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ABSTRACT 
This study focuses on app innovations based on mobile platform 
innovations (MPIs), examining how app developers can time the 
app innovations release to best leverage MPIs and increase app 
financial performance. We suggest that the performance is contin
gent on the adoption curve of mobile platform generations and the 
level of backward compatibility of the MPIs. We find support for our 
hypotheses after analyzing 1,213 MPI-based app innovations on the 
iOS mobile platform ecosystem. The main theoretical contribution of 
this study, supported empirically, is to better understand the role of 
the platform generation adoption curve and MPIs’ level of backward 
compatibility in the assessment of the effect of MPI-based app inno
vation release timing on complementor’s performance. We encou
rage third-party developers to create MPI-based app innovations 
more prominently and release them early during the growth stage 
of the adoption curve while prioritizing MPIs with no backward 
compatibility. 
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Introduction 

Mobile platforms provide important entrepreneurial opportunities for third-party devel
opers. In 2017, the Android mobile platform passed the milestone of more than 2 billion 
monthly active Android devices [60] while the iOS mobile platform reached 1.3 billion 
active devices in 2018 [9]. Together the iOS and Android mobile platforms are active on 
more than 3 billion devices monthly. This means that any third-party developer either 
a company or an individual that proposes a service or content through Android or iOS 
can reach a market of more than 3 billion active devices. Several Google services (e.g., 
Gmail, Google Play, Google Maps, and YouTube) offered on mobile platforms have 
reached 1 billion users [49]. While these services can be accessed through various plat
forms, the primary driver is app users on mobile platforms. For example, 75 percent of the 
1 billion Gmail’s user base access the service through mobile devices [37]. 

However, despite having access to a large market through mobile platforms, third- 
party developers face serious challenges to maintain or increase the performance of their 
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apps over time. Mobile platform ecosystems are hypercompetitive. In 2017, the number 
of apps submitted on the iOS platform averaged 9,000 per month [59]. Most top 
performing apps fail to sustain their performance over time (See [32]). In fact, apps 
lose 90 percent of their active users 30 days after the installation [8]. To compete in such 
highly competitive ecosystems, it is important that third-party developers leverage 
mobile platform innovations (MPIs) such as ARKit, SiriKit, and CoreML1 in order to 
create new app features and increase app performance. MPIs represent platform tech
nologies not previously available to developers adding to current technologies mix. 
MPIs do not include changes in existing platform technologies. Following previous 
research on how to profit from innovations [64, 63], we argue that in hypercompetitive 
environments, release timing is critical. Such markets change rapidly and have narrow 
product-market opportunities. Depending on whether the timing to enter a market is 
right or wrong, firms might seize or lose these important opportunities [61]. App 
developers’ views about release timing are divergent. For example, HSBC and 
Discover introduced FaceID-based authentication feature 10 months [48] and 4 months 
[47], respectively, after the release of iOS FaceID. Thus, there is a practical dilemma 
about release timing. 

While previous research highlights the importance of external developers for platform 
firms [46], a minimal amount is known about how these developers can leverage mobile 
platforms to increase their app performance. Against this backdrop, we propose to study 
the extent to which app developers leverage MPIs to improve app performance in 
a hypercompetitive environment by answering the following research question: what is 
the effect of MPI-based app innovations release timing on app performance? We define 
MPI-based app innovations as new app features (e.g., authentication features) that are 
created based on a given MPI. MPI-based app innovations can be released as new apps or 
updates of existing apps. To address the research question, we build on literature which 
suggests that entry timing plays an important role in innovation performance [7]. We 
argue that release timing is critical for MPI-based app innovations to realize greater app 
performance. Following the structure conduct performance (SCP) paradigm ([14, 50]), we 
posit that mobile platform characteristics drive the effectiveness of release timing. We 
suggest that the effect of release timing is contingent on the adoption curve of mobile 
platform generations and the level of backward compatibility of MPIs. We posit that the 
growth stage offers a window of opportunity during which MPI-based app innovations 
that are released early have an advantage over those that released late. Furthermore, we 
argue that during the maturity and decline stage, early entrants lose their advantage over 
late entrants. Finally, we suggest that the during the growth stage, the advantage of early 
entrants over late entrants is reinforced when the MPIs supported has no backward 
compatibility. 

To test our research model, we collected data about MPI-based app innovations that 
support the following iOS MPIs: FaceID, CoreML, ARKit, Apple Pay, TouchID and “Hey 
Siri.” These MPI-based app innovations were released during the period September 2014 
to July 2018. The results of our analyses support our hypotheses and thereby provide 
guidance on how companies can maximize the impact of their MPI-based app innova
tions. The rest of the paper is organized into four sections. The next section provides the 
theoretical background of the study. We present the role of MPIs, release timing, and 
adoption curve. The third section lays out the research model and the hypotheses 
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development regarding the impact of MPI-based app innovations release timing on app 
performance. The fourth section describes the empirical study including method, analysis, 
and findings. Finally, the fifth section discusses the contributions, implications, and 
limitations of the study. 

Theoretical Background 

In a hypercompetitive mobile environment with significant potential entrepreneurial 
opportunities [51], achieving superior performance in the market is an important concern 
for third-party developers. There is a large body of literature about app performance in 
mobile platforms (e.g., [12, 38, 58, 76, 77]). Prior literature emphasizes the effect of mobile 
platform technologies (e.g., toolkits) on app developer innovation [31, 72]. However, the 
influence of mobile platform technologies on app performance is poorly acknowledged. 
The goal of this study is to unravel how third-party developers can leverage MPIs (i.e., 
new mobile platform technologies) to achieve higher app performance. To do this, in the 
following sections, we discuss performance, the role of MPIs, release timing strategies, and 
the adoption curve to lay out the theoretical foundation for the study. 

App Performance 

The literature has not been consistent with the measure of performance in mobile plat
form ecosystems. Previous studies use metrics such as the number of downloads [58], app 
ratings [41], and revenues [43] which provide a limited assessment of app performance. 
Increasingly, scholars consider app performance to be accurately captured by app ranking 
in top charts [32, 40]. App ranking is a comprehensive metric that includes several factors 
such as app rating, user reviews, user retention, and the number of downloads [66]. Apps 
appear in different top charts based on the category of the app (e.g., finance, and lifestyle), 
the type of app (i.e., free versus paid versus grossing apps), the type of mobile device (e.g., 
handheld versus tablet). The rank of the app in the top chart indicates the app perfor
mance relative to competitor apps. Apps with the lowest rank are considered leaders in the 
market in terms of creativity, and innovativeness [5]. As MPI-based app innovations 
successfully reach a large market size, the app rank in the top chart improves signaling 
the technological leadership of the app in the market. Online Supplemental Appendix 
A presents a review of previous studies (including the performance variables) that 
examine the antecedents of app performance in mobile platform ecosystems. In this 
study, we argue that the impact of an MPI-based app innovation on app performance 
represents third-party developers’ value appropriation and is tied to the size of the market 
the app innovation can successfully reach. In the following section, we describe the role of 
MPIs in facilitating app performance. 

Role of Mobile Platform Innovations 

Mobile platforms provide the foundation for apps to run. Moreover, mobile platforms 
provide the functional logic for the mobile device to be operational. Each generation of 
mobile platform introduces three types of MPIs: (1) apps, (2) core services, and (3) 
support for new hardware components (i.e., sensors). The first type includes the creation 
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of new apps or the improvement of existing apps that end-users can interact with and/or 
third-party developers can support. For example, “Hey Siri” is a type 1 MPI that was 
introduced in the fifth generation of the iOS platform. The second type includes the 
creation of new core services or the improvement of existing ones. End-users cannot use 
these core services unless they are supported by apps. Thus, the second type of MPI is 
uniquely intended for third-party developers. For example, the eleventh generation of iOS 
mobile platform introduced augmented reality and machine learning that only third-party 
developers can use to create augmented reality and machine learning apps for end-users. 
The third type is related to the addition of new hardware components (e.g., sensors and 
chips) or the improvement of existing ones. All MPIs that are intended to support or 
control a sensor (e.g., fingerprint sensor, TrueDepth camera system) or chip (e.g., NFC 
chip) are considered type 3. For example, the eighth generation of iOS mobile platform 
introduced touch ID, a fingerprint sensor that can be used for authentication. These three 
types of MPIs have different levels of backward compatibility. Compared to types 1 and 2 
MPIs, type 3 MPIs are less likely to be backward compatible because they are highly 
dependent on the hardware (i.e., specific features of the physical device). Similarly, type 1 
MPIs are more likely to be backward compatible compared to type 2 MPIs. 

MPIs play an important role in app innovations. Each generation of the mobile plat
form (e.g., iOS 11) introduces several innovations (e.g. ARKit, FaceID, and CoreML). 
Third-party developers have the option to create app innovations based on these MPIs by 
proposing MPI-based app features. This study focusses on MPI-based app innovations. 
MPIs facilitate app innovations through toolkits including application programming 
interfaces (APIs) [10, 15, 75, 19, 20, 11, 70, 71]. 

Furthermore, MPIs play an important role in influencing the reprogrammability of 
mobile devices. We define the reprogrammability of a mobile device as the extent to which 
its functional logic can be extended to include additional functions (e.g., audio editing, 
video recording, and word processing). A mobile device that is highly reprogrammable is 
characterized by a separation between the functional logic and the device [75]. Therefore, 
the level of backward compatibility of MPIs influences the reprogrammability of mobile 
devices. The MPIs that are not backward compatible are the least distant to the device 
(type 3) while the MPIs that are backward compatible are the most distant to the device 
(type 1). Hence, more mobile devices are reprogrammable by app innovations supporting 
MPIs that are backward compatible. The level of backward compatibility of MPIs is 
significant since it influences the market that can be reached by app innovation. 

Role of Release Timing 

Release timing is important for the impact of MPI-based app innovations as they build on 
MPIs. It represents the entry timing of MPI-based app innovations (i.e., app update or 
new app with an MPI-based app feature) in the ecosystem. Products’ entry timing is an 
important concept to understand new product development performance. Prior literature 
extensively discusses the advantages associated with an early and late entry timing in the 
market. Through mechanisms such as technology leadership, preemption of scare assets, 
and switching costs, early entrants can outperform late entrants [16]. Early entrants build 
technology leadership through experience and R&D patenting. Moreover, they preempt 
late entrants by occupying geographic and distribution channel spaces. Early entrants 

960 SOH AND GROVER 



penetrate the market on a large scale compared to late entrants that target small-scale 
market niches. Finally, by increasing switching costs, they deter consumers to adopt late 
entrants’ products. Early entrants face less competition, increasing their presence in the 
market. Late entrants face more competition and incur the costs of evaluating the 
competitors’ offerings [33]. Since in the early stage there is no dominant brand or design 
in the market, early entrants face less difficulty to influence customers’ attitudes and 
perceptions and build brand loyalty [28]. Furthermore, since customers are exposed to 
the early entrants’ offering for a longer time period, they develop more familiarity with the 
early entrants’ offerings. 

Nevertheless, early entrants face high uncertainty risks because of lack of information 
[33]. Because of that uncertainty, they might not be able to choose the correct positioning 
for their offerings. Moreover, they might not be able to undertake the right competitive 
strategy. On the other hand, late entrants benefit from information and learning oppor
tunities [25]. They can learn from early entrant’s incorrect positioning and capture shifts 
in consumers’ preferences to better position their offering in the market. Moreover, they 
can outperform early entrants by introducing products of high quality, differentiating 
themselves from early entrants’ offerings. Thus, understanding the time to enter a market 
is difficult since early and late entry timings provide various advantages to compete in the 
market. Previous research suggests that in such competitive environments there is an 
optimal entry timing [29] or a window of opportunity [61] during which it is advanta
geous to enter a market. Firms that enter the market during the window of opportunity 
are more likely to survive. Therefore, the concept of a window of opportunity is important 
to understand the effect of MPI-based app innovation release timing on app performance. 

Role of the Adoption Curve of Mobile Platforms 

The adoption curve is important to understand the impact of MPI-based app innovations. 
According to the theory of innovation diffusion, the adoption curve follows an S curve 
[53]. The adoption curve goes through two major stages including the growth stage, and 
the maturity and decline stage. The growth stage represents the stage during which the 
number of adopters is rising. During the maturity and decline stage, the number of 
adopters slowly stops increasing before decreasing. The adoption curve is obtained by 
cumulating the number of adopters over time (See Figure 1). The S curve is characterized 
by five categories of adopters including innovators (2.5 percent of adopters), early 
adopters (13.5 percent of adopters), early majority (34 percent of adopters), late majority 
(34 percent of adopters), and laggards (16 percent of adopters) [53]. The ending point of 
the growth stage and the start point of the maturity and decline stage are determined 
empirically by observing the adoption curve. The point of the adoption curve where the 
curve becomes flat indicates the ending of the growth stage and the beginning of the 
maturity and decline stage. We focus on the adoption curve of each generation of mobile 
platforms. The performance of apps is heavily influenced by demand heterogeneity across 
the adoption curve of mobile platforms (see [52]). The two stages of the adoption curve of 
mobile platforms are distinct in terms of the categories of adopters. While laggards mostly 
appear during the maturity and decline stage, all the other four categories mostly appear 
during the growth stage. Compared to the other categories, laggards are more risk-averse 
and skeptic to innovations [53]. Thus, MPI-based app innovations released during the 
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growth stage face a different market of mobile platform users compared to those released 
during the maturity and decline stage. 

Research Model and Hypotheses Development 

We propose the following research model (See Figure 2) to understand how MPI-based 
app innovation release timing can increase performance. We argue that the effect of MPI- 
based app innovation release timing is contingent on the adoption curve of mobile 
platform generations. Moreover, we posit that the effect of MPI-based app innovation 
release timing is influenced by the level of backward compatibility of the MPI. Table 1 
presents the construct definitions. 

Figure 1. Adoption curve of innovations.4 

Figure 2. Research model. 
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An MPI-based app innovation release timing represents the length of time between the 
release dates of the MPI-based app innovation and the first mover MPI-based app 
innovation (i.e., the first app to support an MPI) (See Figure 3). The effect of release 
timing is contingent upon the window of opportunity which emerges during the adoption 
curve. Compared to the maturity and decline stage, the growth stage offers a window of 
opportunity for MPI-based app innovations. This is the period during which MPI-based 
app innovations can successfully reach the market. The rate of success is high when MPI- 
based app innovations target a market that is still unreached since it is more challenging to 
influence a market that has already been reached by competitor MPI-based app 
innovations. 

Effect of the Adoption Curve 

We argue that during the growth stage, early entrants have a greater effect on app 
performance than late entrants. During the growth stage, the size of the unreached 
market at the time of entry of an MPI-based app innovation decreases over time. The 
rate of growth of the market is the highest at the beginning of the adoption curve of 
mobile platform generations and progressively diminishes over time. For example, 
17 percent of the market adopted iOS 11 during the first week after its release (see 
Online Supplemental Appendix C). This 17 percent represents the unreached part of the 
market for any MPI-based app innovation that enters the market during that first week. 
Moreover, the following week (i.e., the second week after the iOS 11’s release date), an 
additional 12 percent of the market adopted iOS 11. Compared to MPI-based app 
innovations that entered during the first week of iOS 11, those that enter during 
the second week of iOS 11 target an unreached market of smaller size. Until the end 
of the growth stage, the size of the unreached market progressively diminishes. Thus, in 

Table 1. Construct definitions. 
Construct Definition References 

MPI-based App Innovation 
Release Timing 

Length of time between the release dates of the MPI-based app innovation 
and the first mover MPI-based app innovation (i.e., first app to support the 
MPI) 

[36] 

MPI Backward 
Compatibility 

Extent to which an MPI is supported by older generations of mobile devices 
released before the MPI’s release date. 

[24] 

Adoption Curve Number of adopters of an innovation. [53] 
App Performance App position in top charts [38]  

Figure 3. Conceptualization of app innovation entry timing. 
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terms of the size of the unreached market, early entrants have an advantage over late 
entrants during the growth stage. 

Furthermore, throughout the growth stage, different categories of mobile platform 
generation’s adopters emerge in the following chronological order: innovators, early 
adopters, early majority, and late majority according to the theory of innovation 
diffusion [53]. At the beginning of the growth stage, the mobile platform’s adopters 
are classified as innovators while at the end of the growth stage mobile platform 
generation’s adopters are classified as the late majority. The main difference among 
the categories of mobile platform generation’s adopters is the attitude toward innova
tion. Innovators are more likely to take risks and try new features while the late 
majority is more skeptical about innovation [53]. The late majority uses innovation 
after being certain of the quality of the innovation. Thus, it justifies its decision to 
adopt on the experience of other adopters. The level of skepticism increases while the 
willingness to take risks decreases throughout the adoption curve [53]. MPI-based app 
innovations that enter early during the growth stage target an unreached market that 
is willing to take risks, thus more likely to adopt innovation. However, MPI-based 
app innovations that enter late during the growth stage target an unreached market 
that is skeptical about innovation, thus less likely to adopt innovation. Late during the 
growth stage, new mobile platform generation adopters prefer MPI-based app inno
vations that have been tried by previous adopters suggesting that they are more 
favorable for MPI-based app innovations released early than those released late. 
Therefore, in terms of the attitude of the unreached market toward innovation, 
early entrants have an advantage over late entrants during the growth stage. Based 
on these two reasons regarding the size and attitude of the unreached market, we 
argue that: 

Hypothesis 1a (HQ1a): During the growth stage, the earliness of MPI-based app innovations 
has a positive effect on app performance.  

During the maturity and decline stage, there is a minimal amount to no growth in the 
market. Early and late entrants are no more distinguishable based on the size of the 
unreached market. During the maturity and decline stage, most of the market has been 
reached, and the lack of growth in the market causes early entrants to lose their advantage 
over late entrants in terms of the size of the unreached market. Moreover, during the 
maturity and decline stage, new mobile platform generation adopters fall into the category 
of laggards who are highly skeptical about innovation [53]. MPI-based app innovations 
that enter during the maturity and decline stage do not catch the interest of laggards who 
are more likely to not adopt, take a long time before making the decision to adopt, or 
adopt MPI-based app innovations that are already being used by most mobile platform 
users. Thus, in terms of the attitude of the unreached market toward innovation, early 
entrants lose also their advantage over late entrants during the maturity and decline stage. 
Therefore, we argue that: 

Hypothesis 1b (HQ1b): During the maturity and decline stage, the earliness of MPI-based 
app innovations release timing has no influence on app performance.  
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Effect of Backward Compatibility 

The growth stage provides a window of opportunity for MPI-based app innovations. 
Moreover, the significance of this window of opportunity is influenced by the level of 
backward compatibility of the MPIs. Backward compatibility represents the extent to 
which an MPI is supported by older generations of mobile devices released before 
the MPI’s release date (see [24]). For example, ARKit and FaceID are two MPIs 
introduced in 2017 by Apple. ARKit is backward compatible while FaceID is not. 
ARKit can be used on the latest generations (by the release date of iOS 11) of mobile 
devices (e.g., iPhone 8 and iPhone 8 plus) and on some older generations (e.g., 
iPhone 6s, iPhone 6s Plus, iPhone SE, iPhone 7, iPhone 7 Plus). However, FaceID 
can only be used on the latest generation (by the release date of iOS 11) of mobile 
device (i.e., iPhone X). 

Release timing during the window of opportunity is critical when MPIs are not 
compatible with previous generations of mobile device because the size of the market 
that can be reached is considerably reduced to the latest generations of mobile devices. 
For example, MPI-based app innovations supporting FaceID can only reach iPhone 
X users, while MPI-based app innovations supporting ARKit can reach users of iPhone 
X and older iPhone generations (e.g., iPhone 6s). Considering the limited size of the 
market that can be reached during the growth stage, late entrants have a serious 
disadvantage over early entrants because the competition is fierce. MPI-based app 
innovations that are released later during the growth stage face high competition from 
incumbent MPI-based app innovations. When the MPIs are compatible with previous 
generations of mobile platforms, late entrants face less competition from incumbent 
MPI-based app innovations since the size of the market that is still unreached is large. 
Late entrants can differentiate their MPI-based app innovations from early entrants’ 
MPI-based app innovations (i.e., high reprogrammability) to target the unreached 
market. 

Moreover, during the growth stage, the MPIs with no backward compatibility offer 
a niche market for MPI-based app innovations. Users are required to obtain the latest 
generation of mobile device (e.g., iPhone X) and mobile platform (e.g., iOS 11), thus 
incurring a high cost. The user’s willingness to pay a high cost to have the latest generation 
of mobile device and mobile platform signals a high user’s interest in the MPIs. In 
contrast, when the MPI is supported by previous generations of mobile device, the users 
incur a small cost to use MPIs since they do not have to upgrade their mobile device (e.g., 
iPhone 7) but only the mobile platform (e.g., iOS 11). Therefore, the early entrant 
advantage holds if the users show an interest in MPIs. The advantage of early entrants 
over late entrants increases in a market wherein users have a high interest in the MPIs. 
Thus, it is critical for MPI-based app innovations to enter early during the growth stage 
when the MPIs are not compatible with older generations of mobile devices. Therefore, we 
argue that: 

Hypothesis 2 (HQ2): During the growth stage, the earliness of MPI-based app innova
tions has a greater impact on app performance when the MPIs are not backward 
compatible.  
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Methods 

We tested our hypotheses in the context of the iOS mobile platform within the 
U.S. market. We choose the iOS mobile platform over the Android mobile platform 
because the iOS market is more effective at replacing older generations of the iOS mobile 
platform with newer generations than the Android market. A close examination at the 
adoption rate of both the latest iOS and Android mobile platforms in 2017 shows that in 
September 2018, a year after the release of the mobile platforms, iOS 11 was adopted by 
85 percent of compatible devices [45] while Oreo 8 was adopted by less than 15 percent of 
compatible devices [26]. Since this study is about the performance of app innovations 
enabled by mobile platform innovations, it is important to study a mobile platform whose 
market is dominantly operating on the latest generation. Furthermore, The iOS mobile 
platform ecosystem is hypercompetitive. Market data indicate in the 1st quarter of 2018, 
more than a thousand new iOS apps were released daily [60]. App innovations supporting 
the latest mobile platform generation are released at a fast pace. Market data reveal that 
four months after the release of iOS 11, close to 2, 000 third-party apps that support ARKit 
([27, 44]) were released in the App store. Such fast paced and highly competitive market 
creates several challenges to sustain the performance of app innovations, even for a few 
weeks. 

The focal app innovations are those supporting at least one of the following MPIs: 
FaceID, ARKit, CoreML, “Hey Siri”, ApplePay, and TouchID. FaceID, CoreML, and 
ARKit were introduced in iOS 11 released in 2017. “Hey Siri” was introduced in iOS 10 
released in 2016 while ApplePay and TouchID were introduced in iOS 8 released in 2014. 
We choose these six MPIs because they have various levels of backward compatibility (see 
Online Supplemental Appendix B). Moreover, these six MPIs have been identified as key 
features by Apple to facilitate third-party development and have attracted considerable 
attention from iOS users. For example, a month after the release of iOS 11, ARKit-only 
apps cumulated over 3 million downloads. 

We use the description and release notes of iOS third-party apps to identify focal MPI- 
based app innovations. The identification is based on a keyword search mechanism. We 
use the following keywords taking into account the letter case: “faceid,” “face id,” “siri,” 
“coreml,” “core ml,” “touch id,” “touchid,” “applepay,” “apple pay,” “arkit,” and “ar kit.” 
We ensure this keyword-based approach is reliable by reading random release notes and 
confirming that these release notes describe MPI-based app innovations. We are able to 
identify MPI-based app innovations since the release of the MPIs until July 2018. Thus, 
MPI-based app innovations that support CoreML, ARKit, and FaceID are identified from 
September 2017 to July 2018, those supporting “Hey Siri” are identified from 
September 2016 to July 2018, and those supporting ApplePay and TouchID are identified 
from September 2014 to July 2018 

Data 

The data are collected from two primary sources: appfigures (www.appfigures.com) and 
App Annie (www.appannie.com) which are two leading companies in app market data 
and insights. The app market data provided by appfigures and App Annie have been used 
in previous studies (e.g., [32, 23, 3, 2, 40]). Appfigures and App Annie have been 
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accumulating data about iOS apps from Apple iTunes since 2009. Several iOS third-party 
developers and analysts are extensively relying on the appfigures and App Annie database 
to have a comprehensive view of the iOS apps market. Specifically, we use appfigures to 
collect data about app performance. Moreover, we use appfigures to search for iOS apps 
that support at least one of the following MPIs: FaceID, ARKit, CoreML, “Hey Siri”, 
ApplePay, and TouchID. Finally, we use App Annie to collect iOS apps’ description and 
release notes. The dataset contains information on iOS MPI-based app innovations that 
support FaceID, ARKit, CoreML, “Hey Siri”, ApplePay, and TouchID. We observe the 
market performance by looking at the iOS apps that appear in the following ranking lists: 
the top 1,000 free apps, the top 1,000 paid apps, and the top 1,000 grossing apps from the 
date of the MPI release until July 2018. The position of an iOS app in any of these ranking 
lists is a clear indication of market performance considering the millions of apps that are 
currently available on the iOS app market. These ranking lists are usually used to under
stand apps market performance [32]. The iOS apps that are ranked as top apps are 
updated regularly. Most highly ranked apps are updated more than once per month. 
Thus, large periods of observation such as a year or month will not be appropriate to 
measure app performance. Shorter periods of observation are necessary to identify the 
performance of iOS MPI-based app innovations. We choose to observe the daily perfor
mance of iOS app in order to capture the app performance dynamics in the market over 
a period. In addition to data on iOS apps ranking, we obtained data about each iOS MPI- 
based app innovations release timing by examining the app release notes. The final dataset 
comprises 1,214 iOS MPI-based app innovations of which 548 have no backward compat
ibility. This dataset represents all MPI-based app innovations for which we can have 
complete data on key variables of interest. Moreover, these MPI-based app innovations 
support at least one of the six MPIs (i.e., FaceID, ARKit, CoreML, “Hey Siri”, ApplePay, 
and TouchID). The number of MPI-based app innovations supporting FaceID, ARKit, 
CoreML, “Hey Siri”, ApplePay, and TouchID is, respectively, 371, 40, 6, 74, 177, and 545. 

Measures 

Dependent Variable 
We examine the performance of iOS app by observing the variation (delta) of the app 
ranking following a pre-post design. Apps are ranked based on market performance. App 
ranking in the top free and top paid charts is based mainly on the number of downloads. 
Regarding the top grossing chart, app ranking is based mainly on the revenues generated. 
We calculate the average app ranking before and after the release date of the MPI-based 
app innovation. Our data contain app ranking 4 weeks before and 4 weeks after the entry 
(release) of the MPI-based app innovation. The difference between the average post-entry 
app ranking and the average pre-entry app ranking is used to measure app performance. 
The average post-entry app ranking is calculated during a period of 21 days after the 
release timing, and the average pre-entry app ranking is calculated during a period of 7 
days before the release timing.2 

Independent Variables 
Entry timing has been extensively used in the strategic management literature to explain 
firm performance (e.g., [7, 1, 22, 16, 36]). Following previous studies [1], we assess the 
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release timing of an MPI-based app innovation by measuring the length of time between 
the release dates of the MPI-based app innovation and the first mover MPI-based app 
innovation. Specifically, we count the number of days between the release dates of the 
MPI-based app innovation and the first mover MPI-based app innovation. The first app 
among all apps to release an MPI-based feature is identified as first-mover. Moreover, we 
examine the effect of the MPIs by using a dummy variable backward compatibility. The 
dummy variable takes a value 1 if the MPI is compatible with previous generations of 
mobile devices, and a value of 0 if the MPI is only compatible with the same-year 
generations of mobile devices. ARKit, CoreML, “Hey Siri,” and TouchID have backward 
compatibility while FaceID and ApplePay do not. Finally, we separate the growth stage 
from the maturity and decline stage of mobile platform generations. Based on previous 
studies on the diffusion of innovations (e.g., [53]), we consider the maturity and decline 
stage to start when the level of adoption of a given mobile platform generation reaches 86- 
88 percent. After that threshold, the adoption curve becomes flat before going down. We 
use publicly available data on the adoption rate of iOS and iPhone to estimate the end date 
of the growth stage, and the start date of the maturity and decline stage (see Online 
Supplemental Appendix C). We conclude that the latest possible end date of the growth 
stage is 260 days after the release date of a given mobile platform generation. Moreover, 
the maturity and decline stage starts right after the growth stage, thus 261 days after the 
release date of a given mobile platform generation.3 

Control Variables 
We control for variables that may influence the performance of MPI-based app innova
tions. Some apps appear in multiple categories. The number of categories can affect the 
discoverability of the app and, thus, can influence the performance of MPI-based app 
innovations. We control for this effect by measuring the number of categories per app as 
of July 2018. We use a time-invariant app-level control since we are unable to observe 
changes in the number of categories per app over time. Even though we focus on the U.S 
market, app discoverability can also be influenced by the number of languages supported 
by the app and the number of countries that can access the app. For example, apps that 
support English and additional languages can reach more non-English speakers in the 
U.S. than apps that only support English. Moreover, an app that is available in multiple 
countries can have higher discoverability in the U.S. market because of social influence. 
For example, an individual in the United States may be influenced to use an app if this app 
is recommended by a friend or a close relative. In some cases, that friend or close relative 
can be someone outside the United States. We control for these effects by measuring the 
number of languages supported by each app and the number of countries where the app is 
accessible as of July 2018. We use time-invariant app-level controls since we are unable to 
observe changes in the number of languages and countries per app over time. We control 
for the app quality and usability on the app performance by measuring the number of and 
the average app ratings. Apps with high quality and usability are used by and can attract 
more mobile platform users. We also control for the seniority of the app by measuring the 
number of days between the date of the first release of the app and the date of the release 
of the focal MPI-based app innovation. Senior apps have an advantage over recent apps 
because mobile platform users are more likely to be familiar with senior apps than recent 
apps. Moreover, app seniority has been used to take into account brand strength, 
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marketing capabilities, and app development superiority [32]. We control for the price 
effect on MPI-based app innovations performance by measuring the price of the app as of 
July 2018. We also control the complexity of the app using the size of the code. We use 
time-invariant app-level controls since we are unable to observe changes in the app price 
and app complexity over time. Furthermore, we consider different types of ranking 
whether it is handheld versus tablet, or top free versus top paid versus top grossing. 
Finally, we use dummy variables to control for the year-specific effects and the app 
category-specific effects. Table 2 presents the measurement for each variable of the study. 

Analysis 

We used a pretest-posttest design to examine the effect of a given MPI-based app 
innovation release timing on app performance. We conducted an ordinary least squares 
(OLS) regression-described by equation 1- with robust standard errors on the sample. We 
ensure there is no major concern regarding the OLS assumptions while conducting the 
analyses (see Online Supplemental Appendix E). 

Results 

The descriptive statistics and the correlation matrix are reported in Table 3. Moreover, we 
report the results from OLS in Table 4. The models predict app performance. All the 
standard errors are robust to correct for heteroscedasticity and autocorrelation. App 
performance is high when the app rank is low. Thus, a negative coefficient indicates an 
increase in performance. Model 1 tests the effect of MPI-based app innovation release 
timing. Model 2 tests the effect of the interaction between the MPI-based app innovation 
release timing and the level of backward compatibility of MPIs. Model 3 tests the effect of 
MPI-based app innovation release timing during the stage of growth while model 4 
examines the effect of MPI-based app innovation release timing during the stage of 
maturity and decline. Model 5 tests the effect of the interaction between the MPI-based 
app innovation release timing and the level of backward compatibility of MPIs during the 

Table 2. Variable measurement. 
Variable Name Variable Measurement 

App Performance Difference between post-release timing app ranking and pre-release timing app ranking 
MPI-based App Innovation 

Release Timing 
Difference between the release date of the MPI-based app innovation and the release 
date of the pioneer (in number of days) 

Backward Compatibility Equals 1 if the MPI is supported by mobile devices released before the release date of 
the MPI, and 0 otherwise 

Average App Rating Average app rating up to the release date of the MPI-based app innovation 
Number of App Ratings Number of app ratings up to the release date of the MPI-based app innovation 
App Seniority Number of days since the app has been available to users 
App Size The size of the code file of the app (in bits) 
App Price The price of the app (in dollars) 
Number of App Categories Number of categories where the app is listed 
Geographical App Accessibility Number of countries where the app is available 
Linguistic App Accessibility Number of languages supported by the app 
Type of App Ranking Equals 1, 2, or 3 if the app appears respectively among top free, top paid, or top 

grossing apps (dummy variables) 
Type of Device Equals 1, or 2 if the app appears respectively among handheld top apps or tablet top 

apps (dummy variable)  

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 969 



stage of growth. Thus, models 3 and 4 are used to test the hypotheses H1a and H1b, 
respectively. Finally, model 5 is used to test the hypothesis H2. 

Models 1 and 2 of Table 4 are provided as exploratory analyses examining the effect of 
release timing and backward compatibility over both the growth, and the maturity and 
decline stages. The results indicate that the MPI-based app innovation release timing 
statistically does not predict app performance. However, when we distinguish between the 
growth stage and the maturity and decline stage, the results show that MPI-based app 
innovation release timing is an important predictor of app performance depending on the 
stage of the adoption curve. 

In H1a, we posit that the effect of MPI-based app innovation’s release timing on the 
app performance is positive during the growth stage. This hypothesis is supported as the 
coefficient of MPI-based app innovation release timing in Model 3 (See Table 4) is positive 
and statistically significant (.21, p-value < .01). Thus, during the growth stage, early 
entrants have a greater impact on app performance than late entrants. An increase of 
one day in the release timing is associated with a loss of .21 position in the ranking. 
Moreover, Model 4 of Table 4 indicates that there is no effect between the MPI-based app 
innovation release timing and app performance during the maturity and decline stage as 

Table 3. Data descriptive and correlations. 
Variable N Mean SD Min Max 1 

1. App Performance 1,213  -.85  103.51  -725.1  532.25  1.00 
2. MPI-based App Innovation Release Timing 1,213  436.13  369.94  0  1,272  -0.05 
3. Backward Compatibility 1,213  .55  .50  0  1  0.04 
4. Average App Rating 1,213  3.73  1.01  0  5  -0.07* 
5. Number of App Ratings 1,213  11051.9  69011.52  0 1.2e+06  0.01 
6. App Seniority 1,213  1472.98  894.02  2  3556  -0.01 
7. App Size 1,213 8.06e+7 1.04e+8 2.14e+6 1.79e+9  0.07* 
8. App Price 1,213  1.89  7.44  0  119.99 -2e-04 
9. Number of App Categories 1,213  1.87  .36  1  4  0.06* 
10. Geographical App Accessibility 1,213  131.83  53.33  1  155  0.04 
11. Linguistic App Accessibility 1,213  7.68  8.16  1  41  0.03 
12. Type of App Ranking 1,213  1.76  .87  1  3  0.09* 
13. Type of Device 1,213  1.41  .49  1  2  0.04 

Variable 2 3 4 5 6 7 

2. MPI-based App Innovation Release Timing  1.00           
3. Backward Compatibility  0.30*  1.00         
4. Average App Rating  -0.05  0.10*  1.00       
5. Number of App Ratings  0.11*  0.03  0.08*  1.00     
6. App Seniority  -0.08*  -0.24*  0.04  0.07*  1.00   
7. App Size  -0.01  -0.02  -0.02  0.01  0.04  1.00 
8. App Price  -0.06*  0.08*  0.09*  -0.03  0.03  -0.04 
9. Number of App Categories  1.1e-03  0.04  0.11*  -0.08*  -0.02  0.07* 
10. Geographical App Accessibility  -0.06*  0.08*  0.06  -0.05  -0.05  -0.04 
11. Linguistic App Accessibility  -0.04  0.02  0.09*  -0.04  0.02  0.26* 
12. Type of App Ranking  -0.06*  0.14*  0.06*  -0.03  0.02  -0.07* 
13. Type of Device -7e-04  0.02  0.03  -0.02  0.01  0.05 

Variable 8 9 10 11 12 

8. App Price  1.00         
9. Number of App Categories  0.08*  1.00       
10. Geographical App Accessibility  0.11*  0.22*  1.00     
11. Linguistic App Accessibility  0.05  0.19*  0.16*  1.00   
12. Type of App Ranking  0.20*  0.20*  0.31*  0.01  1.00 
13. Type of Device  0.03  0.05  0.12*  0.06*  0.07*  

* p < 0.05.  
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posited in H1b. The coefficient of MPI-based app innovation release timing in Model 4 is 
statistically non-significant (-1.2e-02, p-value > .1). Thus, during the maturity and decline 
stage, early entrants do not a statistically greater impact on app performance than late 
entrants. 

In H2, we posit that the effect of MPI-based app innovation’s release timing on the app 
performance is moderated by the level of backward compatibility of the MPI such that 
during the growth stage, the effect is positive and stronger for MPI-based app innovations 
supporting MPIs that are not compatible with previous generations of mobile devices. 
Based on Model 5 of Table 4, we can conclude that H2 is supported as the coefficient for 
the interaction term between MPI-based app innovation’s release timing and MPI’s 
backward compatibility is negative and statistically significant (-.43, p-value < .01). 
Model 5 of Table 4 indicates that the effect of release timing on app performance is 
positive (.39) when there is no backward compatibility. Thus, early entrants have a greater 
impact on app performance than late entrants when the MPIs are not supported by 
previous generations of mobile devices. An increase of one day in the release timing is 
associated with a loss of .39 position in the ranking. This effect is reduced when the MPI is 
backward compatible. Interestingly, the effect release timing on app performance becomes 
negative (.-04) when there is backward compatibility, indicating that late entrants have 

Table 4. Results.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

3.4e-03  2.2e-02  .21*  -1.2e-02  .39**  
(1.3e-02)  (1.8e-02)  (9.7e-02)  (2.6e-02)  (.14) 

Backward Compatibility    36**      45*    
(12)      (20) 

MPI-based App Innovation Release 
Timing * Backward Compatibility    

-3.9e-02*      -.43**    
(1.9e-02)      (.15) 

Average App Rating  -8**  -8.1**  -2.9  -10*  -3.2  
(3)  (3)  (4.6)  (4.3)  (4.5) 

Number of App Ratings  3.3e-05  3.5e-05  3.1e-06  6.7e-05  7.5e-07  
(3.9e-05)  (3.9e-05)  (3.1e-05)  (4.4e-05)  (2.9e-05) 

App Seniority  -1.0e-03  -1.5e-04  -1.4e-03  -1.9e-03  2.6e-04  
(3.7e-03)  (3.7e-03)  (5.9e-03)  (4.9e-03)  (5.9e-03) 

App Size  6.4e-08*  5.7e-08*  6.2e-08  4.7e-08  8.2e-08  
(2.6e-08)  (2.8e-08)  (5.2e-08)  (3.4e-08)  (5.4e-08) 

App Price  -.13  -.15  7.1e-02  -4.7+  .13  
(.37)  (.36)  (.27)  (2.8)  (.27) 

Number of App Categories  .71  .22  1.2  9.5  -.21  
(10)  (10)  (14)  (15)  (13) 

Geographical App Accessibility  -1.4e-02  -2.0e-02  -5.9e-02  -1.5e-03  -5.1e-02  
(6.0e-02)  (6.0e-02)  (9.1e-02)  (8.1e-02)  (9.2e-02) 

Linguistic App Accessibility  -.34  -.38  .11  -.4  3.2e-02  
(.4)  (.39)  (.63)  (.53)  (.64) 

Type of App Ranking (Top Paid)  17*  16+  34**  19  33**  
(8.8)  (8.8)  (12)  (16)  (12) 

Type of App Ranking (Top Grossing)  24**  23**  35**  22  33**  
(8.8)  (8.8)  (12)  (14)  (12) 

Type of Device (Tablet)  6.9  7.4  3.2  12  4.2  
(6.5)  (6.5)  (8.3)  (10)  (8.2) 

Constant  -6.1  -35*  -25+  3.6  -49*  
(13)  (17)  (14)  (23)  (20) 

N  1213  1213  600  610  600 
R Squared  0.063  0.069  0.099  0.092  0.112 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001 
Year and category dummies included.  
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a greater impact on app performance than early entrants when the MPI is backward 
compatible. Figure 4 illustrates the moderation. 

Robustness Checks 

We conduct several robustness checks to ensure that our main findings are robust to 
issues such as omitted variables, measurement errors, selection bias, and endogeneity. The 
variance in app performance can be explained by the novelty of the MPI. The customer 
interest in a specific MPI might drive its interest in the MPI-based app innovation. For 
example, if customers are more interested in FaceID compared to “Hey Siri,” we expect 
MPI-based app innovations that support FaceID to have a greater impact on app perfor
mance than MPI-based app innovations supporting “Hey Siri.” Thus, we control for each 
type of MPI (i.e., ArKit, FaceID, TouchID, “Hey Siri,” ApplePay, and CoreML). The 
results (See Table 5, for more details see Online Supplemental Appendix E) indicate that 
during the growth stage, MPI-based app innovations that support ArKit and FaceID have 
a greater impact on app performance than MPI-based app innovations that support 
ApplePay. Importantly, the results corroborate the main findings, indicating that our 
main analyses are robust. 

In the next set of analyses, we show that our findings are robust to alternative measures 
of app performance. Initially, we measure app performance over the period [-7; +21]. 
Specifically, we adopt a pre-post design wherein we calculate the difference between pre- 
release timing app ranking and the post-release timing app ranking. We measure the pre- 
release timing app ranking by averaging the app ranking over 7 days before the release 
date of the MPI-based app innovation. Moreover, we measure the post-release timing app 
ranking by averaging the app ranking over 21 days after the release date of the MPI-based 
app innovation. Using averages allows us to mitigate the volatility of app ranking. We 
check the robustness of our main findings by using alternative time periods to measure the 

Figure 4. Effect of MPI-based app innovation release timing across different levels of MPI backward 
compatibility during the growth stage. 
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app performance. We use the following time periods: [-3; +7], [-3; +14], [-3; +21], [-3; 
+28], [-7; +7], [-7; +14], and [-7; +28]. The results (see Table 6, for more details see Online 
Supplemental Appendix F) support our main findings, showing that our main analyses are 
robust. 

We identify the growth stage, and the maturity and decline stage by using publicly 
available data about the adoption rate of iOS and iPhones. We conclude that the 
growth stage starts with the release date of iOS and ends approximatively 260 days 
later. The growth stage is followed by the maturity and decline stage. We conduct 
several analyses using alternative and conservative measures of the two stages. We 
consider the growth stage ends earlier using the following time periods: [0, 200], [0, 
210], [0, 220], [0, 230], [0, 240], and [0, 250]. Moreover, we consider the maturity and 
decline stage starts later using the following start date: 270, 280, 290, 300, 310, and 320 
days after the release date of iOS. The results (See Table 7, for more details see Online 
Supplemental Appendix G) are consistent with the main findings indicating that our 
main analyses are robust. 

By deciding the MPIs to consider in this study, our analyses can suffer from selection 
bias. We selected MPIs that have been identified as major innovations by Apple and 

Table 5. Results while controlling for the mobile platform innovations.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

2.0e-02  3.8e-02 .22* -9.9e-03  .4**  
(3.2e-02)  (3.6e-02) (.11) (4.7e-02)  (.14) 

Backward Compatibility    12    36    
(14)    (22) 

MPI-based App Innovation Release 
Timing * Backward Compatibility    

-2.1e-02    -.44**    
(2.0e-02)    (.15) 

MPI (ARKit)  59  57 -68* 1.3e+02*  -67*  
(41)  (42) (32) (53)  (33) 

MPI (CoreML)  45  46 -1.2   -17  
(38)  (38) (27)   (27) 

MPI (FaceID)  16  23 -51* -8.8  -73**  
(38)  (38) (24) (60)  (27) 

MPI (“Hey Siri”)  48  48 -43 56  -47  
(32)  (32) (36) (43)  (36) 

MPI (TouchID)  -1.7  0 4.4 11  0  
(8.7)  (.) (18) (11)  (.) 

Observations  1213  1213 600 613  600 
R Squared  0.071  0.072 0.102 0.108  0.114 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 6. Results using [-3, +7] time period to measure the app performance.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

8.7e-03 3.7e-02+  .35*  -2.0e-02 .51**  
(1.6e-02) (2.0e-02)  (.14)  (2.9e-02) (.18) 

Backward Compatibility   36*     14   
(15)     (24) 

MPI-based App Innovation Release 
Timing * Backward Compatibility   

-5.1e-02*     -.35+   
(2.0e-02)     (.18) 

Observations  1184 1184  588  596 588 
R Squared  0.078 0.082  0.144  0.092 0.151 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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received a significant consumer’s interest. These MPIs release dates cover the period from 
2014 to 2017. To show that our main analyses are robust and do not suffer any selection 
bias, we reduce the sample size by considering MPIs released in 2017. We limit the 
analyses to MPI-based app innovations supporting CoreML, ArKit, and FaceID which 
are major MPIs released in 2017 by Apple. The results (see Table 8, for more details see 
Online Supplemental Appendix H) corroborate the main findings, indicating that our 
main analyses are robust and selection bias is not a major concern in our study. 

Previous studies tend to consider release timing to be an endogenous variable (e.g., [7]), 
thus raising the issue of endogeneity in our analyses. Several econometric approaches have 
been developed to control for endogeneity. Following previous studies [34, 55], we use the 
Garen two-stage econometric model to take into account any potential endogeneity [18]. 
The Garen approach extends the Heckman approach to account for selection variables 
that are continuous [18]. Since release timing is a continuous variable, the Garen approach 
is suitable to correct for selection bias. Developers may self-select into releasing MPI- 
based app innovation early or late based on several factors. Some of these factors are 
observable (e.g., user rating) while others are not (e.g., managerial preferences). In the first 
stage, we regress the variable release timing on several variables that are likely to influence 
the timing of MPI-based app innovation. Using the residuals η from the first stage, we 
calculate the interaction term η × release timing. We include both the residuals and the 
interaction term in the second stage to correct for endogeneity. The residuals η account 
for selection bias while the interaction term η × release timing accounts for unobserved 
heterogeneity over the range of the selection variable. We analyze the first and second 

Table 7. Results using alternative time periods for the growth, and maturity and decline stages.  
Model 1: Growth 

Stage [0, 200] 
Model 2: Growth 

Stage [0, 200] 
Model 1: Maturity and 
Decline Stage [270, -] 

Model 2: Maturity and 
Decline Stage [280, -] 

MPI-based App Innovation 
Release Timing  

.37*  .64*  -1.8e-03  -3.3e-02  
(.17)  (.31)  (3.2e-02)  (3.0e-02) 

Backward Compatibility    45+        
(27)     

MPI-based App Innovation 
Release Timing * Backward 
Compatibility    

-.48+        
(.27)     

Observations  425  425  575  575 
R Squared  0.140  0.149  0.085  0.085 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 8. Results using a different sample.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing 

.23+ .25+ .28+ -15 .34* 
(.14) (.15) (.16) (9.7) (.17) 

Backward Compatibility  33   56  
(38)   (46) 

MPI-based App Innovation Release 
Timing * Backward Compatibility  

-9.9e-02   -.62*  
(.2)   (.26) 

Observations 417 417 369 48 369 
R Squared 0.117 0.118 0.125 0.830 0.140 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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stage models using OLS with robust standard errors to correct for heteroscedasticity. The 
results (see Table 9, for more details see Online Supplemental Appendix I) show that the 
correction terms are not statistically significant (p-value above .10). Moreover, the results 
support our main findings, thus indicating that our main analyses are robust, and 
endogeneity is not a major concern in our study. 

The effect of release timing on app performance can be explained by differences 
between third-party developers who adopt MPIs and those who do not. In order to 
alleviate such concern, we conduct a robustness check using a difference-in-difference 
type approach. We create a control group using propensity score matching. We match the 
third-party developers adopting MPIs with those who do not adopt based on the app 
quality (mean app ratings are 3.65 for control group and 3.86 for treatment group at the 
time of MPI-based app innovation release date) and app ranking (mean app ranks are 
312.6 for control group and 312.14 for treatment group at the time of MPI-based app 
innovation release date). As the third-party developers in the control group do not 
support MPIs, the value of release timing in the control group corresponds to the release 
timing of third-party developers in the treatment group. We measure pre-post difference 
in app rankings and app downloads. The results (see Table 10, for more details see Online 
Supplemental Appendix J) support our main findings indicating that release timing is 
critical for app performance especially when MPIs have no backward compatibility. We 
reach similar conclusion by reducing our sample to free apps (see Table 11, for more 
details see Online Supplemental Appendix K). 

While app ranking provides an accurate representation on app performance, we also 
test our hypotheses using app downloads as an alternative measure of app performance. 
We follow previous research [17] to estimate the number of app downloads from the 
app rank. The results (see Table 12, for more details see Online Supplemental Appendix 
L) show that MPI-based app innovations released early increase app downloads to 
a greater extent than those released later. Hence, the results corroborate our main 
findings. 

App price plays an important role in determining app performance. In our main 
analyses, we ensure that there are no changes of price during our observation period 
which goes from 7 days before the release of MPI-based app innovation to 28 days after. 
Moreover, we conduct additional analyses using a reduced sample focusing on apps that 

Table 9. Results using Garen approach to control for endogeneity.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing 

4.1e-02 8.1e-03 .26* 3.0e-03 .58*** 
(4.6e-02) (4.7e-02) (.13) (8.9e-02) (.16) 

η -8.0e-02 4.6e-03 -5.9e-02 -.22+ -.12 
(6.5e-02) (6.7e-02) (8.7e-02) (.13) (.1) 

MPI-based App Innovation Release 
Timing * η 

1.6e-05 2.5e-05 3.7e-05 1.6e-04 -7.0e-04+ 
(4.6e-05) (4.6e-05) (3.1e-04) (9.9e-05) (3.6e-04) 

Backward Compatibility  38**   42+  
(13)   (23) 

MPI-based App Innovation Release 
Timing * Backward Compatibility  

-4.2e-02*   -.61***  
(1.9e-02)   (.17) 

Observations 1213 1213 600 613 600 
R Squared 0.064 0.069 0.099 0.109 0.118 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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are free. The results for both app ranks (see Table 13, for more details see Online 
Supplemental Appendix M) and app downloads (see Table 14, for more details see 
Online Supplemental Appendix N) indicate that our main findings are robust. 

The effect of release timing on app performance might result from the difference of 
innovativeness of MPI-based app innovation as third-party developers’ app innovations 
are not created equal. Following prior literature [68], we measure the text similarity score 

Table 10. Results using matched samples following a difference-in-difference approach,  
Dependent Variable = App Ranking 

Model 1 Model 2 Model 3 Model 4 Model 5 

Release Timing 5.5e-04 -8.5e-02 -5.2e-03 -.13 -8.8e-02 
(1.3e-02) (.13) (1.7e-02) (.14) (.14) 

Treatment 6.7 -24 -7.4 -47+ 12 
(12) (21) (17) (25) (32) 

Release Timing * Treatment 5.3e-03 .3* 2.0e-03 .41** 8.2e-02 
(1.8e-02) (.13) (2.4e-02) (.15) (.16) 

N 2411 1167 1244 847 707 
R Squared 0.035 0.054 0.080 0.066 0.092  

Dependent Variable = App Downloads 

Model 1 Model 2 Model 3 Model 4 Model 5 

Release Timing .54 8+ 1.1 6.6+ 12** 
(.48) (4.2) (.74) (3.9) (4.5) 

Treatment 4.5e+02 1.5e+03* 9.5e+02 1.8e+03+ 3.2e+03+ 
(4.4e+02) (7.6e+02) (1.2e+03) (9.2e+02) (1.9e+03) 

Release Timing * Treatment .4 -8.8* 1.3 -10+ -12 
(.99) (4.4) (1.7) (5.3) (8) 

N 2411 1167 1244 847 707 
R Squared 0.058 0.161 0.069 0.214 0.189  

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 11. Results using matched samples of free apps following a difference-in-difference approach.  
Dependent Variable = App Ranking 

Model 1 Model 2 Model 3 Model 4 Model 5 

Release Timing -1.1e-02 -.2 -2.4e-02 -.24 -.19 
(1.6e-02) (.15) (2.2e-02) (.16) (.16) 

Treatment 6.8 -12 -21 -34 26 
(14) (26) (20) (28) (49) 

Release Timing * Treatment 5.4e-03 .27+ 9.6e-03 .36* .15 
(1.9e-02) (.15) (2.6e-02) (.18) (.2) 

N 1104 482 622 421 318 
R Squared 0.020 0.046 0.048 0.054 0.097  

Dependent Variable = App Downloads 

Model 1 Model 2 Model 3 Model 4 Model 5 

Release Timing .62 9+ 1.5 7.4 15** 
(.62) (5) (.95) (4.7) (5.2) 

Treatment 4.7e+02 1.7e+03+ 1.0e+03 2.1e+03+ 3.0e+03 
(5.2e+02) (9.2e+02) (1.3e+03) (1.1e+03) (2.0e+03) 

Release Timing * Treatment .49 -10+ 1.3 -13+ -13 
(1.2) (5.4) (1.9) (6.7) (9) 

N 1104 482 622 421 318 
R Squared 0.068 0.179 0.083 0.232 0.217  

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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between an MPI-based app innovation and all prior MPI-based app innovations using the 
app release notes. We incorporate an additional control variable in our model to capture 
the effect of app innovation differentiation. Since app innovation differentiation is assessed 
using the text similarity score, high value indicates low app innovation differentiation. The 
results obtained for both app ranks (see Table 15, for more details see Online 
Supplemental Appendix O) and app downloads (See Table 16, for more details see 
Online Supplemental Appendix P) show that our main findings are robust. 

The lagged effect of user base measured as the number of app reviews might create 
endogeneity [39]. In Online Supplemental Appendix Q, we explain why our model is 
robust to this endogeneity issue. Moreover, we use an instrumental variable estimator 
following Anderson and Hsiao [4] suggestion and find that the results (see Table 17) 
support our main findings. 

Table 12. Results using app downloads as measure of app performance.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

-1.2 .68  -12*  3.7 -13*  
(5.6) (2.3)  (5.9)  (9.3) (5.5) 

Backward Compatibility   4.1e+02     -2.5e+03   
(1.5e+03)     (2.2e+03) 

MPI-based App Innovation Release 
Timing * Backward Compatibility   

3.2     21*   
(2.4)     (9.8) 

N  1060 1060  516  544 516 
R Squared  0.071 0.069  0.249  0.121 0.141 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 13. Results using app ranking as measure of app performance with a sample of free apps.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

9.9e-03 3.8e-02  .29+  1.0e-02 .34+  
(2.8e-02) (2.8e-02)  (.16)  (7.6e-02) (.2) 

Backward Compatibility   22     50   
(18)     (32) 

MPI-based App Innovation Release 
Timing * Backward Compatibility   

-8.3e-02**     -.58*   
(3.0e-02)     (.29) 

N  601 601  282  319 282 
R Squared  0.187 0.200  0.222  0.332 0.250 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 14. Results using app downloads as measure of app performance with a sample of free apps.  
Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing  

-1.5 -1.8  -18*  3 -17*  
(8.1) (2.5)  (9.2)  (12) (8.2) 

Backward Compatibility   1.9e+03     -3.3e+03   
(3.1e+03)     (4.5e+03) 

MPI-based App Innovation Release 
Timing * Backward Compatibility   

7.3     47+   
(4.9)     (25) 

N  601 601  282  319 282 
R Squared  0.109 0.170  0.277  0.169 0.283 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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Finally, we conduct time-series analyses over an observation period of 7 days before the 
MPI-based app innovation release date and 28 after. We limit our sample to free apps. We 
find that release timing has a curvilinear effect on app performance supporting our 
hypotheses that the effect of release timing depends on the adoption curve of each 

Table 15. Results using app ranking as measure of app performance and controlling for app innovation 
Differentiation.  

Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing 

1.7e-02 5.2e-02* .23*  -6.7e-03 .34+ 
(1.7e-02) (2.1e-02) (.11)  (4.1e-02) (.17) 

Backward Compatibility  34*    41+  
(14)    (25) 

MPI-based App Innovation Release 
Timing * Backward Compatibility  

-5.7e-02**    -.4*  
(2.2e-02)    (.18) 

App Innovation Differentiation 10* 11* 13*  5.5 17* 
(4.3) (4.3) (6.7)  (6) (7) 

N 1213 1213 600  613 600 
R Squared 0.074 0.076 0.106  0.101 0.110 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 16. Results using app downloads as measure of app performance and controlling for app 
innovation differentiation.  

Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing 

-1.5  1.4  -10* 3.8 -13* 
(5.6)  (2.7)  (4.4) (9.3) (5.8) 

Backward Compatibility   7.1e+02    -2.6e+03   
(1.6e+03)    (2.3e+03) 

MPI-based App Innovation Release 
Timing * Backward Compatibility   

2.7    22*   
(2.6)    (10) 

App Innovation Differentiation 3.9e+02  3.3e+02  56 6.5e+02 -1.9e+02 
(3.8e+02)  (4.1e+02)  (1.8e+02) (5.9e+02) (2.2e+02) 

N 1060  1060  516 544 516 
R Squared 0.075  0.072  0.265 0.126 0.143 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

Table 17. Results with instrumental variable estimator.  
DV = App Ranking 

Model 1 Model 2 Model 3 Model 4 Model 5 

MPI-based App Innovation Release 
Timing 

2.4e-02 3.7e-02 .24* -4.4e-02 .43** 
(2.1e-02) (2.3e-02) (.12) (3.9e-02) (.17) 

Backward Compatibility  28*   56*  
(14)   (25) 

MPI-based App Innovation Release 
Timing * Backward Compatibility  

-3.5e-02   -.51**  
(2.5e-02)   (.18) 

Average App Rating -1.7 -1.4 -30* 14 -29* 
(9.9) (9.8) (14) (14) (14) 

Number of App Ratings 3.9e-04 3.7e-04 1.0e-03 9.5e-04 1.1e-03 
(7.0e-04) (7.6e-04) (9.4e-04) (1.7e-03) (8.3e-04) 

N 1213 1213 600 610 600 
R Squared 0.077 0.081 0.116 0.123 0.131 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  
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platform generation. The results are presented in Table 18, and for more details see Online 
Supplemental Appendix R. 

Discussion 

Research Contributions 

Our research provides several research contributions. First, our study contributes to the 
body of literature on the performance of third-party apps developed for mobile platform 
ecosystems such as iOS or Android. The determinants of third-party apps performance 
have been studied extensively in the literature (e.g., [13, 21, 30, 35, 42, 54, 56-58, 62, 69, 
73, 74, 76, 77]). For example, the prior literature suggests the importance of factors such as 
app price, app category, and app rating. Despite some notable findings in the literature, 
there is a minimal amount of evidence about the role of MPIs on app performance. 
Considering that it is challenging to survive in hypercompetitive environments, our 
research provides a significant contribution to the literature on the performance of third- 
party apps. We distinguish between MPI-based app innovations that are enabled by MPIs 
(e.g., ARKit, and CoreML) and those that rely entirely on the developers’ internal 
resources. By focusing on apps innovations enabled by the MPIs, we unveil the role of 
the platform provider on third-party apps performance through the release of MPIs. 
Theoretically, our research highlights the influence of MPIs on the relationship between 
MPI-based app innovation – app performance. This study is particularly important as 
platform providers release MPIs on a yearly basis and increasingly third-party developers 
are supporting these MPIs. 

Second, our study contributes to the discussion about the relationship between entry 
timing and product performance. There is a rich body of literature that examines the link 
between entry timing and product performance [36]. Prior research about the timing to 
enter a market provides conflicting empirical findings [61, 25, 7, 29]. For example, some 
studies found that in the PC industry late entrants tend to have a greater market position 
and higher survival rates than early entrants (e.g., [65]). While other studies argue that 
early movers target greater, uncertain revenues opportunities while late movers target 

Table 18. Times-series results with a sample of free apps.  
DV = App Ranking DV = App Downloads 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

MPI-based App Innovation Release 
Timing 

.33*** .28**  .3* -32** -23* -36* 
(8.7e-02) (9.2e-02)  (.14) (11) (11) (18) 

Release Timing * Release Timing -2.2e-04** -2.3e-04***  -2.6e-04* 2.4e-02* 2.6e-02** 3.8e-02* 
(6.9e-05) (6.9e-05)  (1.2e-04) (9.7e-03) (1.0e-02) (1.7e-02) 

Backward Compatibility  60*  -54  -6.0e+03 3.2e+03  
(29)  (36)  (4.3e+03) (5.0e+03) 

Release Timing * Backward 
Compatibility  

-9.7e-02*  5.6e-02  15* 3.1  
(4.0e-02)  (.16)  (7.4) (20) 

Squared Release Timing * Backward 
Compatibility    

3.7e-05   -1.6e-02    
(1.4e-04)   (1.7e-02) 

Observations 21177 21177  21177 21177 21177 21177 

+p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001. 
Control variables, year, and category dummies included.  

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 979 



lower, certain revenues opportunities [36]. The latest developments on the relationship 
between entry timing and product performance posit the firms that enter during the 
window of time between the emergence of a dominant category and the emergence of 
a dominant design perform better than firms that enter during any other phase [61]. Our 
study extends this body of literature by showing theoretically and empirically that the 
relationship between release timing and product performance for MPI-based app innova
tions is contingent on the stage of adoption curve. We demonstrate that compared to the 
maturity and decline stage, the growth stage provides a window of opportunity for MPI- 
based app innovations. During the growth stage of the adoption curve, early entrants have 
an advantage over late entrants, leading to greater app performance. However, during the 
maturity and decline stage of the adoption curve, early entrants lose their advantage over 
late entrants. These findings imply that future studies should consider the stages of the 
adoption curve when examining the release timing for service and product innovations. 

Finally, we indicate that MPIs play an important role in understanding the release 
timing for new app services. As third-party developers are building upon mobile platform 
resources to develop MPI-based app innovations, our research provides evidence that the 
level of backward compatibility is critical to determine the release timing. We extend 
previous research on backward compatibility that examines the influence of backward 
compatibility on the adoption of multigenerational platforms [24, 67]. Backward compat
ibility affects both the platform and service providers. The size of the market for MPI- 
based app innovations that supports MPIs with no backward compatibility is smaller, thus 
encouraging third-party developers to build upon MPIs that are backward compatible. 
The literature suggests that service providers are better off when the platform provider 
supports backward compatibility [24]. Our findings extend the prior literature by demon
strating that MPI-based app innovations that support MPIs that are not backward 
compatible have a positive effect on app performance when they enter the market early 
during the growth stage. Hence, the release timing when MPIs have no backward 
compatibility must be early during the growth stage. This study implies that future 
research should consider backward compatibility when examining the impact of release 
timing. 

Practical Implications 

The mobile apps market is hypercompetitive and requires third-party developers to be 
very active through digital innovations. Our research provides several practical implica
tions about how MPIs are leveraged to achieve greater app performance. First, our study 
informs third-party developers about the optimal time to enter the market. Our findings 
suggest that developers should release their MPI-based app innovations early during the 
growth stage to increase their app performance. The risks of preemption are mitigated 
during the growth stage compared to the maturity and decline stage. Thus, third-party 
developers should not wait until the market reaches the maturity and decline stage. We 
recommend third-party developers to study MPIs ahead of their release date (i.e., beta 
versions) to understand how they could be used to create new app services. In doing so, 
third-party developers will be able to enter the market early. When third-party developers 
are limited in their ability to support multiple MPIs, they should prioritize the MPI that 
will take less time to support. 
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Second, our study implies that third-party developers should pay attention to the level 
of backward compatibility of MPIs when timing their MPI-based app innovations. 
Whether the MPIs are backward compatible or not has a significant impact on the size 
of the market MPI-based app innovations can reach. MPIs with backward compatibility 
are more attractive for third-party developers since their MPI-based app innovations can 
reach a large market. Our findings imply that release timing is critical when MPIs are not 
backward compatible. Third-party developers that enter the market late during the growth 
stage have a disadvantage compared to early entrants. However, this disadvantage is 
mitigated when the MPI supported is backward compatible. Third-party developers who 
lack the capability (e.g., experience) to be among the first movers should focus on creating 
app services enabled by MPIs that are backward compatible. The risk of preemption is less 
severe in that case. Moreover, third-party developers who can be pioneers should prior
itize MPIs that are not backward compatible. By doing so, they differentiate themselves 
from followers in terms of app performance distinctly. 

Finally, our study provides some implications for platform providers who rely on MPIs 
to support third-party development. Platform providers such as Apple release on a yearly 
basis new platform services to facilitate the development of third-party apps on their latest 
mobile devices and mobile platforms. Because these MPIs have different levels of back
ward compatibility, our study implies that platform providers should be aware of the 
limitations of certain MPIs (i.e., those with no backward compatibility) to enhance the app 
performance of third-party developers who cannot be among the first movers. As mobile 
device prices increase, platform users are more likely to use the same mobile device for 
a longer period. Thus, there is a growing gap between the levels of adoption of new 
generations of the mobile device (e.g., iPhone X) and the mobile platform (e.g., iOS 11). 
This trend should encourage platform providers to develop MPIs that are backward 
compatible, loosely coupled and less dependent on the hardware. Since the competition 
on mobile apps market is growing, third-party developers are looking for ways to reach 
larger market size. Thus, the priority of the platform providers should be to create MPIs 
that unlock large markets allowing third-party developers to reach more platform users. 
For example, MPIs that allow third-party apps to be cross-platform and operate on 
multiple platforms (e.g., iMessage and iOS, Apple Watch, and iPhone) should be the 
focus of platform providers. As the number of devices (e.g., iPad, iPhone, and iWatch) and 
mobile platforms (e.g., iOS, WatchOS, and iMessage) continue to increase, platform 
providers should orient their digital strategies in the creation of MPIs that are indepen
dent of the type and generation of mobile device and mobile platform. 

Limitations and Future Research 

The statistical inferences of this study are subject to a couple of limitations that offer 
directions for future research. First, the findings are limited to a sample of six MPIs. We 
observe major MPIs because it is easier to identify MPI-based app innovations that 
support them. We provide some robustness checks to control for selection bias in the 
choice of MPIs. Future research can extend our analyses to a large group of MPIs. This 
will require some innovative techniques to identify MPI-based app innovations that are 
enabled by these MPIs. 
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Second, the measure of app performance is limited to 4 weeks before and after the entry 
of the MPI-based app innovation. Previous research suggests using an aggregate measure 
of app ranking such as app ranking per month instead of the daily ranking since it is very 
volatile [32]. Our data have 4 weeks of app ranking allowing us to aggregate the daily app 
ranking up to one month. Hence, we can observe the short-term impact of MPI-based app 
innovations release timing. Future research could include the long-term impact of MPI- 
based app innovations release timing by predicting app performance after two months or 
more. 

Third, our measure of app performance relies solely on Apple top free, paid, and 
grossing app rankings. Although this measure has been used on the literature (e.g., [38, 
32]) and is consistent with our hypotheses, it might not capture appropriately the app 
performance. The measure does not include the costs related to the innovation. Finally, 
our study is limited to the iOS platform. We are not sure our results hold in different 
contexts. Future research can investigate other platform-based ecosystems (e.g., MacOS) 
to check the generalizability of our findings. 

Conclusion 

In this study, we investigate how MPIs are leveraged at the app level. Service co-creation is 
an important aspect of platform-based ecosystems and occurs when third-party developers 
build upon MPIs to create new app services. In platform-based ecosystems, the impact of 
MPI-based app innovations depends on their ability to successfully reach the market. We 
examine the role of MPI-based app innovation release timing on app performance. We 
test our hypotheses on MPI-based app innovations that support iOS innovations (i.e., 
FaceID, ARKit, CoreML, Apple Pay, TouchID, and “Hey Siri”) released during the period 
2014-2018. 

Our findings confirm that the effect of MPI-based app innovation release timing is 
contingent on the stage of the adoption curve and the level of backward compat
ibility of the MPI supported. We find that during the growth stage, MPI-based app 
innovations that enter the market early have a greater effect on app performance 
than those that enter late. However, during the maturity and decline stage, MPI- 
based app innovation release timing does not influence app performance. We also 
found that during the growth stage, the effect of MPI-based app innovation release 
timing on app performance is reinforced when the MPI supported has no backward 
compatibility. 

The key contribution of this study is to highlight the role of MPI-based app 
innovation release timing in mobile platform ecosystems that are characterized by 
arm’s-length relationship between complementors and platform owners. Our study 
sheds light on the adoption curve of a platform generation as a significant yet under
explored factor to explain complementor performance. Considering (a) that a platform 
generation adoption curve highlights demand heterogeneity in platform markets 
wherein early platform adopters are different from late platform adopters, and (b) 
the platform technologies introduced in new platform generations have a different 
level of backward compatibility, we demonstrate that the effect of MPI-based app 
innovation release timing on complementor’s performance is contingent on both 
platform demand heterogeneity and the platform technology’s level of backward 
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compatibility. Hence, third-party developers should define their release timing strategy 
based on the platform generation adoption curve and the level of backward 
compatibility. 

Notes  
1. ARKit, SiriKit, and CoreML are technologies developed by Apple. ARKit and CoreML were 

introduced in 2017 with iOS 11, while SiriKit became part of iOS 6 in 2012. ARKit is 
a technology that enables augmented reality experiences for app users. SiriKit facilitates the 
creation of voice commands that can work with the Apple voice assistant Siri. Finally, 
CoreML allows the creation of machine learning models for apps.  

2. We randomly selected some third-party apps from the sample to ensure no other MPI-based 
app innovations are released during the time period [-7; +21]. Our observations indicate that 
mainly minor improvements (e.g., bug fixes, performance improvements, or stability 
improvements) are released. Moreover, we conducted several robustness checks using differ
ent time periods. The results are consistent across these time periods (See Robustness Checks 
Section)  

3. No other MPI is released during the growth stage.  
4. Adapted from [53] 
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