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The purpose of this project is to create methods for fusing multi-modal freight data to quantify and 
describe port and vessel trip level commodity flows along inland waterways from publicly available 
datasets. Port-level commodity throughput linking waterborne and roadway freight flows supports the 
development of commodity-specific, multimodal freight fluidity performance measures. 

Table 3.  Port Performance Freight Statistics Measures 
(U.S. Department of Transportation, Bureau of Transportation Statitics 2020) 

Port 
Throughput 
Metrics 

Annual total tonnage (domestic, foreign, import, export, and total short tons) 
Annual container throughput (inbound loaded, outbound loaded, empty, and total TEU) 
Annual dry bulk tonnage (domestic, foreign, import, export, and total short tons) 
Annual Roll-on/Roll-off units (total units) 
Annual vessel calls by vessel type (current and percent change from previous year) 
Top food and farm products (total short tons and percentage share of total) 
Top commodities (total short tons and percentage share of total) 

Vessel 
Dwell 
Times 

Average container vessel dwell time 
Average liquid bulk vessel (tanker) dwell time 
Average Roll-on/Roll-off vessel dwell time 

Port 
Capacity 
Metrics 

Channel depth (feet) 
Air draft restrictions (vertical clearance in feet) 
Berth length for container ships (feet) 
Container terminal size (acreage) 
Number and type of container cranes 
Presence of rail transfer facilities 

 

1.4.3 Public Datasets for Performance Evaluation and Fusion Needs 
This report explores the use of vehicle tracking data, namely AIS and truck GPS, and aggregated 
commodity data from the USACE LPMS to derive freight port and waterway system performance. Data 
used in this project is summarized in Table 4. 
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Table 4.  Datasets Characteristics 

Datasets 
Characteristics 

Automatic Identification 
System (AIS) data 

Lock Performance 
Monitoring System 

(LPMS) data 

Truck Global 
Positioning System 

(GPS) data 

Mode Maritime Maritime Truck 

Relevant data 
values provided 

Vessel location (latitude 
& longitude), timestamp, 

vessel characteristics 

Monthly tonnage of 
commodities observed 

in each lock 

Anonymous heavy truck 
location (latitude & 

longitude), timestamp 

Geographical 
coverage All waterways 

All U.S. inland 
waterways where lock 

& dams are located 
All U.S. territory 

Temporal 
coverage & 

update frequency 

Temporal disaggregation 
to the minute of each 

day. Public file updated 
annually 

Monthly aggregates, 
updated annually 

Temporal 
disaggregation to the 
minute of each day 

Commodity No commodity available 36 commodities in 9 
groups No commodity available 

Cost & availability Free download from 
MARAD website 

Free download for 
current and last year 
from USACE website 

For purchase from 
private vendors 

 
1.4.3.1 Lock Performance Monitoring System 
The Lock Performance Monitoring System (LPMS) is operated and maintained by the U.S. Army Corps of 
Engineers (USACE). The USACE collects data of a complete sample of U.S. flag vessels and foreign vessels 
operating in U.S. waterways that transit a USACE-owned or operated lock structure; which is managed 
and shared by the Navigation Data Center (NDC) (U.S. Army Corps of Engineers). Publicly available 
records summarize annual and monthly tonnage of 36 commodities carried by vessels at each lock 
chamber and direction. Commodities are aggregated into nine commodity groups (Table 1). In addition, 
LPMS records all vessels that traverse each of approximately 200 locks and dams along the U.S. inland 
waterways, constituting a valuable source of data to evaluate coverage of AIS. Historical lockage data 
(1993-2017) is openly available in (U.A. Army Corps of Engineers, 2018c). Details on specific companies 
or commodities are confidential and not included in the public dataset. In addition, the database 
provides information about the total number of loaded and empty barges, and number of vessels 
observed at each lock chamber by type. Examples of vessel types are: tows, recreation, commercial, and 
other. The information is organized in a series of reports, available in .pdf and .xlsx format. For example, 
annual summaries of lock use, performance, and characteristics are available in a Commodity report, a 
Lock usage report, and an Unavailability report (U.S. Army Corps of Engineers, 2018c). Monthly tonnage 
summaries per commodity and lock chamber are available for download in excel format for the current 
and previous year exclusively (U.S. Army Corps of Engineers, 2016). 
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1.4.3.2 Automatic Identification System (AIS) 
The AIS consists of vessel’s traffic data, collected for navigational safety purposes (collision avoidance). It 
is required for all passenger vessels and all commercial vessels over 300 gross tonnage that travel 
internationally, by the International Maritime Organization (IMO), since December 2004. An onboard 
navigation device transmits location and characteristics of large vessels in real time. The receivers are 
base stations on shore, buoys, satellites, and other vessels (U.S. Department of Homeland Security). In 
the U.S., AIS data is collected by the U.S. Coast Guard in U.S. waterways. For inland waterways, AIS is 
mandatory in the Ohio River, between Mileposts 593 and 606, when the McAlpine upper pool gauge is 
at approximately 13.0 ft or above, and in the Lower Mississippi River, up to 20 mi above Baton Rouge, 
Louisiana, at Milepost 254.5 (Dobbins et al., 2013). Even though AIS is not currently required in most 
U.S. inland waterways, most vessels are using the AIS transponder (DiJoseph and Mitchell 2015). 
Historical AIS data (2009-2017) is organized in file geodatabases, including vessel, voyage, and 
broadcasting information, and it is available for free download at (NOAA Office for Coastal 
Management, 2018). Examples of vessel data elements are: Vessel name, length, width, and MMSI. 
Voyage data elements include destination, cargo, draught, ETA, etc. Notably, several of these features 
are entered to the database manually, and contain substantial errors and omissions.  For example, cargo 
details are too broad to provide any meaningful information pertaining the commodity carried by each 
vessel. Examples of broadcasting features are: location, speed over ground, course over ground, 
heading, status, etc. Each file contains point location data at 1-minute interval, per month and UMT 
zone (NOAA Office for Coastal Management, 2018). In addition to vessel positioning, AIS captures 
information that may be used for freight planning purposes. In particular, AIS data includes the type of 
vessel, size, and the potential ability to track a vessel path with time stamps. This information is suitable 
to identify freight flows though U.S. inland navigable waterways, and in combination with highway and 
USACE Locks data, constitute a valuable source for freight planning purposes.  The main limitation of AIS 
data is its lack of information about the commodity carried by vessels, which is complemented by 
combining AIS and LPMS data. The USACE has used AIS data to evaluate travel time and reliability on 
waterways (Transportation Research Board, 2014), but it is yet to be integrated with truck GPS data and 
with commodity databases to evaluate multimodal freight fluidity.  

AIS data coverage differs by region and/or port. In the Gulf Coast region, Perez at al. (2009) compared 
tug counts by port derived from AIS data with WCUS data concluding that AIS data accurately 
represented activity in the biggest port area, but overestimated or underestimated activity in smaller 
port areas, potentially due to the presence of fewer AIS reception points (Perez, et al. 2009). Dobbins 
and Langsdon (2013) generated inland waterway one-day tow-trips from AIS data collected by a single 
AIS antenna and compared them to lockages reported by the USACE’s Lock Performance Monitoring 
System (LPMS). They found that LPMS lockages were three times higher than AIS-detected lockages. A 
coefficient of coverage was calculated to estimate the total number of vessels and trips traveling on the 
waterway (Eq. 1).  

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑈𝑈𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝐶𝐶𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈

𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈
 1 

 Where, 
“Unprocessed AIS data lockages” is the annual number of tugs observed from the reduced AIS 

data in transit through each of the locks located in the study area, and 
“LPMS data lockages” is the annual number of commercial vessels reported by LPMS for the 

same locks during the same time period (U.S. Army Corps of Engineers USACE Digital 
Library - Public lock reports). 
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To estimate the number of tugs observed in the AIS data in transit through the locks (“Unprocessed AIS 
data lockages”), each AIS data point (latitude-longitude) was connected with a straight line, e.g., 
referred to as ‘point-to-path’ in most GIS packages. Then, a screenline approach was used such that 
point-to-path geometries of tugs/tows that intersected locks (represented by line segments) were 
counted as vessels in transit through the lock. Overall, the reduced AIS data sample used in this case 
study represents 91% of commercial vessels operating on the MKARNS during 2016. Coverage varies per 
lock, possibly indicating that the AIS sample excluded more vessels observed in the proximity of the 
locks where a lower coefficient of coverage was found, i.e. in the proximity of the Oklahoma portion of 
the MKARNS (Table 5). 
 

Table 5  Coefficient of Coverage of AIS Data 

State   Lock & Dam Name MKARNS  
Mileage 

Commercial Vessels Coefficient of 
Coverage AIS LPMS 

Arkansas 

NORRELL  10 1,071 1,100 84.0% 
WILBUR D MILLS  13 1,062 1,126 82.2% 
JOE HARDIN  50 1,039 1,096 91.1% 
EMMETT SANDERS  66 1,077 1,148 91.0% 
COL CHARLES D MAYNARD  86 978 1,082 88.2% 
DAVID D. TERRY  108 966 1,057 90.0% 
MURRAY  125 801 858 90.1% 
TOAD SUCK FERRY  156 948 1,195 71.2% 
ARTHUR V. ORMOND  177 784 831 78.0% 
DARDANELLE  206 788 819 72.3% 
OZARK  257 712 771 59.1% 
JAMES W. TRIMBLE  293 726 784 53.6% 

Oklahoma W.D. MAYO  320 875 1,051 43.2% 
 Grand Total  10,756 11,818 91.0% 

 
1.4.3.3 Truck GPS 
Truck GPS data consists of vehicle positioning data (latitude and longitude) emitted by GPS devices 
onboard a truck. The spatial coverage in the US is almost ubiquitous (Transportation Research Board, 
2014). Private truck fleets typically record positioning data of their own trucks, for security and route 
tracking purposes, fuel cost and other operational optimization analysis. The American Transport 
Research Institute (ATRI), part of the American Trucking Association, gathers anonymous truck GPS data 
from a number of private fleets. In cooperation with FHWA, truck GPS data gathered by ATRI is used for 
diverse purposes, such as bottleneck identification, travel time analysis, border crossings, truck parking 
and hours of services tracking, rerouting, etc. (Transportation Research Board, 2014). Truck GPS data 
can be acquired from private vendors. 

Truck GPS data is a valuable source of truck routing, time-of-day corridor usage, volume and speed data. 
For reference, GPS data in Arkansas for 2016 represents about 35 million raw data points per week 
corresponding to approximate 40,000 unique trucks.  Because current sources of truck GPS data are 
samples of the total truck population, it is important to evaluate the spatial and temporal coverage for 
each application (Diaz-Corro et al., 2019).  The spatial and temporal analysis based on truck GPS data has 
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several advantages over other truck data, such as Weigh-in-Motion (WIM)1 or Annual Average Daily 
Truck Traffic (AADTT data) gathered by the Federal Highway Administration (FHWA).  The main 
advantage is the broad spatial and temporal coverage of truck GPS data. From a spatial coverage point 
of view, truck GPS data covers every single road in the statewide network (Figure 3).  Even though the 
information derived from truck GPS data is comprehensive, it lacks the commodity carried or industry 
served by trucks and thus it needs to be complemented with other commodity databases, such as USDA 
(for agriculture) or from business sources (for other commodities). 

            

Figure 3.  Truck GPS (left), AADT (blue dots, right), and WIM (red dots, right) data coverage 

Previous studies show that GPS data is a sample of roughly 10% of the total population of trucks 
travelling on the roads (Pinjari et al., 2014). This was confirmed for the Arkansas data sample by 
comparing the volume of trucks on the GPS dataset at WIM stations, with the volume of trucks counted 
at those WIM stations in Arkansas (Hernandez et al., 2018). Coefficients of coverage of sample locations 
considered in this work are shown in Table 6. 

Table 6.  Sample GPS Data Coverage Coefficients in Arkansas 

Quarter Van Buren Little Rock Pine Bluff 

Q1 15.69 16.58 11.76 

Q2 14.02 9.91 11.12 

Q3 14.53 10.39 10.45 

Q4 16.74 13.28 13.00 

Average 15.25 12.54 11.11 

 

1.4.4 Data Fusion for Freight Fluidity: A Multimodal Challenge 
Freight fluidity measures should reflect performance of all modes within the supply chain to evaluate 
mobility, reliability, resilience, cost, and quantity of freight in a multimodal transportation network 

                                                            
1 WIM are embedded roadway sensors that continuously measure truck volume and weight by axle 
configuration (FHWA, 2016). 
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(Eisele, et al. 2016). This requires different types of data (e.g., movements, transactions, cost, 
commodity type) from a variety of sources (e.g., government databases, private industry).  Given the 
historical mode-specific approach to freight data collection and analysis, challenges remain to collect 
and analyze multimodal data for freight fluidity purposes (Transportation Research Board 2018).  

National Cooperative Freight Research Program (NCFRP) Report 10 analyzes existing data sources and 
freight performance measures corresponding to different sectors, modes and geographical applications. 
State of the practice on freight performance measures applied at national, state, and metropolitan level 
is synthetized. The authors conclude that considerable mode-specific performance information exists 
today and propose to create a Freight System Report Card framework to gather such information. 
However, while trucking, rail and maritime performance measures are discussed, the authors identify a 
lack of systematic data about multimodal freight performance. Given that freight movement is often 
multimodal, recommended future research includes the need to capture multimodal freight efficiency 
for private and public decision makers interested in optimizing performance of freight efficiency across 
all modes (Gordon Proctor & Associates, Cambridge Systematics, Inc., American Transportation 
Research Institute, StarIsis Corporation, and Council of Supply Chain Management Professionals 2016). 

Multimodal freight fluidity indicators require not only mode-specific data, but an understanding of the 
interaction between individual modes (Transportation Research Board 2016). To date, most modal 
interactions are captured by fusing mode-specific datasets via demand models, visualization tools, etc. 
(IHS Global Insight 2011, Parker 2019, Hwang, et al. 2016). For example, the FHWA National Freight 
Fluidity Monitoring Program combines waterborne data from USACE, railway data from TransCore and 
the Carload Waybill Sample, highway data from the National Performance Management Research Data 
Set (NPMRDS), and supply-chain data from U.S. private companies to generate a mapping tool to track 
the reliability, cost, and travel time (but not quantities) for multimodal freight movements across 
selected supply chains on a quarterly basis (Parker 2019).  

Another example of models to combine different modes is the implementation of freight fluidity in 
Texas. The Texas Department of Transportation (2019) assessed the performance of critical highway 
segments accessing the seaport of Brownsville. The relationship between sea and ground freight flows 
was determined by performing statistical analyses and a legged regression model. The model was built 
upon data for ship calls, inbound and outbound commodity flow tonnage and value, and highway truck 
volume probe data from the NPMRDS (Texas Department of Transportation 2019). The results of the 
analysis are coefficients that represent the increment of road traffic (per direction) corresponding to a 
unit of change in import or export freight volume (measured in weight), and the time when those 
increments on road traffic could be expected. For example, a vessel call with 1,000 TEU would increase 
traffic on Tx-36 inland by 499 to 585 trucks in the same week, and decrease by 444 trucks two weeks 
later. The authors explain that counter-intuitive results may be caused by container inventory at the 
port yard, and further explore simulation scenarios of yard utilization and capacity (Monsreal, et al. 
2019). Xu et al. (2017) developed a Generic Target Monitoring System (GTMS) to monitor multimodal 
vehicles, and tested it with AIS and truck GPS data collected at a seaport terminal. To overcome 
multimodal data heterogeneity, vehicle tracking data from different sources (i.e. truck, vessel) was 
converted to a uniform data format. A GIS web-based interface allowed users to visualize and analyze 
real-time and historical multimodal vehicle tracking data within a designated geographical area (Xu et 
al., 2017).  

The combination of datasets is a necessary approach to solve existing data gaps in the public domain for 
freight fluidity, while avoiding costs associated with the development and implementation of expensive 
data collection techniques. This is a challenge because each data provider follows different procedures 
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to define, collect, process and share the data (Tok et al., 2011). Resolving data heterogeneity is 
necessary to link data across levels of geography, topics, and modes. In particular, the challenge in 
fusing truck and vessel tracking data is overcoming data heterogeneity in units of time, space, and 
context.  The purpose of this project is to create methods for fusing multi-modal freight data in an effort 
to quantify and describe port terminal level commodity flows along inland waterways.  
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2 Methodological Approach 
The methodology presented in this section consists of three main steps: i) Data preparation; ii) Data 
fusion model development and application, and iii) Model evaluation (Figure 4). 

 
Figure 4.  Methodology Overview 

2.1 Data Preparation 
This section describes the sources of freight port terminal location data, methods to locate anchoring 
grounds from AIS data on inland waterways, and methods to homogenize otherwise heterogeneous 
public datasets for conflation purposes, namely AIS, truck GPS, and LPMS.   

2.1.1 Port terminals and navigation infrastructure 
2.1.1.1 Port terminals: location and characteristics 
Method The location and commodities handled by freight port terminals within the study area are 
gathered from the “Master Docks Plus” geometric (.shp) file, generated by USACE Waterborne 
Commerce Statistics Center.  This database contains more than 40,000 facilities, identified as docks, 
fleeting areas (i.e., where individual barges are moored or assembled to make a tow), locks and/or 
dams, and milepoints. The publicly available version of this database indicates the waterway where each 
facility is located, as well as its location (latitude and longitude), name and identifier code, and 
commodities handled (but not its volume), among others. The data is collected by survey; it is 
accompanied by a database schema and data dictionary, and can be downloaded form (U.S. Army Corps 
of Engineers, 2019).  

Results 43 freight port terminals are located within the study area (Figure 2). 

2.1.1.2 Detailed Inland navigable waterway network 
Method The methodology implemented in this report necessitates a detailed inland navigable waterway 
network representing all freight-related points within the study area, such as port terminals and barge 
anchoring areas. For the purpose of this work, a detailed inland waterway network was built following 
the procedure in (Asborno, Hernandez and Yves 2020), based on a national, non-detailed waterway 
network downloaded from (Bureau of Transportation Statistics 2015).  
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2.1.2 Vehicle tracking data processing: Marine AIS 
Preparation of AIS data consists of three steps: i) data reduction, ii) data quality control, and iii) stop and 
vessel trip (and trip-chain) identification and characterization from AIS data mining. The methodology 
explained below follows closely the procedure in (Asborno, Hernandez and Yves 2020), which includes 
an analysis of vessel stops and trips on Arkansas waterways, including the MKARNS and the portion of 
the Mississippi River that constitutes Arkansas’ eastern boundary. 

2.1.2.1 AIS Data Reduction 
Method Data reduction is necessary to accelerate “big data” processing. In AIS datasets, records with 
zero speed outnumber the non-zero speed records (Osekowska, Johnson and Carlsson 2017) and, 
depending on the application, removal of zero speed records provides a mechanism for data reduction. 
For example, Fujino et al. reconstructed vessel trajectories from a reduced AIS dataset and applied 
unsupervised machine learning to identify vessel course and issue real-time off-course warnings. The 
original dataset of 5,756,438 records was reduced by 40% by removing records with zero speed (Fujino, 
Claramunt and Boudraa 2018).   

Results Following this example, in this work, zero speed records are removed with no loss of 
representation of trip characteristics needed for map matching and stop identification heuristics. In 
total, 7,803,151 AIS records emitted with a 5-minute frequency by 776 vessels observed from Arkansas 
waterways were extracted from (Figure 5.a). 116 of the 776 vessels were observed within the MKARNS, 
while the remaining 650 vessels were observed within the Mississippi River (and did not use the 
MKARNS). Of these records, 53% corresponded to zero speed records, which were removed. By 
removing zero-speed records from the AIS dataset, computational time is reduced while still benefiting 
from highly disaggregated, ubiquitous AIS characteristics. 

2.1.2.2 AIS Data Quality Control 
Method AIS data contains erroneous or irrelevant records that result from transmission interference 
and device mishandling. Erroneous records (Figure 5.a and b) are defined as those with unusual high 
speed, or records located far from inland waterways. Irrelevant records come from vehicles that emitted 
less than 20 records within the reporting period, and/or from vessels whose records are outside 
reasonable waterway boundaries. After identifying erroneous and irrelevant records as described below, 
they are removed from further analysis. 

   
a. AIS source data   b. Reduced data   c. Quality-controlled data 

Figure 5.  Example of AIS data preparation 

To identify erroneous records, first, a spatial buffer is created for an inexact U.S. navigable waterway 
network from the National Transportation Atlas Database (“NTAD”) (Bureau of Transportation Statistics 
2015), clipped to the study area. The buffer width is derived from the Global River Bankfull Width & 
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Depth Database (“NARVIS”) (Andreadis, Schumann and Pavelsky 2013). NARVIS and NTAD are provided 
as geodatabases. Because the NTAD waterway geometry is abstract, it may not follow observed and 
valid AIS records. Therefore, a spatial buffer should be established to exclude records grossly outside of 
the navigable waterways (Figure 5.c). Adopted buffer size of two standard deviations from the NARVIS 
mean width was found appropriate in this work.  Records outside the buffer are removed.  

Second, a forward sequential search iterates over consecutive AIS records to calculate the space mean 
speed (Eq. 2), which is checked against a reasonableness threshold of 27.7km/h (15 knots) (El-Reedy 
2012). By applying the proposed speed threshold, records corresponding to non-freight vessels are 
discarded. 

 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝐶𝐶𝑈𝑈 𝑈𝑈𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ 𝑖𝑖−1,𝑖𝑖]

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝑈𝑈 𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶[𝑖𝑖−1,𝑖𝑖]
 2 

Where,  
speed = space-mean-speed associated with pings i-1 and i, in km/h 
travelled distance = great-circle distance based on position (latitude, longitude) between pings i-

1 and i, in kilometers 
travelled time = time to travel between pings i-1 and i, in hours 

Next, if less than 20 records are associated with one vessel, all the records for such vessel are removed. 
Last, spatial coverage of each remaining vessel records is calculated as the diagonal of a bounding box 
around all of its pings. Vessels with coverage less than 2km are removed. The coverage threshold is 
defined as the minimum distance between different port authorities in the study area.   

Results The quality control process excluded 518,697 position records from the dataset. As a result, 
3,398,279 AIS records (44% of the original sample) were subject to the stop and trip identification 
procedures. 

2.1.2.3 Identification of Vessel Stops and Trips from AIS Data 
Methods Vessel stops, trips, and trip-chains are identified and characterized by origin, destination, 
length, duration, and path (as mapped to the detailed inland waterway network) by mining AIS data 
following the heuristic in (Asborno, Hernandez and Yves 2020). The heuristic, adapted from (Camargo, 
Shuyao and Vladimir 2017), first identifies vessel stops by clustering successive AIS records based on 
their location, timestamp, and calculated speed. Then, each stop is associated with a network node 
based on proximity. Timewise-consecutive stops constitute the origin and destination of a path 
segment. Later, a map-matching algorithm reconstructs complete vessel paths by finding the shortest 
path between origin-destination pairs. Path segments are joined to define freight trips with origin and 
destination in ports. Lastly, freight trips are characterized by origin, destination, length, duration, time-
of-year (week, season, etc.), and path (but not by commodity). Trip origin and destination are 
represented by network nodes, location type (port, anchoring ground, lock, or other), and a unique 
location identification number.   

Results The stop identification algorithm identified 120,185 stops for the 3.4 million AIS position 
records, of which approximately 25% were on the MKARNS and the remaining 75% on the Mississippi 
River. The subsequent map-matching algorithm identified 47,555 trips, and 31,359 trip chains. The 
average number of annual trips per vessel was 63, with a mean trip length of 56.7 miles within a range 
of 0.2 to 1,085 miles, and a mean duration of 10 hours with a range of 1 to 214 hours. Vessel trips of 
shortest length and duration likely correspond to movements of tugs between docks within a given port, 
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and to support construction projects concurrent with AIS data (2016), e.g., Broadway Bridge in Little 
Rock (Asborno, Hernandez and Yves 2020). 

Vessel trips and trip chains to and from specific ports are selected to derive port performance measures. 
In particular, the group of vessel trips with origin or destination in a given port constitute the maritime 
port “catchment” area, defined as the region where the port draws and delivers freight from. Since most 
vessels carry a transponder (DiJoseph and Mitchell 2015), given that the AIS dataset used for this work 
represents 91% of the vessel population, it was not deemed necessary to apply a coefficient of 
coverage. 

2.1.3 Vehicle tracking data processing: Truck GPS 
2.1.3.1 Truck GPS Data Quality Control and Stop Identification 
The anonymized truck GPS data used in this work consisted of timestamped locations (latitude and 
longitude) for a sample of the truck population covering a statewide region.  Each truck’s GPS 
transponder, identified by a unique but anonymous number, emits intermittent signals (“pings”) over 
time, indicating its location.  

First, the anonymous GPS pings were grouped by truck into “trips” and then subjected to quality control 
protocols to remove inconsistent records. Inconsistencies were defined as trips of less than 20 pings, 
trips with geographic coverage less than 1.2 miles (e.g. length of the diagonal of the bounding box 
including all pings), and calculated speeds higher than 81 mph. Then, a stop identification algorithm 
developed by Camargo et al. (2017) and adapted by Akter et al. (2018) was applied to identify stop 
locations and durations for each trip. A truck was considered to be stopped when its speed was lower 
than 3 mph for more than 5 minutes, and the stop coverage area was less than 0.2 miles.  All pings 
corresponding to a single stop were clustered within a rectangular bounding box, and the location of the 
first ping in the cluster was assigned as the stop location. After the stops made by individual trucks were 
found, trucks with stops within port areas were identified.  A port area was defined as a bounding box 
around the port facility (including the truck loading area) corresponding to a dock, identified by aerial 
imagery (Figure 6). 

 
Figure 6.  Example of port area geographic bounding boxes 

2.1.3.2 Truck GPS Data Expansion 
The GPS data used in this study contained four two-week samples, roughly capturing the start of each 
quarter of the year (Figure 7). Studies show the coverage of the GPS sampled data to be 10-15% of the 
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total truck population (Diaz Corro et al., 2019).  To later fuse annual commodity flows from LPMS with 
the truck GPS data sample, it was necessary to estimate annual, total (e.g. population level) truck 
volume for each of the ports. Thus, once the sample number of trucks S found at each port i during each 
sample period w, Si

w, was found, two expansion factors were applied to estimate the annual truck 
volume at each port.  First, the sample was expanded to represent population-level truck volumes.  
Expansion factors for each sample period, Vv

w, were derived as the ratio of the GPS sample volume to 
truck counts from nearby Weigh-In-Motion (WIM) stations for the same time period. The GPS-derived 
truck volume at each port, Si

w, was multiplied by Vv
w to estimate the total population of trucks at each 

port, e.g. “volume-expanded”. Next, temporal representation of the GPS sample was addressed by 
extrapolating each volume-expanded two-week period to an annual volume. Each volume-expanded, 
two-week period was multiplied by a temporal expansion factor, Vt

Q (e.g. number of two-week periods 
in a three-month quarter) (Eq. 3). Lastly, quarterly volumes 𝐴𝐴’𝑖𝑖

𝑄𝑄 were summed to obtain the annual 
number of trucks accessing each port (Eq. 4).  

 𝐴𝐴’ 𝑖𝑖
𝑄𝑄 = 𝐴𝐴𝑖𝑖𝑤𝑤 × 𝑉𝑉𝑣𝑣𝑤𝑤  × 𝑉𝑉𝑡𝑡

𝑄𝑄 3 

 𝑇𝑇𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = � 𝐴𝐴′𝑖𝑖
𝑄𝑄

𝑄𝑄
 4 

 Where 𝑇𝑇𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the estimated (expanded) annual volume of trucks at port i 

𝐴𝐴’ 𝑖𝑖
𝑄𝑄 is the expanded sample of trucks at port i, during quarter Q 

𝐴𝐴𝑖𝑖𝑤𝑤 is the sample of trucks at port I, during period w 

𝑉𝑉𝑣𝑣𝑤𝑤  is the volume expansion factor for sample period w 

𝑉𝑉𝑡𝑡
𝑄𝑄  is the time expansion factor for sample period t in quarter Q 

 

2.1.3.3 Truck Trip Identification from GPS Data 
In parallel to the stop identification algorithm applied to truck GPS data, the heuristic by (Akter, et al. 
2018) adapted from (Camargo, Shuyao and Vladimir 2017) identifies all links of the network that are 
likely used by the vehicle as it travels between stops. Using geospatial analysis, each ping is associated 
with a network link if its location falls within a pre-defined buffer distance from the link. Links with pings 
within their buffers are likely used by the vehicle as it traveled between stops. In some cases, a truck 
may traverse many links between ping recordings, thus the map-matching algorithm reconstructs the 
complete path of consecutive links using shortest path algorithms. For each and all trucks, the map-
matching algorithm outputs a sequenced list of network nodes visited by each vehicle, the time when 
the vehicle arrived and left each node, and its associated network link. By joining the outputs of the stop 
identification and complete path for each vehicle based on timestamps, truck trips and trip chains are 
identified. Lastly, truck trips with origin or destination in network nodes representing inland waterway 
port terminals are selected.  Similarly as with vessel trips mined from AIS data, truck trips with origin or 
destination in a given port terminal are selected, and their paths constitute the roadway freight 
“catchment area” of such port.  

2.1.4 Commodity data processing: Lock Performance Measurement System 
LPMS data consists of monthly quantities (by weight) of 36 commodities transported along U.S. inland 
navigable waterways by direction (e.g. upriver and downriver). The USACE collects data on the quantity 
of commodity at each of their approximately 200 locks and dams. LPMS data processing (Figure 7) 
consisted of calculating the difference in the quantity (by weight) of each commodity between each pair 
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of consecutive locks, per direction, per month, (∆Ls,t
j,U;  ∆Ls,t

j,D), referred to as ‘commodity flux’. Upriver 
and downriver commodity flux were aggregated to quantify commodity flux per month, ∆Ls,t

j, and then 
converted to equivalent truckloads by dividing commodity flux by commodity-specific truck payload 
factors fj .  Truck payload factors for each of the nine commodity categories were derived from the 40 
LPMS commodity sub-groups, using the Standard Transportation Commodity Codes (STCC2) payload 
factors included in the Arkansas State Travel Demand Model to assist with the commodity cross-walks 
(Alliance Transportation Group, 2012).  Equivalent monthly truckloads 𝐶𝐶𝑗𝑗

𝑠𝑠,𝑡𝑡 were then summed over the 
year to obtain the annual equivalent truckloads of each commodity flux between each pair of 
consecutive locks, 𝐶𝐶𝑗𝑗

𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . 

 
              a. LPMS data preparation for GMAP           b. Truck GPS data preparation for GMAP 

Figure 7.  LPMS and truck GPS data preparation for GMAP 

2.2 Data Fusion Methodologies for Performance Measurement 
This section presents the methodology developed to calculate performance measures for inland 
waterway system components from the analysis and fusion of publicly available freight tracking data 
with aggregated commodity datasets (LPMS). The metrics introduced are listed in Table 7. 
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Table 7.  Inland waterway transportation system performance measures derived in this work 

Metric Description Units Data source 

Port terminal 
throughput by 
commodity 

Annual volume of freight transloaded at 
each port terminal on the Arkansas River 
by commodity, mode (truck/rail), and 
direction (upriver/downriver). 

Tons LPMS and truck GPS 
data fusion 

Commodity-based 
vessel trip 
characterization 

Quantity and type of commodities 
carried by vessel trips observed on the 
Arkansas River for one year. 

Tons LPMS, AIS, and truck 
GPS data fusion 

Freight catchment 
area size 

Area where a facility draws and delivers 
freight from/to (connected origin-
destination pairs). 

Acres AIS and truck GPS data 
fusion 

Vehicle Miles 
Travelled (VMT) 

Aggregated distance of all trips to/from 
a port terminal, by mode (truck/vessel), 
and multimodal. 

Miles; 
Percentage of 

VMT per 
mode 

AIS and truck GPS data 
fusion 

Vehicle Hours 
Travelled (VHT) 

Aggregated duration of all trips to/from 
a port terminal, by mode (truck/vessel), 
and multimodal. 
VHTmultimodal=VHTtruck+VHTvessel 

Hours; 
Percentage of 

VHT per 
mode 

AIS and truck GPS data 
fusion 

Population within the catchment area a  Number of 
individuals 

AIS, truck GPS, and 
census data fusion 

Number of business registered within the catchment area b  Number of 
businesses 

AIS, truck GPS, and 
business data fusion 

Number and location of unique Traffic Analysis Zones (TAZ) as 
origin or destination of trips to/from each port terminal facility 

Number of 
TAZs 

AIS, truck GPS, and 
State Travel Demand 
Model (STDM) zones 

data fusion 

Dwell time  Average duration of vessel stops at each 
port terminal Hours AIS 

 Notes: (a) Might be stratified per population characteristic 
(b) Might be stratified per commodity (NAICS code) 

Following the data preparation methods presented above, the model has sub-models both formulated 
as Generalized Multi-Commodity Assignment Problems (GMAP). The first model (GMAP) consists of 
fusing truck GPS and LPMS data to obtain throughput by port terminal, commodity, mode (barge-truck 
and barge-rail transloads), and direction (upriver or downriver flows). The second model (GMAP+) uses 
the output of the first model as input, together with vessel trips characterized by port of origin, 
destination, length, and duration (but not commodity) derived from AIS data, to obtain the volume and 
type of commodities transported in each vessel trip. 

2.2.1 Model 1 (GMAP): Port throughput by commodity from Truck GPS and LPMS 
data fusion  

This section presents a model to quantify annualized commodities transloaded at inland waterway port 
terminals by fusing two mode-specific datasets, truck GPS and marine AIS. The model is formulated as a 
Multi-Commodity Assignment Problem (GMAP) (Asborno, Hernandez and Akter 2020).  
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A GMAP seeks to optimally assign tasks to agents, subject to capacity restrictions on the agents; an 
agent may be assigned many tasks, and tasks may be duplicated and assigned to more than one agent 
(Kundakcioglu et al., 2008).  In applying a Generalized Assignment Problem (GAP) to the quantification 
of port throughput, commodities were considered “tasks” to be assigned to ports, i.e. “agents”, and the 
total commodity flux on a river section may be transloaded at several ports.  The objective function 
targets minimal deviation between freight flow observed on the land side (from truck GPS), and on the 
water side (from LPMS) at each river section (Eq. 5).  Such minimization is subject to the following 
constraints: i) freight flow conservation, i.e. assurance that all commodities were assigned to at least 
one port (Eq. 6), ii) port “capacity”, defined as the proportional number of trucks accessing each port 
terminal (Eq. 7), and iii) non-negativity (Eq. 8-10).  The model is applied to annual commodity flows to 
reduce the effects of long-term commodity storage or inventory holding at each port terminal. 

The model was solved by adopting goal programming techniques, consisting of the relaxation of 
conflictive conditions in an optimization formulation to find a feasible solution (although not necessarily 
optimal) (Colapinto et al., 2017; Gardi et al., 2014). The relaxation techniques implemented in the MCAP 
formulation were: i) inequalities adopted in eq. 6-7 instead of equalities, and ii) discrete (integer) values 
were replaced with continuous values, e.g. trucks allowed to be partially loaded.  

The decision variables obtained with the GMAP, e.g., the annual number of truckloads of each 
commodity transloaded at each port terminal, by mode, are post-processed to describe the upriver and 
downriver directionality, and to convert from the number of trucks (e.g., truckloads) back to commodity 
volumes by weight (tonnages). The post-processed results are the annual tonnage of freight transloaded 
to rail and the annual tonnage of freight by commodity transloaded to truck at each port, by direction 
(upriver, downriver). Rail transloads are quantified but not described per commodity due to rail data 
unavailability, such as number of railcars observed per port.  From the truck GPS data, it was not 
possible to determine whether a truck was at a port to pick-up or drop-off an upriver or downriver 
cargo. 
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Objective function:  
 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒇𝒇(𝒙𝒙,𝑹𝑹) = ∑ ∑ 𝜶𝜶𝑴𝑴,𝒋𝒋𝒔𝒔 𝒙𝒙𝑴𝑴,𝒋𝒋

𝒔𝒔,𝒕𝒕 + ∑ 𝜷𝜷𝑴𝑴𝒔𝒔𝑹𝑹𝑴𝑴
𝒔𝒔,𝒕𝒕 −𝑴𝑴𝒋𝒋𝑴𝑴 ∑ 𝒄𝒄𝒋𝒋

𝒔𝒔,𝒕𝒕
𝒋𝒋   ∀ 𝒋𝒋 ∈ 𝒂𝒂,∀ 𝑴𝑴 ∈ 𝒔𝒔  5 

Subject to: 
 Freight conservation:                ∑ 𝛼𝛼𝑖𝑖,𝑗𝑗𝑠𝑠  𝑥𝑥𝑖𝑖,𝑗𝑗

𝑠𝑠,𝑡𝑡
𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗

𝑠𝑠,𝑡𝑡    ∀ 𝑗𝑗 ∈ 𝑎𝑎 6 

 Port capacity:                       
∑ 𝛼𝛼𝑖𝑖,𝑗𝑗

𝑠𝑠  𝑥𝑥𝑖𝑖,𝑗𝑗
𝑠𝑠,𝑡𝑡 𝑗𝑗

∑ 𝑐𝑐𝑗𝑗
𝑠𝑠,𝑡𝑡−∑ 𝛽𝛽𝑖𝑖

𝑠𝑠𝑅𝑅𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖  𝑗𝑗
≤ 𝑇𝑇𝑖𝑖

𝑠𝑠,𝑡𝑡

∑ 𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖
  ∀ 𝑖𝑖 ∈ 𝑠𝑠   7 

 Non-negativity:                              𝑥𝑥𝑖𝑖,𝑗𝑗 ≥ 0   ∀𝑗𝑗 ∈ 𝑎𝑎,∀𝑖𝑖 ∈ 𝑠𝑠 8 

 𝑅𝑅𝑖𝑖 ≥ 0   ∀𝑖𝑖 ∈ 𝑠𝑠 9 

 � � 𝛼𝛼𝑖𝑖,𝑗𝑗𝑠𝑠 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑠𝑠,𝑡𝑡 + �𝛽𝛽𝑖𝑖𝑠𝑠𝑅𝑅𝑖𝑖

𝑠𝑠,𝑡𝑡 −
𝑖𝑖𝑗𝑗𝑖𝑖

� 𝑐𝑐𝑗𝑗
𝑠𝑠,𝑡𝑡

𝑗𝑗
 ≥ 0  ∀𝑗𝑗 ∈ 𝑎𝑎,∀𝑖𝑖 ∈ 𝑠𝑠 10 

Where, 
j ∈  a Set of commodities 
i ∈  s Set of ports within each river section 
s ∈  r Set of sections within a river 

Decision variables: 

x s,t
i,j Number of truckloads of commodity j transloaded from barge to truck (and vice-versa) at 

port i during time period t, on river section s  

R s,t
i Equivalent truckloads transloaded from barge to rail (and vice-versa) at port i during time 

period t, on river section s 

Input variables and model parameters: 

c s,t
j Flux of commodity j on river section s during time period t (from LPMS) 

T s,t
i Number of trucks T accessing port i on river section s during time period t (from truck GPS, 

eq. 11) 

𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡 = � 𝛼𝛼𝑖𝑖,𝑗𝑗𝑠𝑠

𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗
𝑠𝑠,𝑡𝑡 11 

 

α si,j Coefficient to indicate whether port i on river section s handled commodity j, subject to 
loading equipment (from master dock plus database and aerial imagery) 

𝛼𝛼𝑖𝑖,𝑗𝑗𝑠𝑠 = �1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝𝑐𝑐 𝑗𝑗
0                                         𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑝𝑝𝑒𝑒𝑖𝑖𝑠𝑠𝑎𝑎

 
 

β si Coefficient to indicate whether port i on river section s had rail access (from master dock 
plus database and aerial imagery). 

𝛽𝛽𝑖𝑖𝑠𝑠 = �1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ℎ𝑎𝑎𝑠𝑠 𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠
0                            𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑝𝑝𝑒𝑒𝑖𝑖𝑠𝑠𝑎𝑎
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2.2.2 Model 2 (GMAP+): Commodity-based vessel trip characterization on inland 
waterways from Truck GPS, AIS, and LPMS data 

The type and volume of commodities transloaded at each port terminal, and vessel trips port of origin 
and destination mined from AIS data serve as input to the second model: a two-stage multi-commodity 
assignment problem (called GMAP+) (Asborno and Hernandez, 2020). Since the inputs are derived from 
diverse sources (AIS, GPS, and LPMS), the assignment model is a tool to minimize data heterogeneity by 
assuming a non-integer, linear, and stochastic model formulation.  

The first modeling stage consists of a deterministic, linear objective function that seeks to minimize 
differences in the volume of commodity transloaded at ports and assigned to trips visiting such ports, 
for all ports, all commodities, and all trips in the study area during the study period (Eq. 12). Decision 
variables in this model constitute the volume (in tons) of each commodity carried per vessel trip, and are 
treated as non-integer variables to resemble a continuous volume of commodity loaded in any given trip 
(Eq. 13-16). 

Objective function: 
 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒇𝒇(𝒙𝒙) = �∑ ∑ (𝒂𝒂𝑴𝑴,𝒋𝒋𝒋𝒋 /𝟐𝟐)𝑴𝑴 − ∑ ∑ ∑ �𝒗𝒗𝑴𝑴,𝒕𝒕 × 𝒙𝒙𝒕𝒕,𝒋𝒋

𝒔𝒔 �𝒕𝒕𝒋𝒋𝑴𝑴 � ∀𝑖𝑖 ∈ 𝑃𝑃,∀𝑗𝑗 ∈
𝐶𝐶,∀𝑝𝑝 ∈ 𝑇𝑇  

12 

Subject to: 
 Trip capacity:                                                   ∑ 𝑥𝑥𝑡𝑡,𝑗𝑗

𝑠𝑠
𝑗𝑗 ≤ 𝑏𝑏𝑠𝑠  ∀𝑝𝑝 ∈ 𝑇𝑇 13 

 Port capacity:                                  ∑ ∑ �𝑣𝑣𝑖𝑖,𝑡𝑡 × 𝑥𝑥𝑡𝑡,𝑗𝑗
𝑠𝑠 �𝑗𝑗𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖,𝑗𝑗/2𝑗𝑗   ∀𝑖𝑖 ∈ 𝑃𝑃    14 

 Commodity flow conservation:              ∑ 𝑥𝑥𝑡𝑡,𝑗𝑗
𝑠𝑠

𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖,𝑗𝑗/2𝑖𝑖   ∀𝑗𝑗 ∈ 𝐶𝐶   15 

 Non-negativity:                                          𝑥𝑥𝑡𝑡,𝑗𝑗
𝑠𝑠 ≥ 0    ∀𝑗𝑗 ∈ 𝐶𝐶,∀𝑝𝑝 ∈ 𝑇𝑇   16 

Where, 
i ∈  P Set of ports 
t ∈  T Set of vessel trips  
j ∈  C Set of commodities  
s ∈  S Set of scenarios  

Decision variables: 
𝑥𝑥𝑝𝑝,𝑗𝑗𝑠𝑠  Volume (in tons) of commodity j transported in trip t  in scenario s 

Input variables and model parameters: 
ai,j Volume (in tons) of commodity j loaded/unloaded in port i (from model stage 1) 
bs Maximum volume of cargo (in tons) transported per vessel trip, assumed for scenario s 
vi,t Coefficient to indicate whether port i is the origin or destination of trip t (from trip 

characterization by AIS data mining – Data preparation) 

𝑣𝑣𝑖𝑖,𝑡𝑡 = �1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 𝑝𝑝 𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
0                        𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑝𝑝𝑒𝑒𝑖𝑖𝑠𝑠𝑎𝑎
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A notable limitation of AIS data is that it is linked to tugs and tows pushing barges on inland waterways, 
but not to the barges that carry the load (Kruse, et al., 2018). In the absence of information pertaining 
the volume of total freight carried per vessel trip, the second modeling stage introduces stochastic 
elements to uncertainty in the volume of freight transported per trip. Thus, the deterministic model 
presented above (Eq. 12-16) is applied to different scenarios of trip capacity (Eq. 13). Then, the results of 
all scenarios are combined into a single model output considering the probability of occurrence of each 
scenario (Eq. 17).  Model output represents the volume (in tons) of commodity j carried by trip t. 

 𝒙𝒙𝒕𝒕,𝒋𝒋 = � � 𝒑𝒑𝒔𝒔 × 𝒙𝒙𝒕𝒕,𝒋𝒋𝒔𝒔
𝒔𝒔𝒑𝒑

 17 

 

Where, 
𝑥𝑥𝑡𝑡,𝑗𝑗
𝑠𝑠 is the volume (in tons) of commodity j carried by trip t in scenario s, 

ps is the probability of occurrence of scenario s, and 
𝑥𝑥𝑡𝑡,𝑗𝑗is the volume (in tons) of commodity j carried by trip t (model results). 
 

 

 
The parameter, b, sets an upper bound to the volume of freight carried per trip and is derived from 
LPMS. In particular, the lock usage report provides the number of loaded barges and the number of 
commercial vessels observed at each lock operated by USACE (2018). An average of 4.72 loaded barges 
per vessel were observed at the locks within the study area during 2016, with a standard deviation of 
0.84. To account for the uncertainty in the maximum volume of freight carried per trip, five scenarios 
are modeled, where b takes the form of a discrete variable and is varied two standard deviations below 
and above the average, with a step of one standard deviation.  Considering the capacity of most barges 
is 1,500 tons, the average volume of freight per trip, b is 7,085 tons, and the set of scenarios is S = 
{4,564; 5,825; 7,085; 8,345; 9,606}.  In the absence of further statistical data pertaining the distribution 
of number of barges per vessel in the study area, the five scenarios are considered to have an equal 
probability of occurrence (Ahadi, Sullivan, and Mitchell, 2018), thus p = 0.20. 

Each modeled scenario has 39,366 decision variables (4,374 trips and 9 commodities).  Due to input data 
heterogeneity (AIS, truck GPS, and LPMS), relaxation of conflictive constraints, namely port capacity (Eq. 
14) and commodity flow conservation (Eq. 15), is necessary for a feasible solution to be found. Under 
some scenarios, relaxing constraints in conflict may lead to an assignment of freight per trip that violates 
the commodity flow conservation principle, e.g., the volume of commodity assigned to trips (output) 
should be equal to the volume of commodity transloaded at ports (input) (Eq. 15). In particular, 
scenarios with an upper bound of the volume of freight carried per trip being equal or less than the 
average plus one standard deviation, i.e. b ≤ 8,345 tons, result in this violation. Thus, under such relaxed 
constraints, the stochastic model (all five scenarios combined) results in 80% of the total freight 
transloaded at ports being assigned to trips. The flow conservation principle stands when the analysis is 
done by commodity type for all commodities except chemicals and food and farm products. To account 
for the un-assigned freight flow of chemicals and food and farm products, model results are post 
processed. First, it is assumed that the distribution of volume of commodity per trip, for all the trips that 
carry the given commodity, is fixed. Then, the volume of commodity assigned per trip is increased 
proportionally, to match the total volume of such commodity transloaded at ports.  

2.2.3 Model Evaluation 
Since the two model steps described above produce distinct outputs, each model step is subject to an 
independent evaluation.  
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2.2.3.1 GMAP Model Evaluation 
Method Commodity flows through inland ports were not publicly available for direct model validation. 
Instead, two indirect evaluation metrics were used: i) the difference in the percentage of trucks 
accessing each port terminal as observed from truck GPS data and model estimates (‘EM’, Eq. 18), and ii) 
the rail-to-truck freight ratio of transloaded freight at each river section (‘RT’, Eq. 19).  

 
𝐸𝐸𝐸𝐸𝑖𝑖 = �

𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

∑ 𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖
  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 −

𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

∑ 𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖
  𝑜𝑜𝑜𝑜𝑠𝑠𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝� × 100% 18 

 
𝑅𝑅𝑇𝑇𝑠𝑠 =

∑ 𝑅𝑅𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖

∑ 𝑇𝑇𝑖𝑖
𝑠𝑠,𝑡𝑡

𝑖𝑖
× 100% 19 

 Where, 
EMi is the truck proportion GMAP model evaluation metric for port i 
RTs is the rail-to-truck ratio for river section s 
Ti

s,t is the number of trucks accessing port i located at river section s during time 
period t 
Ri

s,t is the volume of freight (measured in equivalent truckloads) transloaded 
between barge and rail at port i located at river section s during time period t 

 

 
Results Generally, lower EM corresponds to better model results. Overall, 84% of the port terminals (36 
out of 43) show EM less than 20% (Table 8, Figure 8.a). By averaging the EM of all ports within each river 
section, 75% of the river sections with ports (6 out of 8) show an average EM less than 20%.  

RT captured the model ability to mimic rail-to-truck ratios observed in independent national datasets. 
With the exception of Section 11, all river sections showed RT between 0% to 9% (Figure 8.b). Since the 
decision variable R captured both barge/rail transload operations and freight consumed at facilities 
located at the ports (e.g., refineries, power plants), the high RT observed in Section 11 may be explained 
by commodities arriving by water and being consumed at a power plant with port access located along 
that river section. The overall RT considering all river sections was 13%, in line with 15% national freight 
mode share (U.S. Department of Transportation, 2019).   

Table 8.  Model Evaluation Metric (EM) per River Section 

River sections Number of ports Average EM per section 

3; 4; 5; 7; 10 30 < 10% 

13 6 < 20% 

9; 11 7 < 40% 

1; 2; 6; 8 0 No ports. Algorithm not applicable 
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a. Evaluation metric per port (EM) 

 
b. Rail-to-Truck mode share ratio (RT) 

Figure 8.  GMAP model evaluation results 

2.2.3.2 GMAP+ Model Evaluation 
Method The output of the GMAP+ model is the volume (in tons) of each commodity transported during 
each vessel trip. No direct validation measure is available as this data is not public.  As an indirect 
measure, the output is evaluated based on the difference in model estimates and observations of the 
distribution of commodity volumes (in tons) observed at locks (LPMS). Commodity volumes are 
normalized to the total freight volume of the system (all commodities, trips, and locks aggregated) to 
eliminate scaling effects that would prevent a direct comparison, and presented as percentages of total 
freight, 𝑉𝑉𝑗𝑗,𝑙𝑙 (Eq. 20).  A single validation metric, V, averages 𝑉𝑉𝑗𝑗,𝑙𝑙 for all commodities and all locks in the 
system (eq. 21).  

 𝑉𝑉𝑗𝑗,𝑙𝑙 = ��𝐿𝐿𝑃𝑃𝐸𝐸𝐿𝐿𝑗𝑗,𝑙𝑙
∑ ∑ 𝐿𝐿𝑃𝑃𝐸𝐸𝐿𝐿𝑗𝑗,𝑙𝑙𝑙𝑙𝑗𝑗
� � × 100 − �

∑ 𝑥𝑥𝑡𝑡,𝑗𝑗
𝑙𝑙

𝑡𝑡 
∑ ∑ ∑ 𝑥𝑥𝑡𝑡,𝑗𝑗

𝑙𝑙
𝑡𝑡 𝑙𝑙𝑗𝑗

� � × 100%�   ∀𝑗𝑗 ∈ 𝐶𝐶,∀𝑎𝑎 ∈ 𝐿𝐿 20 

 𝑉𝑉 =
∑ ∑ 𝑉𝑉𝑗𝑗,𝑎𝑎𝑎𝑎𝑗𝑗

𝐿𝐿 × 𝐶𝐶
 21 

 

Where, 
Vj,l is the model validation metric for tonnages of commodity group j and lock l, 

𝐿𝐿𝑃𝑃𝐸𝐸𝐿𝐿𝑗𝑗,𝑙𝑙is the annual volume (in tons) of commodity j reported by LPMS for lock l, 

𝑥𝑥𝑡𝑡,𝑗𝑗
𝑙𝑙 is the annual volume (in tons) of commodity j carried by trips t (model results) observed at 

lock l. 

 

To calculate 𝑥𝑥𝑡𝑡,𝑗𝑗
𝑙𝑙 , a screenline approach is used such that trip path geometries of tugs/tows that 

intersected locks (represented by line segments) are counted as vessels in transit through the lock,  

V = overall model validation metric (considering tonnages of all commodities, all locks),  

C = number of commodity groups, and 

L = number of locks within the study area. 

Results The lower the validation metrics V and Vj,l, the better the model. Differences in the volume of 
commodity between LPMS and model results, Vj,l,  range from 0.00% to 1.82% for each lock, with an 
average of 0.25% (Table 9). 
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Table 9.  Model Validation Metric Vj,l  in percent for the Arkansas River for 2016 

Commo-
dity/Lock Coal Petrol Che-

micals 
Crude 

Materials 
Manu-

factured 
Food & 
Farm 

Mach-
inery Waste Unk-

nown 

85 0.15 0.08 0.65 0.74 0.17 0.63 0.02 0.00 0.12 

88 0.20 0.03 0.47 0.61 0.29 0.73 0.02 0.00 0.13 

89 0.20 0.00 0.48 0.62 0.30 0.72 0.02 0.00 0.13 

90 0.11 0.01 0.01 0.21 0.25 1.82 0.01 0.00 0.15 

91 0.10 0.00 0.12 0.21 0.27 1.79 0.02 0.00 0.14 

92 0.07 0.00 0.00 0.25 0.19 1.39 0.01 0.00 0.15 

93 0.08 0.00 0.00 0.25 0.19 1.39 0.01 0.00 0.15 

105 0.01 0.06 0.27 0.25 0.21 0.95 0.02 0.00 0.22 

101 0.01 0.05 0.24 0.22 0.20 0.97 0.01 0.00 0.22 

102 0.02 0.01 0.35 0.24 0.22 0.79 0.03 0.00 0.22 

104 0.00 0.17 0.40 0.25 0.16 0.69 0.03 0.00 0.21 

103 0.03 0.24 0.53 0.52 0.54 0.08 0.03 0.00 0.22 

106 0.03 0.25 0.49 0.52 0.52 0.15 0.03 0.00 0.22 

107 0.03 0.26 0.50 0.53 0.52 0.14 0.03 0.00 0.22 
 

Lower performance as measured by the model evaluation metrics can be attributed to several issues. 
First, the proposed validation methods assume that tug-trips carry freight along all their path, while 
freight might be carried only for a portion of the trip, e.g. between a port and an anchoring area. 
Second, the model input data is imperfect, even after data pre-processing.  For example, it was observed 
that 2016 AIS data covers 91% of the vessel population on the Arkansas River (Asborno, Hernandez, and 
Yves, 2020). In addition, there could be issues with the commodity volumes manually reported in LPMS. 
Third, in terms of model characteristics, assumptions of tonnage capacities per trip plays a key role in 
model accuracy, despite the adoption of a stochastic approach that considers several scenarios of 
diverse trip capacity. The model may be improved by increasing the number of scenarios, as in a Monte 
Carlo simulation approach (Lin et al., 2018).  

2.2.4 Multimodal port catchment area metrics 
A freight port “catchment area” is defined as the region where the facility delivers and draws freight 
(Vadali et al., 2017). Based on this definition, catchment areas can be identified as the connected origin-
destination pairs where the trips made by the vehicles that accessed the facility occur. In a freight supply 
chain, the catchment area contains several modes, freight facilities, and industries, which would be 
better represented (and linked together) by spatially and temporally continuous data, such as historical 
truck and vessel paths.  Such trips are mined from vehicle tracking data, as explained in the data 
preparation methodology (Sections 2.1.2.3 for maritime AIS, and 2.1.3.3 for truck GPS). By selecting the 
trips with origin or destination in a given freight facility, its catchment area is identified and visualized.  

To complement visual depictions of freight catchment areas, key quantitative indicators (Table 7) are 
calculated per mode and by combining all modes (e.g., multimodal). The indicators constitute 
performance of the freight activity associated with each facility. The catchment area size, population, 
number of business within the area, and location of unique TAZs serving as the origin or destination of 
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trips to/from each port are derived using statistical packages and modeling tools in GIS platforms. The 
state-wide number of business within the catchment area is obtained by conflating the catchment areas 
with the County Business Patterns dataset from (U.S. Census Bureau, 2018), for the year of study. 
Similarly, the population is obtained by conflating the catchment area with the Arkansas TIGER/Line® 
Shapefiles: Census Tracts from (U.S. Census Bureau, 2019b).  The TAZs shapefile is obtained from the 
State Travel Demand Model (Alliance Transportation Group, 2015). The VMT and VHT corresponding to 
all trips to and from each port, per mode, are calculated by aggregating the trip length (in miles) and 
duration (in hours) for all the trips with origin or destination in the said port (Eq. 22-25). The multimodal 
VMT and VHT is calculated by summating of the mode-specific VMT and VHT, respectively (Eq. 26-27) 

 𝑉𝑉𝐸𝐸𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 = � 𝑘𝑘𝑝𝑝,𝑂𝑂=𝑖𝑖
𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑘𝑘

𝑡𝑡
+ � 𝑘𝑘𝑝𝑝,𝐷𝐷=𝑖𝑖

𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑘𝑘

𝑡𝑡
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 𝑉𝑉𝐸𝐸𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 = � 𝑘𝑘𝑝𝑝,𝑂𝑂=𝑖𝑖
𝑣𝑣𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑡𝑡
+ � 𝑘𝑘𝑝𝑝,𝐷𝐷=𝑖𝑖

𝑣𝑣𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑡𝑡
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 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 = � 𝑎𝑎𝑝𝑝,𝑂𝑂=𝑖𝑖
𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑘𝑘

𝑡𝑡
+ � 𝑎𝑎𝑝𝑝,𝐷𝐷=𝑖𝑖

𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑘𝑘

𝑡𝑡
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 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 = � 𝑎𝑎𝑝𝑝,𝑂𝑂=𝑖𝑖
𝑣𝑣𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑡𝑡
+ � 𝑎𝑎𝑝𝑝,𝐷𝐷=𝑖𝑖

𝑣𝑣𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑡𝑡
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 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑚𝑚𝑡𝑡𝑙𝑙𝑡𝑡𝑖𝑖𝑚𝑚𝑜𝑜𝑝𝑝𝑚𝑚𝑙𝑙 =  𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 27 

 Where, 
𝑘𝑘𝑡𝑡,𝑂𝑂=𝑖𝑖 is the mileage of trip t, with origin in port i 
𝑘𝑘𝑡𝑡,𝑂𝑂=𝑖𝑖 is the mileage of trip t, with destination in port i 
𝑎𝑎𝑡𝑡,𝑂𝑂=𝑖𝑖 is the duration (in hours) of trip t, with origin in port i 
𝑎𝑎𝑡𝑡,𝑂𝑂=𝑖𝑖 is the duration (in hours) of trip t, with destination in port i 

 

 
2.2.5 Dwell time and travel time from AIS data  
2.2.5.1 Dwell time 
Dwell time is the amount of time a vessel or truck spends at a port facility and can include 
loading/unloading operations, and wait time. For this project, the dwell time is calculated as the average 
duration of all stops made by all vessels visiting the facility during the study period (Eq. 28). Notably, on 
U.S. inland waterways, AIS transponders are onboard tugs that push barges carrying freight, but barges 
do not have an AIS transponder (Kruse, et al. 2018). Thus, AIS transponders track the position of tugs not 
cargo. In addition, the operation of loading and unloading freight from barges does not necessitate the 
presence at the dock of the tug that pushes such barges through the river. In a typical operation, for 
example, a tug pushing loaded barges would arrive at a dock, maneuver to position the barges at the 
dock, and once the barges are safely moored, the tug would leave the dock and the unloading of the 
barge(s) would start.  Thus, the “dwell time” calculated for the purpose of this work constitutes the time 
spent by the tug or towboat at the port terminal to position or pick up barges, differing from the 
traditional definition of dwell time, which refers to the time incurred to load and unload cargo. 

 𝑊𝑊𝑖𝑖 =
∑ ∑ 𝑎𝑎𝑠𝑠,𝑖𝑖

𝑜𝑜
𝑠𝑠𝑜𝑜

𝐿𝐿𝑖𝑖
 28 

 Where, 
Wi is the Annual average dwell time for port i 
𝑎𝑎𝑠𝑠,𝑖𝑖
𝑜𝑜 is the duration (in hours) of stop s made by vessel v at port i 
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𝐿𝐿𝑖𝑖 is the number of stops at port i (by all vessels) 
 

2.2.5.2 Travel time share on the multimodal transportation system 
For each port terminal, the travel time share within the multimodal transportation system is calculated 
by first summing the maritime VHT, dwell time, and roadway VHT corresponding to each port terminal, 
and then calculating the percentage of share that each of those metrics have on the summation (Eq. 29-
31). 

 𝑇𝑇𝐿𝐿𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 =
𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖 𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙

𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 + 𝑊𝑊𝑖𝑖
× 100 29 

 
𝑇𝑇𝐿𝐿𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 =

𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖 𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡

𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 + 𝑊𝑊𝑖𝑖
× 100 30 

 𝑇𝑇𝐿𝐿𝑖𝑖𝑤𝑤 =
𝑊𝑊𝑖𝑖

𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 + 𝑊𝑊𝑖𝑖
× 100 31 

 Where, 
𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖 𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙  is the vehicle hours travelled for vessel (or truck) visiting port i, 
𝑇𝑇𝐿𝐿𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙is the maritime travel time share for port i, 
𝑇𝑇𝐿𝐿𝑖𝑖𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡is the truck travel time share for port i, 
𝑇𝑇𝐿𝐿𝑖𝑖𝑤𝑤is the dwell time share for port i, and 
All other terms as previously defined. 
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3 Results: Commodity-based Performance Measures for the Arkansas River 
The methodologies presented in Section 2 were applied to the Arkansas River, including 43 freight port 
terminals. This section summarizes: i) performance measure for six sample freight port terminals; ii) 
tabular results of port throughput by commodity for the 43 freight port terminals within the project 
scope, iii) maps of detailed commodity flow in the Arkansas River, and iv) annual average dwell time per 
port terminal.   

3.1 Port Terminal Performance Summaries 
The port terminal performance summaries are presented for six select port terminals (see Appendix A). 
The sample facilities was made considering their varied location along the river (i.e. avoid including 
more than two terminals within a single port authority), and the variability in commodities handled per 
terminal (i.e. avoid including in the sample more than two terminals shipping a single same product). 
Notably, most of the 43 port terminals are dedicated to shipping or receiving a single commodity (such 
as aggregates, steel structures, grain, etc.). 

The port performance summaries include: 

1. Map of the freight catchment areas, 
2. Map of the Traffic Analysis Zones (TAZs) associated with each port, 
3. Population, Businesses, and Area of TAZs visited by trucks and vessels associated with the 

port, 
4. Vehicle Hours Travelled and Vehicle Miles Travelled of trucks and vessels visiting each port 
5. Travel time for trucks and vessels for each port, and 
6. Distribution of commodities estimated for each port. 

3.2 Port Throughput by Commodity 
Table 10 and Table 11 summarize the results of applying the GMAP model to the eight sections of the 
Arkansas River where the 43 freight ports are located, closing a critical data gap previously unavailable 
in the public domain.  
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Table 10.  2016 McClellan Kerr-Arkansas Upriver Freight Transloaded per Port, Commodity, and Mode 
(Annual Tons) 

 
  

Secti
on

Port
Coal

Petro
l

Chemica
ls

Crude M
ateria

ls

Manufactu
red

Fo
od &

 Fa
rm

Mach
inery

Waste

Unknown

Truck 
Tran

slo
ad

Rail T
ranslo

ad

Port 
total

  
 

  
 

3001 15,293    69,414   31,404   67,029   3,574        186,714  186,714    
3002      6,469        6,469      6,469        
3003  14,896          14,896    14,896      

4 4001      109,273    109,273  109,273    
5001      63,534      63,534   34,887   98,421      
5002    0 0     0  0
5003  27,582   0  0 0    27,582    27,582      
5004   138,749   0    138,749 0 138,749    
5005   0 29,344   0    1,787     31,130   0 31,130      
5006      0    0 0 0
5007     14,681    3,596       18,277    18,277      
5008     9,576      0   9,576      9,576        
5009   0  0 0    0  0
5010    12,443   0     12,443    12,443      
5011     59,955       59,955    59,955      
5012      0    0  0
5013      0    0  0

7001-2   0 0 0     0 45,200   45,200      
7003  0        0 0 0
7004   145 0 0 0   0 145         145          
7005    0      0 0 0
7006 239                239         239          
7007  137,646        137,646  137,646    
7008   0   51,308      51,308   0 51,308      
7009   0 0 0 0  0 10,251   10,251   0 10,251      

7010-11   0 17,509   541,310 13,280    0 0 572,099  572,099    
7012  0 192,253 182,050  0    374,302  374,302    
7013    334      334  334
9001    33,915        33,915    33,915      
9002    0 42,419       42,419    42,419      
9003   64,801     26,060      90,862    90,862      
10001    92,529        92,529   10,647   103,175    
10002   147,897 0 43,162   30,053      221,113 0 221,113    
11001     34,262    2,198       36,460    36,460      
11002    10,526     0   10,526    10,526      
11003 0  0 0 0    0 0  0
11004         0 0 175,957 175,957    
13001    14,315   0   0 0 14,315    14,315      
13002     56,362       56,362    56,362      

13003-4 13,993    242,891 154,515 121,982     533,381 7,637     541,019    
13005      65,449      65,449    65,449      
13006    0      0 0 0
13007  19,422   0 0 0     19,422   0 19,422      

3

5

7

13

Note that blank cells in the tables denote that the port did not handle a specific commodity or serve a given mode.

9

10

11
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Table 11.  2016 McClellan Kerr-Arkansas Downriver Freight Transloaded per Port, Commodity, and 
Mode (Annual Tons) 

 
  

  
 

  
 

Secti
on

Port
Coal

Petro
l

Chemica
ls

Crude M
ateria

ls

Manufactu
red

Fo
od &

 Fa
rm

Mach
inery

Waste

Unknown

Truck 
Tran

slo
ad

Rail T
ranslo

ad

Port 
total

3001 20,755    128,109 225,177 5,353     98,946      478,340  478,340   
3002      179,082    179,082  179,082   
3003  10,016          10,016    10,016     

4 4001      251,922    251,922  251,922   
5001      158,703    158,703 31,116   189,819   
5002    0 0     0  0
5003  1,335     0  0 0    1,335      1,335       
5004   37,173     0    37,173   0 37,173     
5005   0 98,573   0    0 98,573   0 98,573     
5006      0    0 0 0
5007     1,524      4,074       5,598      5,598       
5008     994         0   994         994          
5009   0  0 0    0  0
5010    41,797   0     41,797    41,797     
5011     6,224         6,224      6,224       
5012      0    0  0
5013      0    0  0

7001-2   0 0 0     0 27,775   27,775     
7003  0        0 0 0
7004   67 0 0 0   0 67          67            
7005    0      0 0 0
7006 270                270         270          
7007  7,868            7,868      7,868       
7008   0   207,603    207,603 0 207,603   
7009   0 0 0 0  4,785     0 4,785     0 4,785       

7010-11   0 20,569   25,837   53,735    0 0 100,142  100,142   
7012  0 89,639   213,874  0    303,513  303,513   
7013    392      392  392
9001    84,479        84,479    84,479     
9002    0 2,135         2,135      2,135       
9003   39,810     99,530      139,340  139,340   
10001    72,667        72,667   7,758     80,426     
10002   71,908   0 4,889     60,581      137,378 0 137,378   
11001     3,666      2,997       6,663      6,663       
11002    158,892   0   158,892  158,892   
11003 0  0 0 0    0 0  0
11004         0 0 421,510 421,510   
13001    4,080     0   0 0 4,080      4,080       
13002     2,795         2,795      2,795       

13003-4 6,897      118,462 44,040   6,049         175,448 4,108     179,556   
13005      136,099    136,099  136,099   
13006    0      0 0 0
13007  14,840   0 0 0     14,840   0 14,840     

3

5

7

13

Note that blank cells in the tables denote that the port did not handle a specific commodity or serve a given mode.

9

10

11
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3.3 Maps of Detailed Commodity Flow in the Arkansas River 
Existing maps of freight flow on inland waterway are limited to lock locations. However, locks are not 
the true origin or destination of freight, and there are several port terminals located between each pair 
of consecutive locks. This significant limitation is addressed by this project. By mapping the true origin 
and destination of each vessel trip characterized by commodity, e.g., a port, and aggregating the volume 
of each commodity (in tons) of all vessel trips that transit through each inland navigable waterway 
network link, we are able to generate maps that depict commodity flows along river segments. The 
maps (Figure 9) allow for highly disaggregated commodity flow depictions on regional inland waterways. 

 
Figure 9. Commodity flow mapped to a highly disaggregated inland navigable waterway network in 

Arkansas, 2016 

Changes in 
commodity 

volume 
visualized at 
port level, in-
between locks 
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3.4 Port Terminal Dwell Time 
The average dwell time for the 43 freight port terminals on the Arkansas River, as well as the number of 
stops identified during 2016 is shown in Figure 10. Dwell time is an indication of the time spent by tugs 
and towboats to maneuver while approaching the terminal, to safely moor barges, and load/unload 
cargo. Considering all of the 43 freight port terminals, the average dwell time on the Arkansas River 
during 2016 was 4.8hrs, with a minimum of 0.2hrs, a maximum of 30.5hrs, and a standard deviation of 
5.8hrs. 

 

Figure 10.  Average dwell time and number of stops per freight port terminal on the Arkansas River in 
2016 
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4 Impacts/Benefits of Implementation 
This section presents a discussion of the results of the port and vessel commodity assignment models, 
focusing on the anticipated impacts and benefits of implementation of this project. 

Multimodal Catchment Areas The multimodal catchment areas defined by the truck and vessel data can 
be associated with potential investments on freight facilities. By using a data driven approach, rather 
than solely using professional judgement or targeted surveys, we present a consistent method to 
estimate port performance and impacts. The use of ubiquitous data in time and space, such as AIS and 
truck GPS, provides a more accurate depiction of the catchment area (or impact area) of a freight facility 
(when compared to the naïve assumption of radial impact areas around the facility). The unique impact 
areas could not be visualized by relying solely on surveys which may be untimely and costly or static 
traffic data which may be available at the study site. Even though truck trip paths (and thus, areas of 
impact) may be visualized from the output of a travel demand model, such models are based, in large 
part, on survey data. Waterway trip paths cannot be visualized from travel demand models that do not 
represent the navigable waterway network. In this context, vehicle tracking data provides a viable 
alternative to the outputs of state travel demand models to analyze multimodal freight catchment areas 
for project evaluation and prioritization. 

Project Evaluation and Prioritization Within the context of transportation infrastructure investment, 
several projects compete for a limited amount of resources, based on an estimation of project benefits 
relative to costs, e.g., ‘B/C ratios’. To evaluate project benefits, it is important to understand the extent, 
location, and characteristics of a project’s impact area, or “catchment” area, which can be defined as the 
region where the facility draws and delivers freight, or the OD pairs served by the facility. However, little 
has been written regarding systematic methods to identify multimodal catchment areas. State-of-the 
practice methods to identify the impact area of a facility consist of arbitrarily selecting a radial perimeter 
around the facility, ignoring complex interactions among freight modes and supply chains. By visualizing 
multimodal port catchment areas from ubiquitous, continuous AIS vehicle tracking data, all projects 
evaluated are subject to the same data and criteria to identify their impact area, providing a common 
basis for proper comparison and competition of funds.  

The commodity-based characterization of vessel trips on an inland waterway network, made possible by 
the fusion of mode-specific datasets, constitutes a data-driven measure of performance of the maritime 
transportation system and a guide to strategic investment decision-making.  In particular, the 
quantification and identification of the type of commodities transported on inland waterway network 
links, from highly disaggregated data, allows for the prioritization of projects such as dredging, based on 
the economic value of commodities transported. The geospatial, timestamped trip data characterized by 
commodity produced by our model can support planning and scheduling of transportation infrastructure 
investments. In particular, traffic-disruptive maritime operations can be scheduled based on the 
selection of the time of year when a given commodity has its lowest traffic on the link and node of the 
network where the infrastructure improvements are planned, thus minimizing construction and 
maintenance impacts on the economy. A similar analysis can be conducted on the roadways  
(Hernandez, Asborno and Burris 2018). 

Exposure Statistics The identification and visualization of the geographic extent of multimodal freight 
catchment areas can be used to estimate population and business exposure statistics, such as exposure 
to emissions, by super-imposing census and business locations to the catchment areas. For example, the 
number and location of unique TAZs that constitute the origin and destination of trips to and from each 
port, derived from multimodal vehicle tracking data, can be used to support long-range transportation 
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planning purposes, such as scenario planning. Scenarios simulating disruption of business in those zones 
might impact the port terminal economic activity, and vice-versa. For example, a severe weather event 
such as a flooding affecting a port in Little Rock, located in Central Arkansas, may have an impact on 
freight flows observed as far as Northwest Arkansas, encompassing a total area of 10,500 thousand 
acres. While an event affecting traffic flows in Northwest Arkansas, such as an accident at a highway/rail 
crossing, may have an impact on the economic activity of a port located as far as Little Rock.  

Mode Competition The visualization of the multimodal catchment areas identified by mode serve to 
individualize corridors of modal competition. For example, for the port terminal located southeast of 
Little Rock towards the eastern boundary of Arkansas (Port Performance Summary #1, see Appendix A), 
the freight catchment area map shows that both maritime and roadway catchment areas overlap 
between Pine Bluff and Little Rock, constituting a corridor of modal competition, where food and farm 
products are transported to and from the facility (as per the port throughput pie chart). Thus, policy to 
shift food and farm products from truck to vessel on this particular corridor may alleviate unnecessary 
truck trips from the highway system. Knowledge of this modal overlap for this particular port and 
corridor can lead to more targeted investment or policy than if a broad policy were to be implemented 
across Arkansas.  

Port Performance Statistics The quantification of port terminal throughput by commodity and mode 
obtained by fusing truck GPS and LPMS data fills a critical gap by providing data that was not previously 
publicly available. Such data complements the port performance freight statistics program, limited to 
the top-25 ports by tonnage, and constitutes a key portion of freight fluidity performance measures. 
Moreover, it can be used to support location selection for multimodal freight facilities on inland 
waterways. For example, from Table 10 and Table 11, we observed that there is a relatively high volume 
of food and farm products transported annually along river section 13, but there is only one port 
terminal capable of handling such products (due to loading equipment and storage availability). In the 
event this particular port terminal is out of operation (flooding, for example), the next port terminal 
with capability to transload food and farm products might be redirected to river section 10. 
Alternatively, policy may target an incentive to increase the number of port terminals or the acquisition 
of equipment to handle food and farm products on existing terminals. The multi-commodity assignment 
model can be further used to perform scenario planning, simulating partial or permanent port closures 
for resilience evaluations, and quantify to which extent existing facilities may absorb the displaced 
commodity flows.  

Demand Modeling The potential incorporation of the detailed waterway network (with commodity-
flow) representing the Arkansas River on the multimodal statewide freight travel demand model would 
further improve the capabilities of such model, currently limited by the lack of a waterway network. For 
example, it would permit the comparison and prioritization of multimodal investments. In the absence 
of a detailed waterway network, state-of-the-practice freight Travel Demand Models (TDMs) cannot 
assign number of vessels per draft and cargo to the network, preventing a true multimodal comparison 
of capacity upgrade needs and benefits among roadways (by the addition of travel lanes) and inland 
waterways (by dredging). The proposed methodologies can be applied to identify areas with maritime 
freight activity that are not currently designated as loading/unloading areas in public databases, based 
on vessel stop clusters and satellite imagery. This can further refine TDM network representation.  
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5 Recommendations and Conclusions 
Fusion of “big data” sources not typically used for freight transportation planning, such as maritime 
Automatic Identification System (AIS), truck Global Positioning System (GPS), and Lock Performance 
Monitoring System (LPMS) data, provides a consistent and novel data source for multimodal, long-range 
freight planning. The methods developed for this work describe, quantify, and characterize commodity-
based freight activity on a multimodal transportation system, with focus on inland waterway networks. 

One of the limitations discovered during this project is the lack of information on the number of barges 
pushed per tug. To overcome such limitation, it would be desirable to recommend the use of AIS 
transponders on barges. Practical examples of mandatory AIS transponders of barges can be found in 
the Port of Antwerp (Port of Antwerp 2012) with its main purpose being safety (collision avoidance). The 
use of AIS on barges on inland waterways would serve a dual purpose of safety and information to 
support freight planning.  Alternatively, an AIS message to report the number of barges pushed per tug 
would be desirable, as it is required in Europe (Javor, et al. 2013). However, this reporting method is not 
ideal due to its manual nature.  

In future work, we will explore how the GMAP and GMAP+ models can be used as scenario analysis 
tools. For example, we can use the models or future variants to quantify the impacts of disruptions 
caused by flooding, port capacity and capability expansions, and investment decisions.  While the 
current models can in some way mimic a scenario such as a port closure, they are not designed to serve 
as a decision making tool.  In future work, we will determine in what ways we can expand the 
applicability of our models to better serve decision makers from the public and private sectors.  

To conclude, the data fusion models and methods presented in this work support several long-range 
multimodal freight transportation planning applications, focusing on the evaluation of performance of 
inland waterway transportation system components. The methods developed and applied in this project 
close critical data gaps, such as throughput by commodity on inland waterway port terminals, and 
quantity and type of commodities transported per tug-trip, previously unavailable in the public domain.  
Moreover, this work presents a critical step towards the broader goal of representing robust inland 
waterway freight activity into multimodal transportation infrastructure management and strategic 
decision-making. Ubiquitous AIS and truck GPS data permit the transferability of the proposed model to 
other regions with waterways and aggregated commodity-flow data. 
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6 Future Work 
Future work may improve and expand the methods presented in this work in several ways, such as: i) 
temporal disaggregation of the annualized port throughput by commodity obtained in this work, ii) 
development of a model that does not rely on truck GPS data,  iii) temporal analysis of freight flows by 
commodity on inland waterways from automated data, , iv) further commodity disaggregation; an v) 
replacement of manually entered AIS fields by machine learning methods. 

The multi-commodity assignment model presented in this work may be improved by adopting a time-
expanded approach, in which a monthly analysis during a complete year is conducted. The results of a 
time-expanded multi-commodity assignment model would be the port throughput by commodity per 
month (instead of annual, as presented in this work). Such results would provide a more detailed input 
to the characterization and quantification per commodity type of cargo transported by vessel trips as 
identified on inland waterway networks, improving its results. Alternatively, LPMS commodity data may 
be directly disaggregated into the type and quantity of cargo transported by vessel trips transiting inland 
waterway locks (as observed from AIS data), and then use the paths, origin and destination of those 
trips to derive port throughput and highly disaggregated commodity flow on a detailed inland navigable 
waterway network. In this way, the truck GPS data, which is the most expensive source used in this 
work, would not be needed. 

In this work, by mining AIS data, vessel trips were identified and characterized by place of origin 
(location as latitude and longitude, and port if applicable), destination, duration, length, timestamp, and 
most importantly, commodity carried. Based on this highly-disaggregated vessel trip characterization, 
future work may utilize unsupervised machine learning tools to find temporal and spatial patterns on 
commodity flows on inland waterways, taking one step further in the development of synthetic 
populations for activity-based freight travel demand models, for example. 

Focusing on commodity-based planning, the nine commodity groups defined by LMPS were used in this 
work.  However, it may be beneficial to further disaggregate commodities. For example, with the food 
and farm products category it would be valuable to know the breakdown of soybeans and rice, from 
other grains as they have different harvesting and shipment patterns as well as different constituent 
groups that lobby for their consideration in freight planning and policy development.  The methods (e.g., 
GMAP) developed in this project can leverage additional, commodity-specific data sources for data 
fusion with the goal of commodity disaggregation.  Such sources include the Agricultural Marketing 
Service data from Department of Agriculture (USDA), data from the National Agricultural Statistics 
Service, and data from the United States Energy Information Administration (EIA). 

Lastly, this project focused primarily on the development of assignment models solved via optimization.  
Another possible modeling tool is that of machine learning (ML).  ML tools are adept at finding patterns 
and making predictions from ubiquitous, highly disaggregated data like AIS.  In particular, a drawback 
noted in the current publicly shared version of AIS data are the manually entered fields for commodity 
carried.  As these fields were prone to human error, they were not used in this work.  However, ML may 
be a promising tool to replace manually entered features.  One such feature is the “status” of a vessel 
that indicates the type of activity in which a vessel is involved. To minimize human efforts and error, an 
unsupervised data mining algorithm (such as K-means clustering) could be applied to derive the activity 
based on features derived in this work from AIS data like trip length, duration, coverage, average speed, 
origin, and destination.  
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