
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=mmis20

Journal of Management Information Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/mmis20

Effect of Release Timing of App Innovations based
on Mobile Platform Innovations

Franck Soh & Varun Grover

To cite this article: Franck Soh & Varun Grover (2020) Effect of Release Timing of App
Innovations based on Mobile Platform Innovations, Journal of Management Information Systems,
37:4, 957-987, DOI: 10.1080/07421222.2020.1831763

To link to this article: https://doi.org/10.1080/07421222.2020.1831763

View supplementary material

Published online: 01 Dec 2020.

Submit your article to this journal

Article views: 420

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=mmis20
https://www.tandfonline.com/loi/mmis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07421222.2020.1831763
https://doi.org/10.1080/07421222.2020.1831763
https://www.tandfonline.com/doi/suppl/10.1080/07421222.2020.1831763
https://www.tandfonline.com/doi/suppl/10.1080/07421222.2020.1831763
https://www.tandfonline.com/action/authorSubmission?journalCode=mmis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=mmis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07421222.2020.1831763
https://www.tandfonline.com/doi/mlt/10.1080/07421222.2020.1831763
http://crossmark.crossref.org/dialog/?doi=10.1080/07421222.2020.1831763&domain=pdf&date_stamp=2020-12-01
http://crossmark.crossref.org/dialog/?doi=10.1080/07421222.2020.1831763&domain=pdf&date_stamp=2020-12-01

Effect of Release Timing of App Innovations based on Mobile
Platform Innovations
Franck Soh a and Varun Groverb

aInformation Systems and Supply Chain Management Department, Bryan School of Business and Economics,
The University of North Carolina at Greensboro, Greensboro, North Carolina, USA; bInformation Systems
Department, Sam M. Walton College of Business, University of Arkansas, Fayetteville, Arkansas, USA

ABSTRACT
This study focuses on app innovations based on mobile platform
innovations (MPIs), examining how app developers can time the
app innovations release to best leverage MPIs and increase app
financial performance. We suggest that the performance is contin
gent on the adoption curve of mobile platform generations and the
level of backward compatibility of the MPIs. We find support for our
hypotheses after analyzing 1,213 MPI-based app innovations on the
iOS mobile platform ecosystem. The main theoretical contribution of
this study, supported empirically, is to better understand the role of
the platform generation adoption curve and MPIs’ level of backward
compatibility in the assessment of the effect of MPI-based app inno
vation release timing on complementor’s performance. We encou
rage third-party developers to create MPI-based app innovations
more prominently and release them early during the growth stage
of the adoption curve while prioritizing MPIs with no backward
compatibility.

KEYWORDS
Mobile platforms;
innovation; release timing;
backward compatibility;
adoption curve; app
releases; online innovations;
platform ecosystems

Introduction

Mobile platforms provide important entrepreneurial opportunities for third-party devel
opers. In 2017, the Android mobile platform passed the milestone of more than 2 billion
monthly active Android devices [60] while the iOS mobile platform reached 1.3 billion
active devices in 2018 [9]. Together the iOS and Android mobile platforms are active on
more than 3 billion devices monthly. This means that any third-party developer either
a company or an individual that proposes a service or content through Android or iOS
can reach a market of more than 3 billion active devices. Several Google services (e.g.,
Gmail, Google Play, Google Maps, and YouTube) offered on mobile platforms have
reached 1 billion users [49]. While these services can be accessed through various plat
forms, the primary driver is app users on mobile platforms. For example, 75 percent of the
1 billion Gmail’s user base access the service through mobile devices [37].

However, despite having access to a large market through mobile platforms, third-
party developers face serious challenges to maintain or increase the performance of their

CONTACT Franck Soh f_sohnoume@uncg.edu Information Systems and Supply Chain Management Department,
Bryan School of Business and Economics, Office 489, Bryan Building, The University of North Carolina at Greensboro,
Greensboro, NC-27407, USA.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/xxxx.

Supplemental data for this article can be accessed on the publisher’s website

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS
2020, VOL. 37, NO. 4, 957–987
https://doi.org/10.1080/07421222.2020.1831763

© 2020 Taylor & Francis Group, LLC

http://orcid.org/0000-0002-6131-5861
http://www.tandfonline.com/xxxx
https://doi.org/10.1080/07421222.2020.1831763
https://crossmark.crossref.org/dialog/?doi=10.1080/07421222.2020.1831763&domain=pdf&date_stamp=2020-11-23

apps over time. Mobile platform ecosystems are hypercompetitive. In 2017, the number
of apps submitted on the iOS platform averaged 9,000 per month [59]. Most top
performing apps fail to sustain their performance over time (See [32]). In fact, apps
lose 90 percent of their active users 30 days after the installation [8]. To compete in such
highly competitive ecosystems, it is important that third-party developers leverage
mobile platform innovations (MPIs) such as ARKit, SiriKit, and CoreML1 in order to
create new app features and increase app performance. MPIs represent platform tech
nologies not previously available to developers adding to current technologies mix.
MPIs do not include changes in existing platform technologies. Following previous
research on how to profit from innovations [64, 63], we argue that in hypercompetitive
environments, release timing is critical. Such markets change rapidly and have narrow
product-market opportunities. Depending on whether the timing to enter a market is
right or wrong, firms might seize or lose these important opportunities [61]. App
developers’ views about release timing are divergent. For example, HSBC and
Discover introduced FaceID-based authentication feature 10 months [48] and 4 months
[47], respectively, after the release of iOS FaceID. Thus, there is a practical dilemma
about release timing.

While previous research highlights the importance of external developers for platform
firms [46], a minimal amount is known about how these developers can leverage mobile
platforms to increase their app performance. Against this backdrop, we propose to study
the extent to which app developers leverage MPIs to improve app performance in
a hypercompetitive environment by answering the following research question: what is
the effect of MPI-based app innovations release timing on app performance? We define
MPI-based app innovations as new app features (e.g., authentication features) that are
created based on a given MPI. MPI-based app innovations can be released as new apps or
updates of existing apps. To address the research question, we build on literature which
suggests that entry timing plays an important role in innovation performance [7]. We
argue that release timing is critical for MPI-based app innovations to realize greater app
performance. Following the structure conduct performance (SCP) paradigm ([14, 50]), we
posit that mobile platform characteristics drive the effectiveness of release timing. We
suggest that the effect of release timing is contingent on the adoption curve of mobile
platform generations and the level of backward compatibility of MPIs. We posit that the
growth stage offers a window of opportunity during which MPI-based app innovations
that are released early have an advantage over those that released late. Furthermore, we
argue that during the maturity and decline stage, early entrants lose their advantage over
late entrants. Finally, we suggest that the during the growth stage, the advantage of early
entrants over late entrants is reinforced when the MPIs supported has no backward
compatibility.

To test our research model, we collected data about MPI-based app innovations that
support the following iOS MPIs: FaceID, CoreML, ARKit, Apple Pay, TouchID and “Hey
Siri.” These MPI-based app innovations were released during the period September 2014
to July 2018. The results of our analyses support our hypotheses and thereby provide
guidance on how companies can maximize the impact of their MPI-based app innova
tions. The rest of the paper is organized into four sections. The next section provides the
theoretical background of the study. We present the role of MPIs, release timing, and
adoption curve. The third section lays out the research model and the hypotheses

958 SOH AND GROVER

development regarding the impact of MPI-based app innovations release timing on app
performance. The fourth section describes the empirical study including method, analysis,
and findings. Finally, the fifth section discusses the contributions, implications, and
limitations of the study.

Theoretical Background

In a hypercompetitive mobile environment with significant potential entrepreneurial
opportunities [51], achieving superior performance in the market is an important concern
for third-party developers. There is a large body of literature about app performance in
mobile platforms (e.g., [12, 38, 58, 76, 77]). Prior literature emphasizes the effect of mobile
platform technologies (e.g., toolkits) on app developer innovation [31, 72]. However, the
influence of mobile platform technologies on app performance is poorly acknowledged.
The goal of this study is to unravel how third-party developers can leverage MPIs (i.e.,
new mobile platform technologies) to achieve higher app performance. To do this, in the
following sections, we discuss performance, the role of MPIs, release timing strategies, and
the adoption curve to lay out the theoretical foundation for the study.

App Performance

The literature has not been consistent with the measure of performance in mobile plat
form ecosystems. Previous studies use metrics such as the number of downloads [58], app
ratings [41], and revenues [43] which provide a limited assessment of app performance.
Increasingly, scholars consider app performance to be accurately captured by app ranking
in top charts [32, 40]. App ranking is a comprehensive metric that includes several factors
such as app rating, user reviews, user retention, and the number of downloads [66]. Apps
appear in different top charts based on the category of the app (e.g., finance, and lifestyle),
the type of app (i.e., free versus paid versus grossing apps), the type of mobile device (e.g.,
handheld versus tablet). The rank of the app in the top chart indicates the app perfor
mance relative to competitor apps. Apps with the lowest rank are considered leaders in the
market in terms of creativity, and innovativeness [5]. As MPI-based app innovations
successfully reach a large market size, the app rank in the top chart improves signaling
the technological leadership of the app in the market. Online Supplemental Appendix
A presents a review of previous studies (including the performance variables) that
examine the antecedents of app performance in mobile platform ecosystems. In this
study, we argue that the impact of an MPI-based app innovation on app performance
represents third-party developers’ value appropriation and is tied to the size of the market
the app innovation can successfully reach. In the following section, we describe the role of
MPIs in facilitating app performance.

Role of Mobile Platform Innovations

Mobile platforms provide the foundation for apps to run. Moreover, mobile platforms
provide the functional logic for the mobile device to be operational. Each generation of
mobile platform introduces three types of MPIs: (1) apps, (2) core services, and (3)
support for new hardware components (i.e., sensors). The first type includes the creation

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 959

of new apps or the improvement of existing apps that end-users can interact with and/or
third-party developers can support. For example, “Hey Siri” is a type 1 MPI that was
introduced in the fifth generation of the iOS platform. The second type includes the
creation of new core services or the improvement of existing ones. End-users cannot use
these core services unless they are supported by apps. Thus, the second type of MPI is
uniquely intended for third-party developers. For example, the eleventh generation of iOS
mobile platform introduced augmented reality and machine learning that only third-party
developers can use to create augmented reality and machine learning apps for end-users.
The third type is related to the addition of new hardware components (e.g., sensors and
chips) or the improvement of existing ones. All MPIs that are intended to support or
control a sensor (e.g., fingerprint sensor, TrueDepth camera system) or chip (e.g., NFC
chip) are considered type 3. For example, the eighth generation of iOS mobile platform
introduced touch ID, a fingerprint sensor that can be used for authentication. These three
types of MPIs have different levels of backward compatibility. Compared to types 1 and 2
MPIs, type 3 MPIs are less likely to be backward compatible because they are highly
dependent on the hardware (i.e., specific features of the physical device). Similarly, type 1
MPIs are more likely to be backward compatible compared to type 2 MPIs.

MPIs play an important role in app innovations. Each generation of the mobile plat
form (e.g., iOS 11) introduces several innovations (e.g. ARKit, FaceID, and CoreML).
Third-party developers have the option to create app innovations based on these MPIs by
proposing MPI-based app features. This study focusses on MPI-based app innovations.
MPIs facilitate app innovations through toolkits including application programming
interfaces (APIs) [10, 15, 75, 19, 20, 11, 70, 71].

Furthermore, MPIs play an important role in influencing the reprogrammability of
mobile devices. We define the reprogrammability of a mobile device as the extent to which
its functional logic can be extended to include additional functions (e.g., audio editing,
video recording, and word processing). A mobile device that is highly reprogrammable is
characterized by a separation between the functional logic and the device [75]. Therefore,
the level of backward compatibility of MPIs influences the reprogrammability of mobile
devices. The MPIs that are not backward compatible are the least distant to the device
(type 3) while the MPIs that are backward compatible are the most distant to the device
(type 1). Hence, more mobile devices are reprogrammable by app innovations supporting
MPIs that are backward compatible. The level of backward compatibility of MPIs is
significant since it influences the market that can be reached by app innovation.

Role of Release Timing

Release timing is important for the impact of MPI-based app innovations as they build on
MPIs. It represents the entry timing of MPI-based app innovations (i.e., app update or
new app with an MPI-based app feature) in the ecosystem. Products’ entry timing is an
important concept to understand new product development performance. Prior literature
extensively discusses the advantages associated with an early and late entry timing in the
market. Through mechanisms such as technology leadership, preemption of scare assets,
and switching costs, early entrants can outperform late entrants [16]. Early entrants build
technology leadership through experience and R&D patenting. Moreover, they preempt
late entrants by occupying geographic and distribution channel spaces. Early entrants

960 SOH AND GROVER

penetrate the market on a large scale compared to late entrants that target small-scale
market niches. Finally, by increasing switching costs, they deter consumers to adopt late
entrants’ products. Early entrants face less competition, increasing their presence in the
market. Late entrants face more competition and incur the costs of evaluating the
competitors’ offerings [33]. Since in the early stage there is no dominant brand or design
in the market, early entrants face less difficulty to influence customers’ attitudes and
perceptions and build brand loyalty [28]. Furthermore, since customers are exposed to
the early entrants’ offering for a longer time period, they develop more familiarity with the
early entrants’ offerings.

Nevertheless, early entrants face high uncertainty risks because of lack of information
[33]. Because of that uncertainty, they might not be able to choose the correct positioning
for their offerings. Moreover, they might not be able to undertake the right competitive
strategy. On the other hand, late entrants benefit from information and learning oppor
tunities [25]. They can learn from early entrant’s incorrect positioning and capture shifts
in consumers’ preferences to better position their offering in the market. Moreover, they
can outperform early entrants by introducing products of high quality, differentiating
themselves from early entrants’ offerings. Thus, understanding the time to enter a market
is difficult since early and late entry timings provide various advantages to compete in the
market. Previous research suggests that in such competitive environments there is an
optimal entry timing [29] or a window of opportunity [61] during which it is advanta
geous to enter a market. Firms that enter the market during the window of opportunity
are more likely to survive. Therefore, the concept of a window of opportunity is important
to understand the effect of MPI-based app innovation release timing on app performance.

Role of the Adoption Curve of Mobile Platforms

The adoption curve is important to understand the impact of MPI-based app innovations.
According to the theory of innovation diffusion, the adoption curve follows an S curve
[53]. The adoption curve goes through two major stages including the growth stage, and
the maturity and decline stage. The growth stage represents the stage during which the
number of adopters is rising. During the maturity and decline stage, the number of
adopters slowly stops increasing before decreasing. The adoption curve is obtained by
cumulating the number of adopters over time (See Figure 1). The S curve is characterized
by five categories of adopters including innovators (2.5 percent of adopters), early
adopters (13.5 percent of adopters), early majority (34 percent of adopters), late majority
(34 percent of adopters), and laggards (16 percent of adopters) [53]. The ending point of
the growth stage and the start point of the maturity and decline stage are determined
empirically by observing the adoption curve. The point of the adoption curve where the
curve becomes flat indicates the ending of the growth stage and the beginning of the
maturity and decline stage. We focus on the adoption curve of each generation of mobile
platforms. The performance of apps is heavily influenced by demand heterogeneity across
the adoption curve of mobile platforms (see [52]). The two stages of the adoption curve of
mobile platforms are distinct in terms of the categories of adopters. While laggards mostly
appear during the maturity and decline stage, all the other four categories mostly appear
during the growth stage. Compared to the other categories, laggards are more risk-averse
and skeptic to innovations [53]. Thus, MPI-based app innovations released during the

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 961

growth stage face a different market of mobile platform users compared to those released
during the maturity and decline stage.

Research Model and Hypotheses Development

We propose the following research model (See Figure 2) to understand how MPI-based
app innovation release timing can increase performance. We argue that the effect of MPI-
based app innovation release timing is contingent on the adoption curve of mobile
platform generations. Moreover, we posit that the effect of MPI-based app innovation
release timing is influenced by the level of backward compatibility of the MPI. Table 1
presents the construct definitions.

Figure 1. Adoption curve of innovations.4

Figure 2. Research model.

962 SOH AND GROVER

An MPI-based app innovation release timing represents the length of time between the
release dates of the MPI-based app innovation and the first mover MPI-based app
innovation (i.e., the first app to support an MPI) (See Figure 3). The effect of release
timing is contingent upon the window of opportunity which emerges during the adoption
curve. Compared to the maturity and decline stage, the growth stage offers a window of
opportunity for MPI-based app innovations. This is the period during which MPI-based
app innovations can successfully reach the market. The rate of success is high when MPI-
based app innovations target a market that is still unreached since it is more challenging to
influence a market that has already been reached by competitor MPI-based app
innovations.

Effect of the Adoption Curve

We argue that during the growth stage, early entrants have a greater effect on app
performance than late entrants. During the growth stage, the size of the unreached
market at the time of entry of an MPI-based app innovation decreases over time. The
rate of growth of the market is the highest at the beginning of the adoption curve of
mobile platform generations and progressively diminishes over time. For example,
17 percent of the market adopted iOS 11 during the first week after its release (see
Online Supplemental Appendix C). This 17 percent represents the unreached part of the
market for any MPI-based app innovation that enters the market during that first week.
Moreover, the following week (i.e., the second week after the iOS 11’s release date), an
additional 12 percent of the market adopted iOS 11. Compared to MPI-based app
innovations that entered during the first week of iOS 11, those that enter during
the second week of iOS 11 target an unreached market of smaller size. Until the end
of the growth stage, the size of the unreached market progressively diminishes. Thus, in

Table 1. Construct definitions.
Construct Definition References

MPI-based App Innovation
Release Timing

Length of time between the release dates of the MPI-based app innovation
and the first mover MPI-based app innovation (i.e., first app to support the
MPI)

[36]

MPI Backward
Compatibility

Extent to which an MPI is supported by older generations of mobile devices
released before the MPI’s release date.

[24]

Adoption Curve Number of adopters of an innovation. [53]
App Performance App position in top charts [38]

Figure 3. Conceptualization of app innovation entry timing.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 963

terms of the size of the unreached market, early entrants have an advantage over late
entrants during the growth stage.

Furthermore, throughout the growth stage, different categories of mobile platform
generation’s adopters emerge in the following chronological order: innovators, early
adopters, early majority, and late majority according to the theory of innovation
diffusion [53]. At the beginning of the growth stage, the mobile platform’s adopters
are classified as innovators while at the end of the growth stage mobile platform
generation’s adopters are classified as the late majority. The main difference among
the categories of mobile platform generation’s adopters is the attitude toward innova
tion. Innovators are more likely to take risks and try new features while the late
majority is more skeptical about innovation [53]. The late majority uses innovation
after being certain of the quality of the innovation. Thus, it justifies its decision to
adopt on the experience of other adopters. The level of skepticism increases while the
willingness to take risks decreases throughout the adoption curve [53]. MPI-based app
innovations that enter early during the growth stage target an unreached market that
is willing to take risks, thus more likely to adopt innovation. However, MPI-based
app innovations that enter late during the growth stage target an unreached market
that is skeptical about innovation, thus less likely to adopt innovation. Late during the
growth stage, new mobile platform generation adopters prefer MPI-based app inno
vations that have been tried by previous adopters suggesting that they are more
favorable for MPI-based app innovations released early than those released late.
Therefore, in terms of the attitude of the unreached market toward innovation,
early entrants have an advantage over late entrants during the growth stage. Based
on these two reasons regarding the size and attitude of the unreached market, we
argue that:

Hypothesis 1a (HQ1a): During the growth stage, the earliness of MPI-based app innovations
has a positive effect on app performance.

During the maturity and decline stage, there is a minimal amount to no growth in the
market. Early and late entrants are no more distinguishable based on the size of the
unreached market. During the maturity and decline stage, most of the market has been
reached, and the lack of growth in the market causes early entrants to lose their advantage
over late entrants in terms of the size of the unreached market. Moreover, during the
maturity and decline stage, new mobile platform generation adopters fall into the category
of laggards who are highly skeptical about innovation [53]. MPI-based app innovations
that enter during the maturity and decline stage do not catch the interest of laggards who
are more likely to not adopt, take a long time before making the decision to adopt, or
adopt MPI-based app innovations that are already being used by most mobile platform
users. Thus, in terms of the attitude of the unreached market toward innovation, early
entrants lose also their advantage over late entrants during the maturity and decline stage.
Therefore, we argue that:

Hypothesis 1b (HQ1b): During the maturity and decline stage, the earliness of MPI-based
app innovations release timing has no influence on app performance.

964 SOH AND GROVER

Effect of Backward Compatibility

The growth stage provides a window of opportunity for MPI-based app innovations.
Moreover, the significance of this window of opportunity is influenced by the level of
backward compatibility of the MPIs. Backward compatibility represents the extent to
which an MPI is supported by older generations of mobile devices released before
the MPI’s release date (see [24]). For example, ARKit and FaceID are two MPIs
introduced in 2017 by Apple. ARKit is backward compatible while FaceID is not.
ARKit can be used on the latest generations (by the release date of iOS 11) of mobile
devices (e.g., iPhone 8 and iPhone 8 plus) and on some older generations (e.g.,
iPhone 6s, iPhone 6s Plus, iPhone SE, iPhone 7, iPhone 7 Plus). However, FaceID
can only be used on the latest generation (by the release date of iOS 11) of mobile
device (i.e., iPhone X).

Release timing during the window of opportunity is critical when MPIs are not
compatible with previous generations of mobile device because the size of the market
that can be reached is considerably reduced to the latest generations of mobile devices.
For example, MPI-based app innovations supporting FaceID can only reach iPhone
X users, while MPI-based app innovations supporting ARKit can reach users of iPhone
X and older iPhone generations (e.g., iPhone 6s). Considering the limited size of the
market that can be reached during the growth stage, late entrants have a serious
disadvantage over early entrants because the competition is fierce. MPI-based app
innovations that are released later during the growth stage face high competition from
incumbent MPI-based app innovations. When the MPIs are compatible with previous
generations of mobile platforms, late entrants face less competition from incumbent
MPI-based app innovations since the size of the market that is still unreached is large.
Late entrants can differentiate their MPI-based app innovations from early entrants’
MPI-based app innovations (i.e., high reprogrammability) to target the unreached
market.

Moreover, during the growth stage, the MPIs with no backward compatibility offer
a niche market for MPI-based app innovations. Users are required to obtain the latest
generation of mobile device (e.g., iPhone X) and mobile platform (e.g., iOS 11), thus
incurring a high cost. The user’s willingness to pay a high cost to have the latest generation
of mobile device and mobile platform signals a high user’s interest in the MPIs. In
contrast, when the MPI is supported by previous generations of mobile device, the users
incur a small cost to use MPIs since they do not have to upgrade their mobile device (e.g.,
iPhone 7) but only the mobile platform (e.g., iOS 11). Therefore, the early entrant
advantage holds if the users show an interest in MPIs. The advantage of early entrants
over late entrants increases in a market wherein users have a high interest in the MPIs.
Thus, it is critical for MPI-based app innovations to enter early during the growth stage
when the MPIs are not compatible with older generations of mobile devices. Therefore, we
argue that:

Hypothesis 2 (HQ2): During the growth stage, the earliness of MPI-based app innova
tions has a greater impact on app performance when the MPIs are not backward
compatible.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 965

Methods

We tested our hypotheses in the context of the iOS mobile platform within the
U.S. market. We choose the iOS mobile platform over the Android mobile platform
because the iOS market is more effective at replacing older generations of the iOS mobile
platform with newer generations than the Android market. A close examination at the
adoption rate of both the latest iOS and Android mobile platforms in 2017 shows that in
September 2018, a year after the release of the mobile platforms, iOS 11 was adopted by
85 percent of compatible devices [45] while Oreo 8 was adopted by less than 15 percent of
compatible devices [26]. Since this study is about the performance of app innovations
enabled by mobile platform innovations, it is important to study a mobile platform whose
market is dominantly operating on the latest generation. Furthermore, The iOS mobile
platform ecosystem is hypercompetitive. Market data indicate in the 1st quarter of 2018,
more than a thousand new iOS apps were released daily [60]. App innovations supporting
the latest mobile platform generation are released at a fast pace. Market data reveal that
four months after the release of iOS 11, close to 2, 000 third-party apps that support ARKit
([27, 44]) were released in the App store. Such fast paced and highly competitive market
creates several challenges to sustain the performance of app innovations, even for a few
weeks.

The focal app innovations are those supporting at least one of the following MPIs:
FaceID, ARKit, CoreML, “Hey Siri”, ApplePay, and TouchID. FaceID, CoreML, and
ARKit were introduced in iOS 11 released in 2017. “Hey Siri” was introduced in iOS 10
released in 2016 while ApplePay and TouchID were introduced in iOS 8 released in 2014.
We choose these six MPIs because they have various levels of backward compatibility (see
Online Supplemental Appendix B). Moreover, these six MPIs have been identified as key
features by Apple to facilitate third-party development and have attracted considerable
attention from iOS users. For example, a month after the release of iOS 11, ARKit-only
apps cumulated over 3 million downloads.

We use the description and release notes of iOS third-party apps to identify focal MPI-
based app innovations. The identification is based on a keyword search mechanism. We
use the following keywords taking into account the letter case: “faceid,” “face id,” “siri,”
“coreml,” “core ml,” “touch id,” “touchid,” “applepay,” “apple pay,” “arkit,” and “ar kit.”
We ensure this keyword-based approach is reliable by reading random release notes and
confirming that these release notes describe MPI-based app innovations. We are able to
identify MPI-based app innovations since the release of the MPIs until July 2018. Thus,
MPI-based app innovations that support CoreML, ARKit, and FaceID are identified from
September 2017 to July 2018, those supporting “Hey Siri” are identified from
September 2016 to July 2018, and those supporting ApplePay and TouchID are identified
from September 2014 to July 2018

Data

The data are collected from two primary sources: appfigures (www.appfigures.com) and
App Annie (www.appannie.com) which are two leading companies in app market data
and insights. The app market data provided by appfigures and App Annie have been used
in previous studies (e.g., [32, 23, 3, 2, 40]). Appfigures and App Annie have been

966 SOH AND GROVER

http://www.appfigures.com
http://www.appannie.com

accumulating data about iOS apps from Apple iTunes since 2009. Several iOS third-party
developers and analysts are extensively relying on the appfigures and App Annie database
to have a comprehensive view of the iOS apps market. Specifically, we use appfigures to
collect data about app performance. Moreover, we use appfigures to search for iOS apps
that support at least one of the following MPIs: FaceID, ARKit, CoreML, “Hey Siri”,
ApplePay, and TouchID. Finally, we use App Annie to collect iOS apps’ description and
release notes. The dataset contains information on iOS MPI-based app innovations that
support FaceID, ARKit, CoreML, “Hey Siri”, ApplePay, and TouchID. We observe the
market performance by looking at the iOS apps that appear in the following ranking lists:
the top 1,000 free apps, the top 1,000 paid apps, and the top 1,000 grossing apps from the
date of the MPI release until July 2018. The position of an iOS app in any of these ranking
lists is a clear indication of market performance considering the millions of apps that are
currently available on the iOS app market. These ranking lists are usually used to under
stand apps market performance [32]. The iOS apps that are ranked as top apps are
updated regularly. Most highly ranked apps are updated more than once per month.
Thus, large periods of observation such as a year or month will not be appropriate to
measure app performance. Shorter periods of observation are necessary to identify the
performance of iOS MPI-based app innovations. We choose to observe the daily perfor
mance of iOS app in order to capture the app performance dynamics in the market over
a period. In addition to data on iOS apps ranking, we obtained data about each iOS MPI-
based app innovations release timing by examining the app release notes. The final dataset
comprises 1,214 iOS MPI-based app innovations of which 548 have no backward compat
ibility. This dataset represents all MPI-based app innovations for which we can have
complete data on key variables of interest. Moreover, these MPI-based app innovations
support at least one of the six MPIs (i.e., FaceID, ARKit, CoreML, “Hey Siri”, ApplePay,
and TouchID). The number of MPI-based app innovations supporting FaceID, ARKit,
CoreML, “Hey Siri”, ApplePay, and TouchID is, respectively, 371, 40, 6, 74, 177, and 545.

Measures

Dependent Variable
We examine the performance of iOS app by observing the variation (delta) of the app
ranking following a pre-post design. Apps are ranked based on market performance. App
ranking in the top free and top paid charts is based mainly on the number of downloads.
Regarding the top grossing chart, app ranking is based mainly on the revenues generated.
We calculate the average app ranking before and after the release date of the MPI-based
app innovation. Our data contain app ranking 4 weeks before and 4 weeks after the entry
(release) of the MPI-based app innovation. The difference between the average post-entry
app ranking and the average pre-entry app ranking is used to measure app performance.
The average post-entry app ranking is calculated during a period of 21 days after the
release timing, and the average pre-entry app ranking is calculated during a period of 7
days before the release timing.2

Independent Variables
Entry timing has been extensively used in the strategic management literature to explain
firm performance (e.g., [7, 1, 22, 16, 36]). Following previous studies [1], we assess the

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 967

release timing of an MPI-based app innovation by measuring the length of time between
the release dates of the MPI-based app innovation and the first mover MPI-based app
innovation. Specifically, we count the number of days between the release dates of the
MPI-based app innovation and the first mover MPI-based app innovation. The first app
among all apps to release an MPI-based feature is identified as first-mover. Moreover, we
examine the effect of the MPIs by using a dummy variable backward compatibility. The
dummy variable takes a value 1 if the MPI is compatible with previous generations of
mobile devices, and a value of 0 if the MPI is only compatible with the same-year
generations of mobile devices. ARKit, CoreML, “Hey Siri,” and TouchID have backward
compatibility while FaceID and ApplePay do not. Finally, we separate the growth stage
from the maturity and decline stage of mobile platform generations. Based on previous
studies on the diffusion of innovations (e.g., [53]), we consider the maturity and decline
stage to start when the level of adoption of a given mobile platform generation reaches 86-
88 percent. After that threshold, the adoption curve becomes flat before going down. We
use publicly available data on the adoption rate of iOS and iPhone to estimate the end date
of the growth stage, and the start date of the maturity and decline stage (see Online
Supplemental Appendix C). We conclude that the latest possible end date of the growth
stage is 260 days after the release date of a given mobile platform generation. Moreover,
the maturity and decline stage starts right after the growth stage, thus 261 days after the
release date of a given mobile platform generation.3

Control Variables
We control for variables that may influence the performance of MPI-based app innova
tions. Some apps appear in multiple categories. The number of categories can affect the
discoverability of the app and, thus, can influence the performance of MPI-based app
innovations. We control for this effect by measuring the number of categories per app as
of July 2018. We use a time-invariant app-level control since we are unable to observe
changes in the number of categories per app over time. Even though we focus on the U.S
market, app discoverability can also be influenced by the number of languages supported
by the app and the number of countries that can access the app. For example, apps that
support English and additional languages can reach more non-English speakers in the
U.S. than apps that only support English. Moreover, an app that is available in multiple
countries can have higher discoverability in the U.S. market because of social influence.
For example, an individual in the United States may be influenced to use an app if this app
is recommended by a friend or a close relative. In some cases, that friend or close relative
can be someone outside the United States. We control for these effects by measuring the
number of languages supported by each app and the number of countries where the app is
accessible as of July 2018. We use time-invariant app-level controls since we are unable to
observe changes in the number of languages and countries per app over time. We control
for the app quality and usability on the app performance by measuring the number of and
the average app ratings. Apps with high quality and usability are used by and can attract
more mobile platform users. We also control for the seniority of the app by measuring the
number of days between the date of the first release of the app and the date of the release
of the focal MPI-based app innovation. Senior apps have an advantage over recent apps
because mobile platform users are more likely to be familiar with senior apps than recent
apps. Moreover, app seniority has been used to take into account brand strength,

968 SOH AND GROVER

marketing capabilities, and app development superiority [32]. We control for the price
effect on MPI-based app innovations performance by measuring the price of the app as of
July 2018. We also control the complexity of the app using the size of the code. We use
time-invariant app-level controls since we are unable to observe changes in the app price
and app complexity over time. Furthermore, we consider different types of ranking
whether it is handheld versus tablet, or top free versus top paid versus top grossing.
Finally, we use dummy variables to control for the year-specific effects and the app
category-specific effects. Table 2 presents the measurement for each variable of the study.

Analysis

We used a pretest-posttest design to examine the effect of a given MPI-based app
innovation release timing on app performance. We conducted an ordinary least squares
(OLS) regression-described by equation 1- with robust standard errors on the sample. We
ensure there is no major concern regarding the OLS assumptions while conducting the
analyses (see Online Supplemental Appendix E).

Results

The descriptive statistics and the correlation matrix are reported in Table 3. Moreover, we
report the results from OLS in Table 4. The models predict app performance. All the
standard errors are robust to correct for heteroscedasticity and autocorrelation. App
performance is high when the app rank is low. Thus, a negative coefficient indicates an
increase in performance. Model 1 tests the effect of MPI-based app innovation release
timing. Model 2 tests the effect of the interaction between the MPI-based app innovation
release timing and the level of backward compatibility of MPIs. Model 3 tests the effect of
MPI-based app innovation release timing during the stage of growth while model 4
examines the effect of MPI-based app innovation release timing during the stage of
maturity and decline. Model 5 tests the effect of the interaction between the MPI-based
app innovation release timing and the level of backward compatibility of MPIs during the

Table 2. Variable measurement.
Variable Name Variable Measurement

App Performance Difference between post-release timing app ranking and pre-release timing app ranking
MPI-based App Innovation

Release Timing
Difference between the release date of the MPI-based app innovation and the release
date of the pioneer (in number of days)

Backward Compatibility Equals 1 if the MPI is supported by mobile devices released before the release date of
the MPI, and 0 otherwise

Average App Rating Average app rating up to the release date of the MPI-based app innovation
Number of App Ratings Number of app ratings up to the release date of the MPI-based app innovation
App Seniority Number of days since the app has been available to users
App Size The size of the code file of the app (in bits)
App Price The price of the app (in dollars)
Number of App Categories Number of categories where the app is listed
Geographical App Accessibility Number of countries where the app is available
Linguistic App Accessibility Number of languages supported by the app
Type of App Ranking Equals 1, 2, or 3 if the app appears respectively among top free, top paid, or top

grossing apps (dummy variables)
Type of Device Equals 1, or 2 if the app appears respectively among handheld top apps or tablet top

apps (dummy variable)

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 969

stage of growth. Thus, models 3 and 4 are used to test the hypotheses H1a and H1b,
respectively. Finally, model 5 is used to test the hypothesis H2.

Models 1 and 2 of Table 4 are provided as exploratory analyses examining the effect of
release timing and backward compatibility over both the growth, and the maturity and
decline stages. The results indicate that the MPI-based app innovation release timing
statistically does not predict app performance. However, when we distinguish between the
growth stage and the maturity and decline stage, the results show that MPI-based app
innovation release timing is an important predictor of app performance depending on the
stage of the adoption curve.

In H1a, we posit that the effect of MPI-based app innovation’s release timing on the
app performance is positive during the growth stage. This hypothesis is supported as the
coefficient of MPI-based app innovation release timing in Model 3 (See Table 4) is positive
and statistically significant (.21, p-value < .01). Thus, during the growth stage, early
entrants have a greater impact on app performance than late entrants. An increase of
one day in the release timing is associated with a loss of .21 position in the ranking.
Moreover, Model 4 of Table 4 indicates that there is no effect between the MPI-based app
innovation release timing and app performance during the maturity and decline stage as

Table 3. Data descriptive and correlations.
Variable N Mean SD Min Max 1

1. App Performance 1,213 -.85 103.51 -725.1 532.25 1.00
2. MPI-based App Innovation Release Timing 1,213 436.13 369.94 0 1,272 -0.05
3. Backward Compatibility 1,213 .55 .50 0 1 0.04
4. Average App Rating 1,213 3.73 1.01 0 5 -0.07*
5. Number of App Ratings 1,213 11051.9 69011.52 0 1.2e+06 0.01
6. App Seniority 1,213 1472.98 894.02 2 3556 -0.01
7. App Size 1,213 8.06e+7 1.04e+8 2.14e+6 1.79e+9 0.07*
8. App Price 1,213 1.89 7.44 0 119.99 -2e-04
9. Number of App Categories 1,213 1.87 .36 1 4 0.06*
10. Geographical App Accessibility 1,213 131.83 53.33 1 155 0.04
11. Linguistic App Accessibility 1,213 7.68 8.16 1 41 0.03
12. Type of App Ranking 1,213 1.76 .87 1 3 0.09*
13. Type of Device 1,213 1.41 .49 1 2 0.04

Variable 2 3 4 5 6 7

2. MPI-based App Innovation Release Timing 1.00
3. Backward Compatibility 0.30* 1.00
4. Average App Rating -0.05 0.10* 1.00
5. Number of App Ratings 0.11* 0.03 0.08* 1.00
6. App Seniority -0.08* -0.24* 0.04 0.07* 1.00
7. App Size -0.01 -0.02 -0.02 0.01 0.04 1.00
8. App Price -0.06* 0.08* 0.09* -0.03 0.03 -0.04
9. Number of App Categories 1.1e-03 0.04 0.11* -0.08* -0.02 0.07*
10. Geographical App Accessibility -0.06* 0.08* 0.06 -0.05 -0.05 -0.04
11. Linguistic App Accessibility -0.04 0.02 0.09* -0.04 0.02 0.26*
12. Type of App Ranking -0.06* 0.14* 0.06* -0.03 0.02 -0.07*
13. Type of Device -7e-04 0.02 0.03 -0.02 0.01 0.05

Variable 8 9 10 11 12

8. App Price 1.00
9. Number of App Categories 0.08* 1.00
10. Geographical App Accessibility 0.11* 0.22* 1.00
11. Linguistic App Accessibility 0.05 0.19* 0.16* 1.00
12. Type of App Ranking 0.20* 0.20* 0.31* 0.01 1.00
13. Type of Device 0.03 0.05 0.12* 0.06* 0.07*

* p < 0.05.

970 SOH AND GROVER

posited in H1b. The coefficient of MPI-based app innovation release timing in Model 4 is
statistically non-significant (-1.2e-02, p-value > .1). Thus, during the maturity and decline
stage, early entrants do not a statistically greater impact on app performance than late
entrants.

In H2, we posit that the effect of MPI-based app innovation’s release timing on the app
performance is moderated by the level of backward compatibility of the MPI such that
during the growth stage, the effect is positive and stronger for MPI-based app innovations
supporting MPIs that are not compatible with previous generations of mobile devices.
Based on Model 5 of Table 4, we can conclude that H2 is supported as the coefficient for
the interaction term between MPI-based app innovation’s release timing and MPI’s
backward compatibility is negative and statistically significant (-.43, p-value < .01).
Model 5 of Table 4 indicates that the effect of release timing on app performance is
positive (.39) when there is no backward compatibility. Thus, early entrants have a greater
impact on app performance than late entrants when the MPIs are not supported by
previous generations of mobile devices. An increase of one day in the release timing is
associated with a loss of .39 position in the ranking. This effect is reduced when the MPI is
backward compatible. Interestingly, the effect release timing on app performance becomes
negative (.-04) when there is backward compatibility, indicating that late entrants have

Table 4. Results.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

3.4e-03 2.2e-02 .21* -1.2e-02 .39**
(1.3e-02) (1.8e-02) (9.7e-02) (2.6e-02) (.14)

Backward Compatibility 36** 45*
(12) (20)

MPI-based App Innovation Release
Timing * Backward Compatibility

-3.9e-02* -.43**
(1.9e-02) (.15)

Average App Rating -8** -8.1** -2.9 -10* -3.2
(3) (3) (4.6) (4.3) (4.5)

Number of App Ratings 3.3e-05 3.5e-05 3.1e-06 6.7e-05 7.5e-07
(3.9e-05) (3.9e-05) (3.1e-05) (4.4e-05) (2.9e-05)

App Seniority -1.0e-03 -1.5e-04 -1.4e-03 -1.9e-03 2.6e-04
(3.7e-03) (3.7e-03) (5.9e-03) (4.9e-03) (5.9e-03)

App Size 6.4e-08* 5.7e-08* 6.2e-08 4.7e-08 8.2e-08
(2.6e-08) (2.8e-08) (5.2e-08) (3.4e-08) (5.4e-08)

App Price -.13 -.15 7.1e-02 -4.7+ .13
(.37) (.36) (.27) (2.8) (.27)

Number of App Categories .71 .22 1.2 9.5 -.21
(10) (10) (14) (15) (13)

Geographical App Accessibility -1.4e-02 -2.0e-02 -5.9e-02 -1.5e-03 -5.1e-02
(6.0e-02) (6.0e-02) (9.1e-02) (8.1e-02) (9.2e-02)

Linguistic App Accessibility -.34 -.38 .11 -.4 3.2e-02
(.4) (.39) (.63) (.53) (.64)

Type of App Ranking (Top Paid) 17* 16+ 34** 19 33**
(8.8) (8.8) (12) (16) (12)

Type of App Ranking (Top Grossing) 24** 23** 35** 22 33**
(8.8) (8.8) (12) (14) (12)

Type of Device (Tablet) 6.9 7.4 3.2 12 4.2
(6.5) (6.5) (8.3) (10) (8.2)

Constant -6.1 -35* -25+ 3.6 -49*
(13) (17) (14) (23) (20)

N 1213 1213 600 610 600
R Squared 0.063 0.069 0.099 0.092 0.112

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001
Year and category dummies included.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 971

a greater impact on app performance than early entrants when the MPI is backward
compatible. Figure 4 illustrates the moderation.

Robustness Checks

We conduct several robustness checks to ensure that our main findings are robust to
issues such as omitted variables, measurement errors, selection bias, and endogeneity. The
variance in app performance can be explained by the novelty of the MPI. The customer
interest in a specific MPI might drive its interest in the MPI-based app innovation. For
example, if customers are more interested in FaceID compared to “Hey Siri,” we expect
MPI-based app innovations that support FaceID to have a greater impact on app perfor
mance than MPI-based app innovations supporting “Hey Siri.” Thus, we control for each
type of MPI (i.e., ArKit, FaceID, TouchID, “Hey Siri,” ApplePay, and CoreML). The
results (See Table 5, for more details see Online Supplemental Appendix E) indicate that
during the growth stage, MPI-based app innovations that support ArKit and FaceID have
a greater impact on app performance than MPI-based app innovations that support
ApplePay. Importantly, the results corroborate the main findings, indicating that our
main analyses are robust.

In the next set of analyses, we show that our findings are robust to alternative measures
of app performance. Initially, we measure app performance over the period [-7; +21].
Specifically, we adopt a pre-post design wherein we calculate the difference between pre-
release timing app ranking and the post-release timing app ranking. We measure the pre-
release timing app ranking by averaging the app ranking over 7 days before the release
date of the MPI-based app innovation. Moreover, we measure the post-release timing app
ranking by averaging the app ranking over 21 days after the release date of the MPI-based
app innovation. Using averages allows us to mitigate the volatility of app ranking. We
check the robustness of our main findings by using alternative time periods to measure the

Figure 4. Effect of MPI-based app innovation release timing across different levels of MPI backward
compatibility during the growth stage.

972 SOH AND GROVER

app performance. We use the following time periods: [-3; +7], [-3; +14], [-3; +21], [-3;
+28], [-7; +7], [-7; +14], and [-7; +28]. The results (see Table 6, for more details see Online
Supplemental Appendix F) support our main findings, showing that our main analyses are
robust.

We identify the growth stage, and the maturity and decline stage by using publicly
available data about the adoption rate of iOS and iPhones. We conclude that the
growth stage starts with the release date of iOS and ends approximatively 260 days
later. The growth stage is followed by the maturity and decline stage. We conduct
several analyses using alternative and conservative measures of the two stages. We
consider the growth stage ends earlier using the following time periods: [0, 200], [0,
210], [0, 220], [0, 230], [0, 240], and [0, 250]. Moreover, we consider the maturity and
decline stage starts later using the following start date: 270, 280, 290, 300, 310, and 320
days after the release date of iOS. The results (See Table 7, for more details see Online
Supplemental Appendix G) are consistent with the main findings indicating that our
main analyses are robust.

By deciding the MPIs to consider in this study, our analyses can suffer from selection
bias. We selected MPIs that have been identified as major innovations by Apple and

Table 5. Results while controlling for the mobile platform innovations.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

2.0e-02 3.8e-02 .22* -9.9e-03 .4**
(3.2e-02) (3.6e-02) (.11) (4.7e-02) (.14)

Backward Compatibility 12 36
(14) (22)

MPI-based App Innovation Release
Timing * Backward Compatibility

-2.1e-02 -.44**
(2.0e-02) (.15)

MPI (ARKit) 59 57 -68* 1.3e+02* -67*
(41) (42) (32) (53) (33)

MPI (CoreML) 45 46 -1.2 -17
(38) (38) (27) (27)

MPI (FaceID) 16 23 -51* -8.8 -73**
(38) (38) (24) (60) (27)

MPI (“Hey Siri”) 48 48 -43 56 -47
(32) (32) (36) (43) (36)

MPI (TouchID) -1.7 0 4.4 11 0
(8.7) (.) (18) (11) (.)

Observations 1213 1213 600 613 600
R Squared 0.071 0.072 0.102 0.108 0.114

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 6. Results using [-3, +7] time period to measure the app performance.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

8.7e-03 3.7e-02+ .35* -2.0e-02 .51**
(1.6e-02) (2.0e-02) (.14) (2.9e-02) (.18)

Backward Compatibility 36* 14
(15) (24)

MPI-based App Innovation Release
Timing * Backward Compatibility

-5.1e-02* -.35+
(2.0e-02) (.18)

Observations 1184 1184 588 596 588
R Squared 0.078 0.082 0.144 0.092 0.151

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 973

received a significant consumer’s interest. These MPIs release dates cover the period from
2014 to 2017. To show that our main analyses are robust and do not suffer any selection
bias, we reduce the sample size by considering MPIs released in 2017. We limit the
analyses to MPI-based app innovations supporting CoreML, ArKit, and FaceID which
are major MPIs released in 2017 by Apple. The results (see Table 8, for more details see
Online Supplemental Appendix H) corroborate the main findings, indicating that our
main analyses are robust and selection bias is not a major concern in our study.

Previous studies tend to consider release timing to be an endogenous variable (e.g., [7]),
thus raising the issue of endogeneity in our analyses. Several econometric approaches have
been developed to control for endogeneity. Following previous studies [34, 55], we use the
Garen two-stage econometric model to take into account any potential endogeneity [18].
The Garen approach extends the Heckman approach to account for selection variables
that are continuous [18]. Since release timing is a continuous variable, the Garen approach
is suitable to correct for selection bias. Developers may self-select into releasing MPI-
based app innovation early or late based on several factors. Some of these factors are
observable (e.g., user rating) while others are not (e.g., managerial preferences). In the first
stage, we regress the variable release timing on several variables that are likely to influence
the timing of MPI-based app innovation. Using the residuals η from the first stage, we
calculate the interaction term η × release timing. We include both the residuals and the
interaction term in the second stage to correct for endogeneity. The residuals η account
for selection bias while the interaction term η × release timing accounts for unobserved
heterogeneity over the range of the selection variable. We analyze the first and second

Table 7. Results using alternative time periods for the growth, and maturity and decline stages.
Model 1: Growth

Stage [0, 200]
Model 2: Growth

Stage [0, 200]
Model 1: Maturity and
Decline Stage [270, -]

Model 2: Maturity and
Decline Stage [280, -]

MPI-based App Innovation
Release Timing

.37* .64* -1.8e-03 -3.3e-02
(.17) (.31) (3.2e-02) (3.0e-02)

Backward Compatibility 45+
(27)

MPI-based App Innovation
Release Timing * Backward
Compatibility

-.48+
(.27)

Observations 425 425 575 575
R Squared 0.140 0.149 0.085 0.085

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 8. Results using a different sample.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

.23+ .25+ .28+ -15 .34*
(.14) (.15) (.16) (9.7) (.17)

Backward Compatibility 33 56
(38) (46)

MPI-based App Innovation Release
Timing * Backward Compatibility

-9.9e-02 -.62*
(.2) (.26)

Observations 417 417 369 48 369
R Squared 0.117 0.118 0.125 0.830 0.140

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

974 SOH AND GROVER

stage models using OLS with robust standard errors to correct for heteroscedasticity. The
results (see Table 9, for more details see Online Supplemental Appendix I) show that the
correction terms are not statistically significant (p-value above .10). Moreover, the results
support our main findings, thus indicating that our main analyses are robust, and
endogeneity is not a major concern in our study.

The effect of release timing on app performance can be explained by differences
between third-party developers who adopt MPIs and those who do not. In order to
alleviate such concern, we conduct a robustness check using a difference-in-difference
type approach. We create a control group using propensity score matching. We match the
third-party developers adopting MPIs with those who do not adopt based on the app
quality (mean app ratings are 3.65 for control group and 3.86 for treatment group at the
time of MPI-based app innovation release date) and app ranking (mean app ranks are
312.6 for control group and 312.14 for treatment group at the time of MPI-based app
innovation release date). As the third-party developers in the control group do not
support MPIs, the value of release timing in the control group corresponds to the release
timing of third-party developers in the treatment group. We measure pre-post difference
in app rankings and app downloads. The results (see Table 10, for more details see Online
Supplemental Appendix J) support our main findings indicating that release timing is
critical for app performance especially when MPIs have no backward compatibility. We
reach similar conclusion by reducing our sample to free apps (see Table 11, for more
details see Online Supplemental Appendix K).

While app ranking provides an accurate representation on app performance, we also
test our hypotheses using app downloads as an alternative measure of app performance.
We follow previous research [17] to estimate the number of app downloads from the
app rank. The results (see Table 12, for more details see Online Supplemental Appendix
L) show that MPI-based app innovations released early increase app downloads to
a greater extent than those released later. Hence, the results corroborate our main
findings.

App price plays an important role in determining app performance. In our main
analyses, we ensure that there are no changes of price during our observation period
which goes from 7 days before the release of MPI-based app innovation to 28 days after.
Moreover, we conduct additional analyses using a reduced sample focusing on apps that

Table 9. Results using Garen approach to control for endogeneity.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

4.1e-02 8.1e-03 .26* 3.0e-03 .58***
(4.6e-02) (4.7e-02) (.13) (8.9e-02) (.16)

η -8.0e-02 4.6e-03 -5.9e-02 -.22+ -.12
(6.5e-02) (6.7e-02) (8.7e-02) (.13) (.1)

MPI-based App Innovation Release
Timing * η

1.6e-05 2.5e-05 3.7e-05 1.6e-04 -7.0e-04+
(4.6e-05) (4.6e-05) (3.1e-04) (9.9e-05) (3.6e-04)

Backward Compatibility 38** 42+
(13) (23)

MPI-based App Innovation Release
Timing * Backward Compatibility

-4.2e-02* -.61***
(1.9e-02) (.17)

Observations 1213 1213 600 613 600
R Squared 0.064 0.069 0.099 0.109 0.118

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 975

are free. The results for both app ranks (see Table 13, for more details see Online
Supplemental Appendix M) and app downloads (see Table 14, for more details see
Online Supplemental Appendix N) indicate that our main findings are robust.

The effect of release timing on app performance might result from the difference of
innovativeness of MPI-based app innovation as third-party developers’ app innovations
are not created equal. Following prior literature [68], we measure the text similarity score

Table 10. Results using matched samples following a difference-in-difference approach,
Dependent Variable = App Ranking

Model 1 Model 2 Model 3 Model 4 Model 5

Release Timing 5.5e-04 -8.5e-02 -5.2e-03 -.13 -8.8e-02
(1.3e-02) (.13) (1.7e-02) (.14) (.14)

Treatment 6.7 -24 -7.4 -47+ 12
(12) (21) (17) (25) (32)

Release Timing * Treatment 5.3e-03 .3* 2.0e-03 .41** 8.2e-02
(1.8e-02) (.13) (2.4e-02) (.15) (.16)

N 2411 1167 1244 847 707
R Squared 0.035 0.054 0.080 0.066 0.092

Dependent Variable = App Downloads

Model 1 Model 2 Model 3 Model 4 Model 5

Release Timing .54 8+ 1.1 6.6+ 12**
(.48) (4.2) (.74) (3.9) (4.5)

Treatment 4.5e+02 1.5e+03* 9.5e+02 1.8e+03+ 3.2e+03+
(4.4e+02) (7.6e+02) (1.2e+03) (9.2e+02) (1.9e+03)

Release Timing * Treatment .4 -8.8* 1.3 -10+ -12
(.99) (4.4) (1.7) (5.3) (8)

N 2411 1167 1244 847 707
R Squared 0.058 0.161 0.069 0.214 0.189

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 11. Results using matched samples of free apps following a difference-in-difference approach.
Dependent Variable = App Ranking

Model 1 Model 2 Model 3 Model 4 Model 5

Release Timing -1.1e-02 -.2 -2.4e-02 -.24 -.19
(1.6e-02) (.15) (2.2e-02) (.16) (.16)

Treatment 6.8 -12 -21 -34 26
(14) (26) (20) (28) (49)

Release Timing * Treatment 5.4e-03 .27+ 9.6e-03 .36* .15
(1.9e-02) (.15) (2.6e-02) (.18) (.2)

N 1104 482 622 421 318
R Squared 0.020 0.046 0.048 0.054 0.097

Dependent Variable = App Downloads

Model 1 Model 2 Model 3 Model 4 Model 5

Release Timing .62 9+ 1.5 7.4 15**
(.62) (5) (.95) (4.7) (5.2)

Treatment 4.7e+02 1.7e+03+ 1.0e+03 2.1e+03+ 3.0e+03
(5.2e+02) (9.2e+02) (1.3e+03) (1.1e+03) (2.0e+03)

Release Timing * Treatment .49 -10+ 1.3 -13+ -13
(1.2) (5.4) (1.9) (6.7) (9)

N 1104 482 622 421 318
R Squared 0.068 0.179 0.083 0.232 0.217

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

976 SOH AND GROVER

between an MPI-based app innovation and all prior MPI-based app innovations using the
app release notes. We incorporate an additional control variable in our model to capture
the effect of app innovation differentiation. Since app innovation differentiation is assessed
using the text similarity score, high value indicates low app innovation differentiation. The
results obtained for both app ranks (see Table 15, for more details see Online
Supplemental Appendix O) and app downloads (See Table 16, for more details see
Online Supplemental Appendix P) show that our main findings are robust.

The lagged effect of user base measured as the number of app reviews might create
endogeneity [39]. In Online Supplemental Appendix Q, we explain why our model is
robust to this endogeneity issue. Moreover, we use an instrumental variable estimator
following Anderson and Hsiao [4] suggestion and find that the results (see Table 17)
support our main findings.

Table 12. Results using app downloads as measure of app performance.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

-1.2 .68 -12* 3.7 -13*
(5.6) (2.3) (5.9) (9.3) (5.5)

Backward Compatibility 4.1e+02 -2.5e+03
(1.5e+03) (2.2e+03)

MPI-based App Innovation Release
Timing * Backward Compatibility

3.2 21*
(2.4) (9.8)

N 1060 1060 516 544 516
R Squared 0.071 0.069 0.249 0.121 0.141

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 13. Results using app ranking as measure of app performance with a sample of free apps.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

9.9e-03 3.8e-02 .29+ 1.0e-02 .34+
(2.8e-02) (2.8e-02) (.16) (7.6e-02) (.2)

Backward Compatibility 22 50
(18) (32)

MPI-based App Innovation Release
Timing * Backward Compatibility

-8.3e-02** -.58*
(3.0e-02) (.29)

N 601 601 282 319 282
R Squared 0.187 0.200 0.222 0.332 0.250

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 14. Results using app downloads as measure of app performance with a sample of free apps.
Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

-1.5 -1.8 -18* 3 -17*
(8.1) (2.5) (9.2) (12) (8.2)

Backward Compatibility 1.9e+03 -3.3e+03
(3.1e+03) (4.5e+03)

MPI-based App Innovation Release
Timing * Backward Compatibility

7.3 47+
(4.9) (25)

N 601 601 282 319 282
R Squared 0.109 0.170 0.277 0.169 0.283

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 977

Finally, we conduct time-series analyses over an observation period of 7 days before the
MPI-based app innovation release date and 28 after. We limit our sample to free apps. We
find that release timing has a curvilinear effect on app performance supporting our
hypotheses that the effect of release timing depends on the adoption curve of each

Table 15. Results using app ranking as measure of app performance and controlling for app innovation
Differentiation.

Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

1.7e-02 5.2e-02* .23* -6.7e-03 .34+
(1.7e-02) (2.1e-02) (.11) (4.1e-02) (.17)

Backward Compatibility 34* 41+
(14) (25)

MPI-based App Innovation Release
Timing * Backward Compatibility

-5.7e-02** -.4*
(2.2e-02) (.18)

App Innovation Differentiation 10* 11* 13* 5.5 17*
(4.3) (4.3) (6.7) (6) (7)

N 1213 1213 600 613 600
R Squared 0.074 0.076 0.106 0.101 0.110

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 16. Results using app downloads as measure of app performance and controlling for app
innovation differentiation.

Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

-1.5 1.4 -10* 3.8 -13*
(5.6) (2.7) (4.4) (9.3) (5.8)

Backward Compatibility 7.1e+02 -2.6e+03
(1.6e+03) (2.3e+03)

MPI-based App Innovation Release
Timing * Backward Compatibility

2.7 22*
(2.6) (10)

App Innovation Differentiation 3.9e+02 3.3e+02 56 6.5e+02 -1.9e+02
(3.8e+02) (4.1e+02) (1.8e+02) (5.9e+02) (2.2e+02)

N 1060 1060 516 544 516
R Squared 0.075 0.072 0.265 0.126 0.143

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

Table 17. Results with instrumental variable estimator.
DV = App Ranking

Model 1 Model 2 Model 3 Model 4 Model 5

MPI-based App Innovation Release
Timing

2.4e-02 3.7e-02 .24* -4.4e-02 .43**
(2.1e-02) (2.3e-02) (.12) (3.9e-02) (.17)

Backward Compatibility 28* 56*
(14) (25)

MPI-based App Innovation Release
Timing * Backward Compatibility

-3.5e-02 -.51**
(2.5e-02) (.18)

Average App Rating -1.7 -1.4 -30* 14 -29*
(9.9) (9.8) (14) (14) (14)

Number of App Ratings 3.9e-04 3.7e-04 1.0e-03 9.5e-04 1.1e-03
(7.0e-04) (7.6e-04) (9.4e-04) (1.7e-03) (8.3e-04)

N 1213 1213 600 610 600
R Squared 0.077 0.081 0.116 0.123 0.131

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

978 SOH AND GROVER

platform generation. The results are presented in Table 18, and for more details see Online
Supplemental Appendix R.

Discussion

Research Contributions

Our research provides several research contributions. First, our study contributes to the
body of literature on the performance of third-party apps developed for mobile platform
ecosystems such as iOS or Android. The determinants of third-party apps performance
have been studied extensively in the literature (e.g., [13, 21, 30, 35, 42, 54, 56-58, 62, 69,
73, 74, 76, 77]). For example, the prior literature suggests the importance of factors such as
app price, app category, and app rating. Despite some notable findings in the literature,
there is a minimal amount of evidence about the role of MPIs on app performance.
Considering that it is challenging to survive in hypercompetitive environments, our
research provides a significant contribution to the literature on the performance of third-
party apps. We distinguish between MPI-based app innovations that are enabled by MPIs
(e.g., ARKit, and CoreML) and those that rely entirely on the developers’ internal
resources. By focusing on apps innovations enabled by the MPIs, we unveil the role of
the platform provider on third-party apps performance through the release of MPIs.
Theoretically, our research highlights the influence of MPIs on the relationship between
MPI-based app innovation – app performance. This study is particularly important as
platform providers release MPIs on a yearly basis and increasingly third-party developers
are supporting these MPIs.

Second, our study contributes to the discussion about the relationship between entry
timing and product performance. There is a rich body of literature that examines the link
between entry timing and product performance [36]. Prior research about the timing to
enter a market provides conflicting empirical findings [61, 25, 7, 29]. For example, some
studies found that in the PC industry late entrants tend to have a greater market position
and higher survival rates than early entrants (e.g., [65]). While other studies argue that
early movers target greater, uncertain revenues opportunities while late movers target

Table 18. Times-series results with a sample of free apps.
DV = App Ranking DV = App Downloads

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

MPI-based App Innovation Release
Timing

.33*** .28** .3* -32** -23* -36*
(8.7e-02) (9.2e-02) (.14) (11) (11) (18)

Release Timing * Release Timing -2.2e-04** -2.3e-04*** -2.6e-04* 2.4e-02* 2.6e-02** 3.8e-02*
(6.9e-05) (6.9e-05) (1.2e-04) (9.7e-03) (1.0e-02) (1.7e-02)

Backward Compatibility 60* -54 -6.0e+03 3.2e+03
(29) (36) (4.3e+03) (5.0e+03)

Release Timing * Backward
Compatibility

-9.7e-02* 5.6e-02 15* 3.1
(4.0e-02) (.16) (7.4) (20)

Squared Release Timing * Backward
Compatibility

3.7e-05 -1.6e-02
(1.4e-04) (1.7e-02)

Observations 21177 21177 21177 21177 21177 21177

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.
Control variables, year, and category dummies included.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 979

lower, certain revenues opportunities [36]. The latest developments on the relationship
between entry timing and product performance posit the firms that enter during the
window of time between the emergence of a dominant category and the emergence of
a dominant design perform better than firms that enter during any other phase [61]. Our
study extends this body of literature by showing theoretically and empirically that the
relationship between release timing and product performance for MPI-based app innova
tions is contingent on the stage of adoption curve. We demonstrate that compared to the
maturity and decline stage, the growth stage provides a window of opportunity for MPI-
based app innovations. During the growth stage of the adoption curve, early entrants have
an advantage over late entrants, leading to greater app performance. However, during the
maturity and decline stage of the adoption curve, early entrants lose their advantage over
late entrants. These findings imply that future studies should consider the stages of the
adoption curve when examining the release timing for service and product innovations.

Finally, we indicate that MPIs play an important role in understanding the release
timing for new app services. As third-party developers are building upon mobile platform
resources to develop MPI-based app innovations, our research provides evidence that the
level of backward compatibility is critical to determine the release timing. We extend
previous research on backward compatibility that examines the influence of backward
compatibility on the adoption of multigenerational platforms [24, 67]. Backward compat
ibility affects both the platform and service providers. The size of the market for MPI-
based app innovations that supports MPIs with no backward compatibility is smaller, thus
encouraging third-party developers to build upon MPIs that are backward compatible.
The literature suggests that service providers are better off when the platform provider
supports backward compatibility [24]. Our findings extend the prior literature by demon
strating that MPI-based app innovations that support MPIs that are not backward
compatible have a positive effect on app performance when they enter the market early
during the growth stage. Hence, the release timing when MPIs have no backward
compatibility must be early during the growth stage. This study implies that future
research should consider backward compatibility when examining the impact of release
timing.

Practical Implications

The mobile apps market is hypercompetitive and requires third-party developers to be
very active through digital innovations. Our research provides several practical implica
tions about how MPIs are leveraged to achieve greater app performance. First, our study
informs third-party developers about the optimal time to enter the market. Our findings
suggest that developers should release their MPI-based app innovations early during the
growth stage to increase their app performance. The risks of preemption are mitigated
during the growth stage compared to the maturity and decline stage. Thus, third-party
developers should not wait until the market reaches the maturity and decline stage. We
recommend third-party developers to study MPIs ahead of their release date (i.e., beta
versions) to understand how they could be used to create new app services. In doing so,
third-party developers will be able to enter the market early. When third-party developers
are limited in their ability to support multiple MPIs, they should prioritize the MPI that
will take less time to support.

980 SOH AND GROVER

Second, our study implies that third-party developers should pay attention to the level
of backward compatibility of MPIs when timing their MPI-based app innovations.
Whether the MPIs are backward compatible or not has a significant impact on the size
of the market MPI-based app innovations can reach. MPIs with backward compatibility
are more attractive for third-party developers since their MPI-based app innovations can
reach a large market. Our findings imply that release timing is critical when MPIs are not
backward compatible. Third-party developers that enter the market late during the growth
stage have a disadvantage compared to early entrants. However, this disadvantage is
mitigated when the MPI supported is backward compatible. Third-party developers who
lack the capability (e.g., experience) to be among the first movers should focus on creating
app services enabled by MPIs that are backward compatible. The risk of preemption is less
severe in that case. Moreover, third-party developers who can be pioneers should prior
itize MPIs that are not backward compatible. By doing so, they differentiate themselves
from followers in terms of app performance distinctly.

Finally, our study provides some implications for platform providers who rely on MPIs
to support third-party development. Platform providers such as Apple release on a yearly
basis new platform services to facilitate the development of third-party apps on their latest
mobile devices and mobile platforms. Because these MPIs have different levels of back
ward compatibility, our study implies that platform providers should be aware of the
limitations of certain MPIs (i.e., those with no backward compatibility) to enhance the app
performance of third-party developers who cannot be among the first movers. As mobile
device prices increase, platform users are more likely to use the same mobile device for
a longer period. Thus, there is a growing gap between the levels of adoption of new
generations of the mobile device (e.g., iPhone X) and the mobile platform (e.g., iOS 11).
This trend should encourage platform providers to develop MPIs that are backward
compatible, loosely coupled and less dependent on the hardware. Since the competition
on mobile apps market is growing, third-party developers are looking for ways to reach
larger market size. Thus, the priority of the platform providers should be to create MPIs
that unlock large markets allowing third-party developers to reach more platform users.
For example, MPIs that allow third-party apps to be cross-platform and operate on
multiple platforms (e.g., iMessage and iOS, Apple Watch, and iPhone) should be the
focus of platform providers. As the number of devices (e.g., iPad, iPhone, and iWatch) and
mobile platforms (e.g., iOS, WatchOS, and iMessage) continue to increase, platform
providers should orient their digital strategies in the creation of MPIs that are indepen
dent of the type and generation of mobile device and mobile platform.

Limitations and Future Research

The statistical inferences of this study are subject to a couple of limitations that offer
directions for future research. First, the findings are limited to a sample of six MPIs. We
observe major MPIs because it is easier to identify MPI-based app innovations that
support them. We provide some robustness checks to control for selection bias in the
choice of MPIs. Future research can extend our analyses to a large group of MPIs. This
will require some innovative techniques to identify MPI-based app innovations that are
enabled by these MPIs.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 981

Second, the measure of app performance is limited to 4 weeks before and after the entry
of the MPI-based app innovation. Previous research suggests using an aggregate measure
of app ranking such as app ranking per month instead of the daily ranking since it is very
volatile [32]. Our data have 4 weeks of app ranking allowing us to aggregate the daily app
ranking up to one month. Hence, we can observe the short-term impact of MPI-based app
innovations release timing. Future research could include the long-term impact of MPI-
based app innovations release timing by predicting app performance after two months or
more.

Third, our measure of app performance relies solely on Apple top free, paid, and
grossing app rankings. Although this measure has been used on the literature (e.g., [38,
32]) and is consistent with our hypotheses, it might not capture appropriately the app
performance. The measure does not include the costs related to the innovation. Finally,
our study is limited to the iOS platform. We are not sure our results hold in different
contexts. Future research can investigate other platform-based ecosystems (e.g., MacOS)
to check the generalizability of our findings.

Conclusion

In this study, we investigate how MPIs are leveraged at the app level. Service co-creation is
an important aspect of platform-based ecosystems and occurs when third-party developers
build upon MPIs to create new app services. In platform-based ecosystems, the impact of
MPI-based app innovations depends on their ability to successfully reach the market. We
examine the role of MPI-based app innovation release timing on app performance. We
test our hypotheses on MPI-based app innovations that support iOS innovations (i.e.,
FaceID, ARKit, CoreML, Apple Pay, TouchID, and “Hey Siri”) released during the period
2014-2018.

Our findings confirm that the effect of MPI-based app innovation release timing is
contingent on the stage of the adoption curve and the level of backward compat
ibility of the MPI supported. We find that during the growth stage, MPI-based app
innovations that enter the market early have a greater effect on app performance
than those that enter late. However, during the maturity and decline stage, MPI-
based app innovation release timing does not influence app performance. We also
found that during the growth stage, the effect of MPI-based app innovation release
timing on app performance is reinforced when the MPI supported has no backward
compatibility.

The key contribution of this study is to highlight the role of MPI-based app
innovation release timing in mobile platform ecosystems that are characterized by
arm’s-length relationship between complementors and platform owners. Our study
sheds light on the adoption curve of a platform generation as a significant yet under
explored factor to explain complementor performance. Considering (a) that a platform
generation adoption curve highlights demand heterogeneity in platform markets
wherein early platform adopters are different from late platform adopters, and (b)
the platform technologies introduced in new platform generations have a different
level of backward compatibility, we demonstrate that the effect of MPI-based app
innovation release timing on complementor’s performance is contingent on both
platform demand heterogeneity and the platform technology’s level of backward

982 SOH AND GROVER

compatibility. Hence, third-party developers should define their release timing strategy
based on the platform generation adoption curve and the level of backward
compatibility.

Notes
1. ARKit, SiriKit, and CoreML are technologies developed by Apple. ARKit and CoreML were

introduced in 2017 with iOS 11, while SiriKit became part of iOS 6 in 2012. ARKit is
a technology that enables augmented reality experiences for app users. SiriKit facilitates the
creation of voice commands that can work with the Apple voice assistant Siri. Finally,
CoreML allows the creation of machine learning models for apps.

2. We randomly selected some third-party apps from the sample to ensure no other MPI-based
app innovations are released during the time period [-7; +21]. Our observations indicate that
mainly minor improvements (e.g., bug fixes, performance improvements, or stability
improvements) are released. Moreover, we conducted several robustness checks using differ
ent time periods. The results are consistent across these time periods (See Robustness Checks
Section)

3. No other MPI is released during the growth stage.
4. Adapted from [53]

ORCID

Franck Soh http://orcid.org/0000-0002-6131-5861

References

1. Adner, R.; and Kapoor, R. Value creation in innovation ecosystems: How the structure of
technological interdepend dence affects firm performance in new technology generations.
Strategic Management Journal, 31, 3 (2010), 306–333.

2. Agarwal, S. Three essays on interfirm interdependence and firm performance (Doctoral dis
sertation, University of Pennsylvania) (2017).

3. Anam, A.I.; and Yeasin, M. Accessibility in smartphone applications: What do we learn from
reviews? In: Proceedings of the 15th International ACM SIGACCESS Conference on Computers
and Accessibility, (2013), 35–36.

4. Anderson, T.W.; and Hsiao, C. Estimation of dynamic models with error components.
Journal of the American statistical Association, 76, 375 (1981), 598–606.

5. Apple. Best of 2017, 2018. Apple. https://developer.apple.com/app-store/best-of-2017/apps-of
-the-year/(accessed on November 19, 2018).

6. Arora, S.; Ter Hofstede, F.; and Mahajan, V. The implications of offering free versions for the
performance of paid mobile apps. Journal of Marketing, 81, 6 (2017), 62–78.

7. Bayus, B.L.; and Agarwal, R. The role of pre-entry experience, entry timing, and product
technology strategies in explaining firm survival. Management Science, 53, 12 (2007),
1887–1902.

8. Bonnie, E. The mobile marketer’s guide to mastering user retention, 2017. Clevertap. https://
clevertap.com/blog/guide-to-user-retention/(accessed on October 3, 2018).

9. Clover, J. Apple now has 1.3 billion active devices worldwide, 2018. MacRumors. https://www.
macrumors.com/2018/02/01/apple-now-has-1-3-billion-active-devices-worldwide/(accessed
on October 3, 2018).

10. Constantinides, P.; Henfridsson, O.; and Parker, G.G. Introduction—platforms and infra
structures in the digital age. Information Systems Research, 29, 2 (2018), 381–400.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 983

https://developer.apple.com/app-store/best-of-2017/apps-of-the-year/
https://developer.apple.com/app-store/best-of-2017/apps-of-the-year/
https://clevertap.com/blog/guide-to-user-retention/
https://clevertap.com/blog/guide-to-user-retention/
https://www.macrumors.com/2018/02/01/apple-now-has-1-3-billion-active-devices-worldwide/
https://www.macrumors.com/2018/02/01/apple-now-has-1-3-billion-active-devices-worldwide/

11. Dal Bianco, V.; Myllarniemi, V.; Komssi, M.; and Raatikainen, M. The role of platform
boundary resources in software ecosystems: A case study In Software Architecture
(WICSA), (2014), 11–20.

12. de Reuver, M.; Sørensen, C.; and Basole, R.C. The digital platform: a research agenda. Journal
of Information Technology, 33, 2 (2018), 124–135.

13. Dixon, J.; Barkhordari, R.; and Sivanesan, S. Star apps: App originality and interdependence
as predictors of app success. In: 23rd American Conference Information Systems (AMCIS),
(2017), 1–10.

14. Domowitz, I.; Hubbard, R.G.; and Petersen, B.C. Business cycles and the relationship between
concentration and price-cost margins. The Rand Journal of Economics, 17 (1986), 1–17.

15. Eaton, B.; Elaluf-Calderwood, S.; Sorensen, C.; and Yoo, Y. Distributed tuning of boundary
resources: The case of apple’s iOS service system. MIS Quarterly, 39, 1 (2015), 217–243.

16. Garcia-Sanchez, J.; Mesquita, L.F.; and Vassolo, R.S. What doesn’t kill you makes you
stronger: The evolution of competition and entry-order advantages in economically turbulent
contexts. Strategic Management Journal, 35, 13 (2014), 1972–1992.

17. Garg, R.; and Telang, R. Inferring app demand from publicly available data. MIS Quarterly,
37, 4 (2013), 1253–1264.

18. Garen, J. The returns to schooling: A selectivity bias approach with a continuous choice
variable. Econometrica, 52, 5 (1984), 1199–1218.

19. Ghazawneh, A.; and Henfridsson, O. Governing third-party development through platform
boundary resources. In The International Conference of Information Systems, (2010), 1–18.

20. Ghazawneh, A.; and Henfridsson, O. Balancing platform control and external contribution in
third-party development: the boundary resources model. Information Systems Journal, 23, 2
(2013), 173–192.

21. Goldbach, T.; and Benlian, A. How social capital facilitates clan control on software platforms
to enhance app-developers’ performance and success. In 36th International Conference of
Information Systems (ICIS), (2015), 1–18.

22. Gómez, J.; and Maícas, J.P. Do switching costs mediate the relationship between entry timing
and performance? Strategic Management Journal, 32, 12 (2011), 1251–1269.

23. Goul, M.; Marjanovic, O.; Baxley, S.; and Vizecky, K. Managing the enterprise business
intelligence app store: sentiment analysis supported requirements engineering. In 45th
Hawaii International Conference of Information Systems (HICSS), (2012), 4168–4177.

24. Hann, I.H.; Koh, B.; and Niculescu, M.F. The double-edged sword of backward compatibility:
The adoption of multigenerational platforms in the presence of intergenerational services.
Information Systems Research, 27, 1 (2016), 112–130.

25. Hawk, A.; Pacheco-De-Almeida, G.; and Yeung, B. Fast-mover advantages: Speed capabilities
and entry into the emerging submarket of atlantic basin LNG. Strategic Management Journal,
34, 13 (2013), 1531–1550.

26. Horwitz, J. iOS 11 hits 85% adoption ahead of iOS 12; android oreo at 14.6%, 2018.
VenutreBeat. https://venturebeat.com/2018/09/04/ios-11-hits-85-install-rate-ahead-of-ios-12-
android-oreo-at-14-6/(accessed on October 3, 2018).

27. Horwitz, J. Apptopia: ARKit use by iOS app developers is modest and slowing, 2018.
VenutreBeat. https://venturebeat.com/2018/01/03/apptopia-arkit-use-by-ios-app-developers-
is-modest-and-slowing/(accessed on October 3, 2018).

28. Isobe, T.; Makino, S.; and Montgomery, D.B. Resource commitment, entry timing, and
market performance of foreign direct investments in emerging economies: The case of
Japanese international joint ventures in China. Academy Management Journal, 43, 3 (2000),
468–484.

29. Jiang, Z.; Qu, X.S.; and Jain, D.C. Optimal market entry timing for successive generations of
technological innovations. MIS Quarterly, 43, 3 (2019), 787–806.

30. Kajanan, S.; Ramasubbu, N.; Pervin, N.; Dutta, K.; and Datta, A. Takeoff and sustained
success of apps in hypercompetitive mobile platform ecosystems: An empirical analysis. In:
33rd International Conference of Information Systems (ICIS), (2012), 1–18.

984 SOH AND GROVER

https://venturebeat.com/2018/09/04/ios-11-hits-85-install-rate-ahead-of-ios-12-android-oreo-at-14-6/
https://venturebeat.com/2018/09/04/ios-11-hits-85-install-rate-ahead-of-ios-12-android-oreo-at-14-6/
https://venturebeat.com/2018/01/03/apptopia-arkit-use-by-ios-app-developers-is-modest-and-slowing/
https://venturebeat.com/2018/01/03/apptopia-arkit-use-by-ios-app-developers-is-modest-and-slowing/

31. Kankanhalli, A.; Ye, H.; and Teo, H. Comparing potential and actual innovators: An
empirical study of mobile data services innovation. MIS Quarterly, 39, 3 (2015), 667.

32. Kapoor, R.; and Agarwal, S. Sustaining superior performance in business ecosystems: evi
dence from application software developers in the iOS and android smartphone ecosystems.
Organization Science, 28, 3 (2017), 531–551.

33. Kerin, R. A.; Varadarajan, P. R.; and Peterson, R. A. First-mover advantage: A synthesis,
conceptual framework, and research propositions. Journal of Marketing, 56, 4 (1992), 33–52.

34. Khuntia, J.; Kathuria, A.; Saldanha, T.J.; and Konsynski, B.R. Benefits of IT-enabled flexibil
ities for foreign versus local firms in emerging economies. Journal of Management
Information Systems, 36, 3 (2019), 855–892.

35. Kim, K.; and Viswanathan, S. The experts in the crowd: The role of experienced investors in
a crowdfunding market. MIS Quarterly, 43, 2 (2019), 347–372.

36. Klingebiel, R.; and Joseph, J. Entry timing and innovation strategy in feature phones. Strategic
Management Journal, 37, 6 (2016), 1002–1020.

37. Lardinois, F. Gmail now has more than 1b monthly active users, 2017. TechCrunch. https://
techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/(accessed
on November 19, 2018).

38. Lee, G.; and Raghu, T.S. Determinants of mobile apps’ success: evidence from the app store
market. Journal of Management Information Systems, 31, 2 (2014), 133–170.

39. Li, Z.; and Agarwal, A. Platform integration and demand spillovers in complementary
markets: Evidence from Facebook’s integration of Instagram. Management Science, 63, 10
(2017), 3438–3458.

40. Liang, C.; Shi, Z.; and Raghu, T.S. The spillover of spotlight: Platform recommendation in the
mobile app market. Information Systems Research, 30, 4 (2019), 1296–1318.

41. Linares-Vásquez, M.; Bavota, G.; Bernal-Cárdenas, C.; Di Penta, M.; Oliveto, R.; and
Poshyvanyk, D. API change and fault proneness: A threat to the success of android apps.
In Proceedings 2013 9th Joint Meeting on Foundations of Software Engineering, (2013),
477–487.

42. Liu, C.Z.; Au, Y.A.; and Choi, H.S. Effects of freemium strategy in the mobile app market: An
empirical study of google play. Journal of Management Information Systems, 31, 3 (2014),
326–354.

43. Liu, C.; Jozani, M.; and Choo, R. Canalization or increased diffusion? An empirical analysis
on the impact of the recommendation system in the mobile app market. In Proceedings of the
51st Hawaii International Conference on System Sciences (HICSS), (2018), 1432–144.

44. Miller, C. ARKit app downloads said to hit 13m, dominated by games, (2018). 9To5Mac.
https://9to5mac.com/2018/03/28/arkit-apps-download-stats/(accessed on October 3, 2018).

45. Owen, M. Adoption of iOS 11 reaches 85 percent ahead of release of iOS 12, (2018).
AppleInsider. https://appleinsider.com/articles/18/09/04/adoption-of-ios-11-reaches-85-
percent-ahead-of-release-of-ios-12 (accessed on October 3, 2018).

46. Parker, G.; Van Alstyne, M.; and Jiang, X. Platform ecosystems: How developers invert the
firm. MIS Quarterly, 41, 1 (2017), 255–255.

47. Perala, A. Discover enables face id login for mobile app, 2017. Findbiometrics. https://mobileid
world.com/discover-enables-face-id-login-for-mobile-app/(accessed on May 20, 2019).

48. Perala, A. HSBC becomes latest bank to embrace face id login, 2018. Findbiometrics. https://
findbiometrics.com/hsbc-face-id-login-505101/(accessed on May 20, 2019).

49. Popper, B. Google announces over 2 billion monthly active devices on Android, 2017. THE
VERGE. https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-
active-users (accessed on October 3, 2018).

50. Porter, M.E. Competitive Strategy, New York: Free Press, 1985.
51. Qiu, Y.; Gopal, A.; and Hann, I.H. Logic pluralism in mobile platform ecosystems: A study of

indie app developers on the iOS app store. Information Systems Research, 28, 2 (2017),
225–249.

52. Rietveld, J.; and Eggers, J.P. Demand heterogeneity in platform markets: Implications for
complementors. Organization Science, 29, 2 (2018), 304–322.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 985

https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://9to5mac.com/2018/03/28/arkit-apps-download-stats/
https://appleinsider.com/articles/18/09/04/adoption-of-ios-11-reaches-85-percent-ahead-of-release-of-ios-12
https://appleinsider.com/articles/18/09/04/adoption-of-ios-11-reaches-85-percent-ahead-of-release-of-ios-12
https://mobileidworld.com/discover-enables-face-id-login-for-mobile-app/
https://mobileidworld.com/discover-enables-face-id-login-for-mobile-app/
https://findbiometrics.com/hsbc-face-id-login-505101/
https://findbiometrics.com/hsbc-face-id-login-505101/
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

53. Rogers, M.E. Diffusion of Innovation (5th ed.), New York: Free Press, 2003.
54. Rollin, R.; Steinmann, S.; Schramm-Klein, H.; Neus, F.; and Nimmermann, F. Drivers of

market success for mobile gaming apps-results of a choice-based conjoint experiment. In 38th
International Conference of Information Systems (ICIS), (2017), 1–20.

55. Saldanha, T.; Mithas, S.; and Krishnan, M. Leveraging customer involvement for fueling
innovation: The role of relational and analytical information processing capabilities. MIS
Quarterly, 41, 1 (2017), 267.

56. Shulman, J.D.; and Geng, X. Does it pay to shroud in-app purchase prices? Information
Systems Research, 30, 3 (2019), 856–871.

57. Siegfried, N.; Koch, O.; and Benlian, A. Drivers of app installation likelihood–a conjoint
analysis of quality signals in mobile ecosystems. In 36th International Conference of
Information Systems (ICIS), (2015), 1–18.

58. Song, C.; Park, K.; and Kim, B.C. Impact of online reviews on mobile app sales: Open versus
closed platform comparison. In: Pacific Asia Conference of Information Systems (PACIS),
(2013), 1–11.

59. Statista, Number of newly developed applications/games submitted for release to the iTunes
app store from 2012 to 2018, 2018. Statista. https://www.statista.com/statistics/258160/num
ber-of-new-apps-submitted-to-the-itunes-store-per-month/(accessed on October 3, 2018).

60. Statista, Average number of new iOS app releases per day from 3rd quarter 2016 to 1st
quarter 2018, 2018. Statista. https://www.statista.com/statistics/276705/ios-app-releases-
worldwide/(accessed on October 3, 2018).

61. Suarez, F.F.; Grodal, S.; and Gotsopoulos, A. Perfect timing? Dominant category, dominant
design, and the window of opportunity for firm entry. Strategic Management Journal, 36, 3
(2015), 437–448.

62. Sun, T.; Shi, L.; Viswanathan, S.; and Zheleva, E. Motivating effective mobile app adoptions:
Evidence from a large-scale randomized field experiment. Information Systems Research, 30, 2
(2019), 523–539.

63. Teece, D.J. Profiting from technological innovation: Implications for integration, collabora
tion, licensing and public policy. Research Policy, 15, 6 (1986), 285–305.

64. Teece, D.J. Profiting from Innovation in the digital economy: Enabling technologies, stan
dards, and licensing models in the wireless world. Research Policy, 47, 8 (2018), 1367–1387.

65. Tegarden, L.F.; Hatfield, D.E.; and Echols, A.E. Doomed from the start: What is the value of
selecting a future dominant design? Strategic Management Journal, 20, 6 (1999), 495–518.

66. Walz, A. Deconstructing the app store rankings formula with a little mad science, 2015.
MOZ. https://moz.com/blog/app-store-rankings-formula-deconstructed-in-5-mad-science-
experiments/(accessed on November 19, 2018).

67. Wang, Q.; Chen, Y.; and Xie, J. Survival in markets with network effects: Product compat
ibility and order-of-entry effects. Journal of Marketing, 74, 4 (2010), 1–14.

68. Wang, Q.; Li, B.; and Singh, P.V. Copycats vs. original mobile apps: A machine learning
copycat-detection method and empirical analysis. Information Systems Research, 29, 2 (2018),
273–291.

69. Wang, Y.; Song, J.; and Aguirre-Urreta, M. An empirical investigation of factors impacting
application downloads in mobile app stores. SIGHCI Proceedings, (2015), 1–5.

70. Wulf, J.; and Blohm, I. Fostering value creation with digital platforms: A unified theory of the
application programming interface design. Journal of Management Information Systems, 37, 1
(2020), 251–281.

71. Xue, L.; Song, P.; Rai, A.; Zhang, C.; and Zhao, X. Implications of application programming
interfaces for third-party new app development and copycatting. Production and Operations
Management, 28, 8 (2019), 1887–1902.

72. Ye, H.; and Kankanhalli, A. User service innovation on mobile phone platforms: Investigating
impacts of lead userness, toolkit support, and design autonomy. MIS Quarterly, 42, 1 (2018), 165.

73. Ye, H.; and Kankanhalli, A. Value cocreation for service innovation: Examining the relation
ships between service innovativeness, customer participation, and mobile app performance.
Journal of the Association for Information Systems, 21, 2 (2020), 294–312.

986 SOH AND GROVER

https://www.statista.com/statistics/258160/number-of-new-apps-submitted-to-the-itunes-store-per-month/
https://www.statista.com/statistics/258160/number-of-new-apps-submitted-to-the-itunes-store-per-month/
https://www.statista.com/statistics/276705/ios-app-releases-worldwide/
https://www.statista.com/statistics/276705/ios-app-releases-worldwide/
https://moz.com/blog/app-store-rankings-formula-deconstructed-in-5-mad-science-experiments/
https://moz.com/blog/app-store-rankings-formula-deconstructed-in-5-mad-science-experiments/

74. Yin, P.L.; Davis, J.P.; and Muzyrya, Y. Entrepreneurial innovation: Killer apps in the iPhone
ecosystem. American Economic Review, 104, 5 (2014), 255–259.

75. Yoo, Y.; Henfridsson, O.; and Lyytinen, K. Research Commentary—The new organizing logic
of digital innovation: an agenda for information systems research. Information Systems
Research, 21, 4 (2010), 724–735.

76. Zhao, X.; Tian, J.; and Xue, L. Herding and software adoption: A re-examination based on
post-adoption software discontinuance. Journal of Management Information Systems, 37, 2
(2020), 484–509.

77. Zheng, J.; Qi, Z.; Dou, Y.; and Tan, Y. How mega is the mega? Exploring the spillover effects
of wechat using graphical model. Information Systems Research, 30, 4 (2019), 1343–1362.

About the Authors

Franck Soh (f_sohnoume@uncg.edu; corresponding author) is an Assistant Professor of
Information Systems at Bryan School of Business and Economics, The University of North
Carolina at Greensboro. He received his Ph.D. degree in Information Systems from University of
Arkansas. His research interests include business value of IT, competition in mobile platform
ecosystems, healthcare IT, customer service performance, open source, and social media. Dr. Soh
has published in Journal of Computer Information Systems and has presented his research in several
conferences and symposiums, including International Conference on Information Systems.

Varun Grover (vgrover@uark.edu) is the David D. Glass Endowed Chair and Distinguished
Professor of Information Systems at the Sam M. Walton College of Business, University of
Arkansas. His work focuses on the impacts of digitalization on individuals and organizations. He
has published extensively in the information systems field, with over 400 publications, 250 of which
are in major refereed journals. He has served as senior editor of several major journals, is a recipient
of numerous awards and a Fellow of the Association for Information Systems. He has been invited
to present numerous keynote addresses at various forums around the world.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 987

	Abstract
	Introduction
	Theoretical Background
	App Performance
	Role of Mobile Platform Innovations
	Role of Release Timing
	Role of the Adoption Curve of Mobile Platforms

	Research Model and Hypotheses Development
	Effect of the Adoption Curve
	Effect of Backward Compatibility

	Methods
	Data
	Measures
	Dependent Variable
	Independent Variables
	Control Variables

	Analysis
	Results
	Robustness Checks

	Discussion
	Research Contributions
	Practical Implications
	Limitations and Future Research

	Conclusion
	Notes
	References
	Notes on contributors

